Math 251: Multivariable Calculus, Exam #3 Instructor: Blair Seidler

- 1. 20 pts Let C be the helix parametrized by $\vec{r}(t) = \langle 2 \sin t, 2 \cos t, \sqrt{5} t \rangle$ for $0 \le t \le 5\pi$.
 - (a) Find the length of \mathcal{C} .
 - (b) Calculate $\int_{\mathcal{C}} xyz \, ds$.
 - (c) Let $\vec{F} = \langle 1, x^2, 0 \rangle$. Calculate $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$
- 2. 20 pts Let \mathcal{D} be the part of the first quadrant shaded in the diagram.

This region is bounded on the left and right by the curves $y - x^2 = 1$ and $y - x^2 = -5$, and on the top and bottom by the lines x + 2y = 8 and x + 2y = 4.

- (a) Find a rectangle \mathcal{R} in the *uv*-plane and a map G such that $G(\mathcal{R}) = \mathcal{D}$. You may give either G or G^{-1} , but you must indicate which one your answer represents.
- (b) Calculate Jac(G). You may give your answer in terms of x and y or in terms of u and v
- (c) Use a change of variables to calculate $\iint_{\mathcal{D}} (4x+1)e^{x^2+x+y} dx dy.$

3. 18 pts Let $\vec{F} = \langle e^x \sin y, e^x \cos y - \cos(z^2), 2yz \sin(z^2) \rangle$.

- (a) Calculate $\operatorname{div}(\vec{F})$.
- (b) Calculate $\operatorname{curl}(\vec{F})$.
- (c) Is \vec{F} conservative? Why or why not?
- (d) If your answer to (c) is yes, find a potential for \vec{F} .

4. <u>18 pts</u> Let $\vec{F} = \langle 3x^2y, x^3 - 2yz, -y^2 \rangle$. Let C_1 be the ellipse parametrized by $\vec{r_1} = \langle 2\cos t, 5\sin t, 3 \rangle, \ 0 \le t \le 2\pi$. Let C_2 be the curve parametrized by $\vec{r_2} = \left\langle 2\cos\left(\frac{\pi t}{4}\right), \frac{t^3}{25}, 2\ln(t+1)\right\rangle, \ 0 \le t \le 5$.

(a) Calculate
$$\int_{C_1} \vec{F} \cdot d\vec{r_1}$$
.
(b) Calculate $\int_{C_2} \vec{F} \cdot d\vec{r_2}$.

- 5. 24 pts Let S be the surface $x^2 + y^2 = 16 z$ for $z \ge 0$.
 - (a) Parametrize the surface with a mapping $G(r, \theta)$.
 - (b) Compute $\vec{T}_r, \vec{T}_{\theta}, \vec{N}$, orienting S with upward-pointing normal.
 - (c) Find the surface area of \mathcal{S} .
 - (d) Calculate the flux of $\vec{F} = \langle 0, 0, 3z \rangle$ across S.