## Math 251: Multivariable Calculus, Exam \#3 Instructor: Blair Seidler

1. 20 pts Let $\mathcal{C}$ be the helix parametrized by $\vec{r}(t)=\langle 2 \sin t, 2 \cos t, \sqrt{5} t\rangle$ for $0 \leq t \leq 5 \pi$.
(a) Find the length of $\mathcal{C}$.
(b) Calculate $\int_{\mathcal{C}} x y z d s$.
(c) Let $\vec{F}=\left\langle 1, x^{2}, 0\right\rangle$. Calculate $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$
2. 20 pts Let $\mathcal{D}$ be the part of the first quadrant shaded in the diagram.


This region is bounded on the left and right by the curves $y-x^{2}=1$ and $y-x^{2}=-5$, and on the top and bottom by the lines $x+2 y=8$ and $x+2 y=4$.
(a) Find a rectangle $\mathcal{R}$ in the $u v$-plane and a map $G$ such that $G(\mathcal{R})=\mathcal{D}$. You may give either $G$ or $G^{-1}$, but you must indicate which one your answer represents.
(b) Calculate $\operatorname{Jac}(G)$. You may give your answer in terms of $x$ and $y$ or in terms of $u$ and $v$
(c) Use a change of variables to calculate $\iint_{\mathcal{D}}(4 x+1) e^{x^{2}+x+y} d x d y$.
3. 18 pts Let $\vec{F}=\left\langle e^{x} \sin y, e^{x} \cos y-\cos \left(z^{2}\right), 2 y z \sin \left(z^{2}\right)\right\rangle$.
(a) Calculate $\operatorname{div}(\vec{F})$.
(b) Calculate $\operatorname{curl}(\vec{F})$.
(c) Is $\vec{F}$ conservative? Why or why not?
(d) If your answer to (c) is yes, find a potential for $\vec{F}$.
4. 18 pts Let $\vec{F}=\left\langle 3 x^{2} y, x^{3}-2 y z,-y^{2}\right\rangle$.

Let $\mathcal{C}_{1}$ be the ellipse parametrized by $\vec{r}_{1}=\langle 2 \cos t, 5 \sin t, 3\rangle, 0 \leq t \leq 2 \pi$.
Let $\mathcal{C}_{2}$ be the curve parametrized by $\vec{r}_{2}=\left\langle 2 \cos \left(\frac{\pi t}{4}\right), \frac{t^{3}}{25}, 2 \ln (t+1)\right\rangle, 0 \leq t \leq 5$.
(a) Calculate $\int_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{r}_{1}$.
(b) Calculate $\int_{\mathcal{C}_{2}} \vec{F} \cdot d \vec{r}_{2}$.
5. 24 pts Let $\mathcal{S}$ be the surface $x^{2}+y^{2}=16-z$ for $z \geq 0$.
(a) Parametrize the surface with a mapping $G(r, \theta)$.
(b) Compute $\vec{T}_{r}, \vec{T}_{\theta}, \vec{N}$, orienting $\mathcal{S}$ with upward-pointing normal.
(c) Find the surface area of $\mathcal{S}$.
(d) Calculate the flux of $\vec{F}=\langle 0,0,3 z\rangle$ across $\mathcal{S}$.

