
Calculus 251:C3 Reading Guide - 6/16/2020

Section 15.1 Integration in Two Variables

In chapter 15, we will be studying multiple integration. The first step in that process is
to understand the double integral. In single-variable calculus, you learned that the integral
of y = f(x) represents the area between the graph of the function and the x-axis. If the
area was above the axis, we counted it as positive area. If the area was below the axis, we

counted it as negative. Our definite integrals were written as

∫ b

a

f(x)dx, a notation that

meant that we were integrating the function with respect to x on the interval [a, b]. Really
this came down to the area bounded by the lines x = a, x = b, and y = 0 and the curve
y = f(x) with positive/negative considerations discussed above.

Now, our functions are of the form z = f(x, y) and their graphs live in R3. When we integrate
a function, we will need to look at a domain which is a subset of R2, which we understand

to be the xy-coordinate plane. Our integrals may be written as

∫ b

a

∫ d

c

f(x, y) dy dx, which

means we are integrating with respect to y on [c, d] and then integrating again with respect to
x on [a, b]. What this value represents is the volume above the rectangle in the xy-coordinate
plane and below the function z = f(x, y). Again, we will consider volume below the xy-
coordinate plane to be negative volume, analagously to the single-variable case. And you
can think about this volume as being bounded by five planes (which ones?) and the surface
z = f(x, y). Most of the rest of the section is a discussion of why this all makes sense and
details of how we do it.

Note: This section does introduce the notation

∫∫
D
f(x, y) dA, but we will only deal with

integrating over rectangles. In the next section, we will see how to integrate over domains
of other shapes.

Find the following definitions/concepts/formulas/theorems:

� double integral

� Riemann sum (same general idea as single-variable, but our little intervals are now
little rectangles)

� limit of Riemann sums

� Double integral over a rectangle

� integrable (essentially the same as single-variable)

� regular partitions (again just adding a dimension to the definition from single-variable
calculus)

� Theorem: Continuous functions are integrable

� Theorem: Linearity of the Double Integral



� Area formula (a/k/a double integral of a constant)

� iterated integral

� Theorem: Fubini’s Theorem (THIS IS HUGE, arguably one of the most important
theorems in all of mathematics)

� area element

The first few pages are all about how we extend our understanding of integration and Rie-
mann sums to functions of two variables. There is a lot of notation, but it is really close
enough to the single-variable case that it should be readable.

Examples 1, 2, and 3 are about how to evaulate integrals without actually integrating any-
thing. Example 1 uses sampling to build an estimate from a Riemann sum (without taking
the limit). You should have seen this in Calc I (or AP Calc in high school) as estimates us-
ing left endpoint, right endpoint, and midpoint. You probably also talked about trapezoidal
approximations, but we’re not going to do that here.

Example 2 is about using geometry to figure out the volume instead of integrating. The

classic single-variable example is

∫ 5

−5

√
25− x2 dx. You could use trigonometric substitution

to hammer out this integral, but why the heck would you do that? This is just asking us for

the area of a semicircle with a radius of 5, which is
25π

2
. Life is hard enough without doing

unnecessary computations.

Example 3 uses a symmetry argument to assert that an integral has to be 0 because it has the
same volume above and below the xy-plane so they cancel. If you had a mean teacher for Calc

I, they probably put some ridiculous question like “calculate

∫ 47
√
3

−47
√
3

(
sin5(3x) + 43πx17

)
dx”

on a quiz. But the silly expression in the parentheses is an odd function, so it has rotational
symmetry around the origin. As long as the limits of integration are ±the same constant,
the integral is going to be zero.

Examples 4,5, and 6 are all very straightforward evaluations of iterated integrals. The
key idea is that when you are integrating with respect to x, you treat y as though it were a
constant, and vice versa. If you think that sounds like a reprise of how we compute partial
derivatives, you are on the right track.

The proof of Fubini’s Theorem and the Graphical Insight that follows it are pretty rough. If
you want to be a math major, you should certainly spend some time trying to digest them. If
you are not planning to be a math major, please don’t spend your time on this proof. I also
promise you that we are not going to discuss the proof in class, because it is time-consuming
to do correctly and not of general interest. The theorem itself is important because it
allows us to switch the order of integration, which will often turn a very difficult integral
into a more manageable one. But you can skip the proof.

Example 7 is a volume calculation, and example 8 is a physics/oceanography example. Both
are worth a read.


