Calculus 251:C3 Worksheet 12.1-12.2

(1) For each pair P, Q, find the components of $\overrightarrow{P Q}$ and calculate $\|\overrightarrow{P Q}\|$
(a) $P=(-3,-5), Q=(4,-6)$
(b) $P=(2 e, 1-2 \pi), Q=(2 e+\pi, 1+\pi)$
(c) $P=(3,-8,2), Q=(7,4,-7)$
(d) $P=(1,2,3,4), Q=(3,-1,5,-1) \quad$ [Note: Yes, this problem is in $\left.\mathbb{R}^{4}\right]$
(2) Perform the indicated vector operation.
(a) $\langle-4,6\rangle-\langle 2,-3\rangle$
(b) $\langle 3,8, \pi\rangle+2\langle 2,-4,-2 \pi\rangle$
(c) $2(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}})-3(\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$
(d) $\left\langle\sin ^{2}\left(\frac{\pi}{7}\right), \ln 27, \sqrt{2}\right\rangle-\left\langle-\cos ^{2}\left(\frac{\pi}{7}\right), \ln 9, \sqrt{3}\right\rangle$
(3) Find the unit vector $\vec{e}_{\vec{v}}$ where $\vec{v}=2 \hat{\mathbf{\imath}}-3 \hat{\mathbf{j}}$
(4) Find the vector \vec{v} which satisfies the equation $3 \vec{v}-\langle 3,2,-5\rangle=\langle 0,1,2\rangle$
(5) Let $\vec{u}=\langle 1,3\rangle, \vec{v}=\langle 1,-1\rangle$, and $\vec{w}=\langle 3,1\rangle$. Write \vec{u} as a linear combination of \vec{v} and \vec{w}.
(6) Find a parameterization of the line through $P=(0,2,4)$ and $Q=(5,-3,3)$.
(7) Find the magnitudes of the forces on cables 1 and 2 in the following diagram:

