# Math 251: Multivariable Calculus, Exam #3 Instructor: Blair Seidler

- 1. 20 pts Let  $\mathcal{C}$  be the helix parametrized by  $\vec{r}(t) = \langle 2\sin t, 2\cos t, \sqrt{5} t \rangle$  for  $0 \le t \le 5\pi$ .
  - (a) Find the length of C.
  - (b) Calculate  $\int_{\mathcal{C}} xyz \ ds$ .
  - (c) Let  $\vec{F} = \langle 1, x^2, 0 \rangle$ . Calculate  $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$

#### **Solution:**

(a) 
$$\vec{r}'(t) = \langle 2\cos t, -2\sin t, \sqrt{5}\rangle$$
  
 $ds = ||\vec{r}'(t)|| dt = \sqrt{4\cos^2 t + 4\sin^2 t + 5} dt = 3dt$   
 $length(\mathcal{C}) = \int_{\mathcal{C}} 1 ds = \int_{0}^{5\pi} 3 dt = 15\pi$ 

(b) 
$$f(\vec{r}(t)) = (2\sin t)(2\cos t)(\sqrt{5} t) = 4\sqrt{5} t \sin t \cos t = 2\sqrt{5} t \sin 2t$$
  

$$\int_{\mathcal{C}} xyz \, ds = \int_{0}^{5\pi} f(\vec{r}(t)) \|\vec{r}'(t)\| \, dt = \int_{0}^{5\pi} (2\sqrt{5} t \sin 2t)(3 \, dt) = 6\sqrt{5} \int_{0}^{5\pi} t \sin 2t \, dt$$
Integrating by parts gives  $\int t \sin 2t \, dt = -\frac{1}{2}t \cos 2t + \frac{1}{4}\sin 2t + C$ , so
$$\int_{\mathcal{C}} xyz \, ds = 6\sqrt{5} \left[ \frac{\sin 2t}{4} - \frac{t \cos 2t}{2} \right] \Big|_{0}^{5\pi} = 6\sqrt{5} \left[ \left( 0 - \frac{5\pi(1)}{2} \right) - (0 - 0) \right] = -15\sqrt{5} \pi$$

(c) 
$$\vec{F}(\vec{r}(t)) = \langle 1, 4\sin^2 t, 0 \rangle$$
  

$$\int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = \int_{0}^{5\pi} \langle 1, 4\sin^2 t, 0 \rangle \cdot \langle 2\cos t, -2\sin t, \sqrt{5} \rangle dt = \int_{0}^{5\pi} (2\cos t - 8\sin^3 t) dt$$

$$= \int_{0}^{5\pi} 2\cos t \, dt + 8 \int_{0}^{5\pi} (1 - \cos^2 t)(-\sin t) dt = 0 + 8 \int_{1}^{-1} (1 - u^2) du$$

$$= \left[ u - \frac{u^3}{3} \right]_{1}^{-1} = \left( -1 - \frac{-1}{3} \right) - \left( 1 - \frac{1}{3} \right) = -\frac{32}{3}$$

2. 20 pts Let  $\mathcal{D}$  be the part of the first quadrant shaded in the diagram.



This region is bounded on the left and right by the curves  $y - x^2 = 1$  and  $y - x^2 = -5$ , and on the top and bottom by the lines x + 2y = 8 and x + 2y = 4.

- (a) Find a rectangle  $\mathcal{R}$  in the uv-plane and a map G such that  $G(\mathcal{R}) = \mathcal{D}$ . You may give either G or  $G^{-1}$ , but you must indicate which one your answer represents.
- (b) Calculate Jac(G). You may give your answer in terms of x and y or in terms of u and v
- (c) Use a change of variables to calculate  $\iint_{\mathcal{D}} (4x+1)e^{x^2+x+y} dx dy$ .

### **Solution:**

- (a) Set u = x + 2y and  $v = x^2 y$ . This will map the rectangle  $\mathcal{R} = [4, 8] \times [-1, 5]$  in the uv-plane to  $\mathcal{D}$ . Note that this is really an inverse map because we have u, v in terms of x, y.  $G^{-1}(x, y) = (x + 2y, x^2 y)$
- (b)  $\operatorname{Jac}(G^{-1}) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2x & -1 \end{vmatrix} = -1 4x$ Therefore  $\operatorname{Jac}(G) = \frac{1}{\operatorname{Jac}(G^{-1})} = \frac{-1}{4x+1}$
- (c) Since we are in the first quadrant,  $\frac{-1}{4x+1} < 0$ , so  $|\operatorname{Jac}(G)| = \frac{1}{4x+1}$

$$\iint\limits_{\mathcal{D}} (4x+1)e^{x^2+x+y} dx dy = \int_{-1}^{5} \int_{4}^{8} (4x+1)e^{x^2+x+y} \frac{1}{4x+1} du dv$$

Next, we note that  $x^2 + x + y = u + v$ , so

$$\iint\limits_{\mathcal{D}} (4x+1)e^{x^2+x+y} \, dx \, dy = \int_{-1}^{5} \int_{4}^{8} e^{u+v} du \, dv = (e^5 - e^{-1})(e^8 - e^4) = e^{13} - e^9 - e^7 + e^3$$

- 3. 18 pts Let  $\vec{F} = \langle e^x \sin y, e^x \cos y \cos(z^2), 2yz \sin(z^2) \rangle$ .
  - (a) Calculate  $\operatorname{div}(\vec{F})$ .
  - (b) Calculate  $\operatorname{curl}(\vec{F})$ .
  - (c) Is  $\vec{F}$  conservative? Why or why not?
  - (d) If your answer to (c) is yes, find a potential for  $\vec{F}$ .

### Solution:

(a) 
$$\operatorname{div}(\vec{F}) = \vec{\nabla} \cdot \vec{F} = \left\langle \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right\rangle \cdot \left\langle e^x \sin y, e^x \cos y - \cos(z^2), 2yz \sin(z^2) \right\rangle$$
  

$$= \frac{\partial}{\partial x} (e^x \sin y) + \frac{\partial}{\partial y} (e^x \cos y - \cos(z^2)) + \frac{\partial}{\partial z} (2yz \sin(z^2))$$

$$= e^x \sin y + (-e^x \sin y) + (2y \sin(z^2) + 4yz^2 \cos(z^2)) = 2y \sin(z^2) + 4yz^2 \cos(z^2)$$

(b) 
$$\operatorname{curl}(\vec{F}) = \vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ e^x \sin y & e^x \cos y - \cos(z^2) & 2yz \sin(z^2) \end{vmatrix}$$

$$= (2z\sin(z^2) - 2z\sin(z^2))\hat{\mathbf{i}} - (0-0)\hat{\mathbf{j}} + (e^x\cos y - e^x\cos y)\hat{\mathbf{k}} = \vec{0}$$

- (c) Yes. Exponential, trigonometric, and polynomial functions are all continuous on  $\mathbb{R}^3$ , so the domain of  $\vec{F}$  is all of  $\mathbb{R}^3$  which is simply connected. Since the domain is simply connected and  $\text{curl}(\vec{F}) = \vec{0}$ ,  $\vec{F}$  is conservative.
- (d) Let f be a potential for  $\vec{F}$ , i.e.  $\nabla f = \vec{F}$ .  $f_x = e^x \sin y$ , so  $f = e^x \sin y + g(y, z)$

$$e^x \cos y - \cos(z^2) = f_y = e^x \cos y + g_y$$
, so  $g_y = -\cos(z^2)$  and  $g(y, z) = -y \cos(z^2) + h(z)$   
Updating:  $f = e^x \sin y - y \cos(z^2) + h(z)$ 

$$2yz\sin(z^2) = f_z = 2yz\sin(z^2) + h'(z)$$
, so  $h'(z) = 0$  and  $h(z) = C$ 

Updating: 
$$f = e^x \sin y - y \cos(z^2) + C$$
  
So  $f(x, y, z) = e^x \sin y - y \cos(z^2)$  is a potential for  $\vec{F}$ .

4. 18 pts Let  $\vec{F} = \langle 3x^2y, x^3 - 2yz, -y^2 \rangle$ . Let  $C_1$  be the ellipse parametrized by  $\vec{r}_1 = \langle 2\cos t, 5\sin t, 3 \rangle$ ,  $0 \le t \le 2\pi$ . Let  $C_2$  be the curve parametrized by  $\vec{r}_2 = \langle 2\cos\left(\frac{\pi t}{4}\right), \frac{t^3}{25}, 2\ln(t+1) \rangle$ ,  $0 \le t \le 5$ .

- (a) Calculate  $\int_{\mathcal{C}_1} \vec{F} \cdot d\vec{r}_1$ .
- (b) Calculate  $\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{r}_2$ .

## Solution:

First, we note that

$$\operatorname{curl}(\vec{F}) = \vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3x^2y & x^3 - 2yz & -y^2 \end{vmatrix} = (-2y - (-2y))\hat{\mathbf{i}} - (0 - 0)\hat{\mathbf{j}} + (3x^2 - 3x^2)\hat{\mathbf{k}} = \vec{0}$$

The domain of  $\vec{F}$  is all of  $\mathbb{R}^3$  which is simply connected, so  $\vec{F}$  is conservative.

By inspection, we see that if  $f(x,y,z)=x^3y-y^2z$ , then  $\vec{\nabla} f=\langle 3x^2y,x^3-2yz,-y^2\rangle=\vec{F}$ . Therefore  $f(x,y,z)=x^3y-y^2z$  is a potential for  $\vec{F}$ .

- (a)  $C_1$  is a simple closed curve, and  $\vec{F}$  is conservative. Therefore  $\int_{C_1} \vec{F} \cdot d\vec{r}_1 = 0$
- (b) Since  $\vec{F}$  is conservative,  $\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{r}_2$  is path-independent.  $\vec{r}_2(0) = (2,0,0)$  and  $\vec{r}_2(5) = (-\sqrt{2},5,2\ln 6)$ .

$$\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{r}_2 = f(\vec{r}_2(5)) - f(\vec{r}_2(0)) = f(-\sqrt{2}, 5, 2 \ln 6) - f(2, 0, 0)$$
$$= (-10\sqrt{2} - 50 \ln 6) - (0) = -10\sqrt{2} - 50 \ln 6$$

- 5. 24 pts Let S be the surface  $x^2 + y^2 = 16 z$  for  $z \ge 0$ .
  - (a) Parametrize the surface with a mapping  $G(r, \theta)$ .
  - (b) Compute  $\vec{T}_r, \vec{T}_\theta, \vec{N}$ , orienting S with upward-pointing normal.
  - (c) Find the surface area of S.
  - (d) Calculate the flux of  $\vec{F} = \langle 0, 0, 3z \rangle$  across  $\mathcal{S}$ .

#### Solution:

(a) Rewriting the equation of the paraboloid in cylindrical coordinates,  $z=16-r^2$ . So the vertex of the paraboloid is at (0,0,16). Since  $z\geq 0$ , we must have  $r\in [0,4]$ . The parametrization is therefore:

$$G(r,\theta) = (r\cos\theta, r\sin\theta, 16 - r^2), r \in [0,4], \theta \in [0,2\pi).$$

(b) 
$$\vec{T}_r = \frac{\partial G}{\partial r} = \langle \cos \theta, \sin \theta, -2r \rangle$$
 and  $\vec{T}_\theta = \frac{\partial G}{\partial \theta} = \langle -r \sin \theta, r \cos \theta, 0 \rangle$ 

$$\vec{N}(r,\theta) = \vec{T}_r \times \vec{T}_\theta = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \cos \theta & \sin \theta & -2r \\ -r \sin \theta & r \cos \theta & 0 \end{vmatrix} = \langle 2r^2 \cos \theta, 2r^2 \sin \theta, r \rangle$$

Since  $r \geq 0$ , this normal points upward, and S is oriented correctly.

(c) 
$$\|\vec{N}\| = \sqrt{4r^4 \cos^2 \theta + 4r^4 \sin^2 \theta + r^2} = \sqrt{4r^4 + r^2} = r\sqrt{4r^2 + 1}$$

$$\operatorname{area}(\mathcal{S}) = \int_{\mathcal{S}} \|\vec{N}\| dS = \int_{0}^{2\pi} \int_{0}^{4} r\sqrt{r^2 + 1} dr d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{4} r\sqrt{r^2 + 1} dr$$
$$= 2\pi \left( \frac{1}{8} \cdot \frac{2}{3} (4r^2 + 1)^{3/2} \right) \Big|_{0}^{4} = \frac{\pi}{6} (65^{3/2} - 1)$$

(d) 
$$\vec{F} \cdot \vec{N} = \langle 0, 0, 48 - 3r^2 \rangle \cdot \langle 2r^2 \cos \theta, 2r^2 \sin \theta, r \rangle = 48r - 3r^3$$

$$\int_{\mathcal{S}} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{4} \vec{F} \cdot \vec{N} \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{4} 48r - 3r^{3} \, dr \, d\theta$$

$$= 2\pi \left(24r^2 - \frac{3}{4}r^4\right)\Big|_0^4 = 2\pi (384 - 192) = 384\pi$$