Calculus 251:C3  Reading Guide - 6/3/2020

Section 14.3 Partial Derivatives

In this section, we are going to see how the concept of the derivative extends to func-
tions of more than one variable. When we looked at average rates of change in the previous
section, we saw that at a particular point of the domain we may have different rates of
change depending on the direction we travel from the point. It therefore does not make
sense to talk about “the derivative” of a multivariable function at a point. What does make
sense is talking about the partial derivative of a function with respect to a particular variable.

If you have a function f(z,y, z), the partial derivative with respect to x at the point (a, b, c)
is the rate of change of f at the point along the line 7(t) = (a+t,b, ¢). That is what happens
when we hold y and z constant and only let x vary?

Note that there are multiple notations that get used. You may see any of
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all of which mean the same thing (at least if f is a function of z,y for the last one). Other
notations that are equivalent:
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I will usually use the subscript notation (so f,, f:(a,b), fus, etc.) because it is a lot less
writing/typing. There will be times when the Leibniz notation (the one with the d’s) makes
it easier to see what is going on. You should become comfortable with both notations.

Find the following definitions/concepts/theorems:
e partial derivative
e partial derivative of f with respect to x
e Numerical approximation of partial derivatives
e second-order partial derivatives
e mixed partials
e Theorem: equality of mixed partials (note the condition under which this is true!)

e partial differential equation (a/k/a PDE)



The motivating examples above example 1 are intended to give you a feel for when you will
need to use multivariable functions to model real-world phenomena.
Example 1 is a very basic example of partial derivatives.

Examples 2 and 3 are examples which require “The Chain Rule”, according to the text.
This is not a great name for what they are doing because there are several different chain
rules depending on the type of composition of functions (more in 14.5-14.6). This version
of the chain rules works in problems like these where you have a function explicitly given
in terms of the input variables. And it works just like the single-variable case. But do not
assume that this is the end of the chain rule story...

Examples 4 and 6 are real-world examples of when we use partial derivatives and approxi-
mations.

Example 5 is a caluculation of a function of 4 variables, so you should note that the graph
is a hypersurface in R®. Can you picture what such a graph would look like? I can’t.

Examples 7 through 10 all involve calculations of higher-order partial derivatives. Just
like when you needed to find a second or third derivative, you just take derivatives multiple
times. The only catch here is that you have to be careful which input variable you are differ-
entiating with respect to. In order to find f,,, in example 8, you need to differentiate with
respect to x once and y twice. Note that example 10 takes advantage of the fact that the
order you do these in doesn’t matter (assuming, of course, that the hypothesis of Clairaut’s
Theorem is satisfied!)

Example 11 involves the heat equation g—? = %, a PDE which shows up in many problems
in physics and engineering. In this case we are not solving the PDE, we are just verifying
that the given function u(x,t) satisfies the PDE. Solving PDE’s is beyond the scope of this
course, but is a topic in Math 421. I am sure that many of the advanced physics courses
also involve solving PDE’s.

Section 14.4 Differentiability, Tangent Planes, and Linear Approximation

This section talks about what it means for a multivariable function to be differentiable.
You should already know that single variable functions fail to be differentiable at disconti-
nuities (of any type), cusps, corners, and vertical tangents. As you have probably already
guessed, there is a lot more going on here even with only two variables. Of particular note is
that in order for f(x,y) to be differentiable at a point (a,b), it is necessary that f,(a,b) and
fy(a,b) both exist, but that condition is not sufficient. Figure 2c on page 818 right at the
beginning of the section shows a function where both partials exist (and are actually both
0) at the origin, but the function is not differentiable there. This function is discussed in
great detail in “Assumptions Matter” on pages 824-825.

The intuition for single-variable calculus is that if you zoom in far enough on the graph
of a differentiable function, the graph looks like a line. We used that fact to create lin-
earizations of differentiable functions at particular points which we could use to estimate the
function at z-values near the point. Remember estimating +/4.02 without a calculator in



calc I? For a function of two variables, the intuition is that as you zoom in on a differentiable
function the graph looks more and more like a plane. The linearization at a point on the
surface z = f(z,y) is going to be a plane tangent to the surface at that point.

Find the following definitions/concepts/formulas/theorems:

tangent lines for f, and f,
plane determined by f, and f,
linearization of f(x,y) centered at (a,b)

Definition and formulas for “Differentiability and the Tangent Plane” - You should
look at these, but you are not responsible for knowing them. They are beyond the
scope of the course. Ask me in office hours if you are curious!

Theorem: confirming differentiability
approximation of f(z,y) by L(x,y)
Formulas for “Differentials and Linear Approximation”

Linear Approximation formula f(a + Az, b+ Ay) ~ something

Examples 1-3 are all straightforward, and you will hopefully not have trouble working
through them. Finding tangent planes uses techniques that we developed in chapter 12.
Remember the examples where you had to find the plane containing two lines? These ex-
amples are why that was so important.

Examples 4-6 all involve using partial derivatives to produce lineariazations, and then use
those linearizations to estimate the function somewhere near the point at which the lin-
earization is centered.



