
Math 251 Section C3 Exam #2 Summer 2020

Math 251: Multivariable Calculus, Exam #2
Instructor: Blair Seidler

1. 12 pts Find the point or points on the surface z2 = xy + 4 closest to the origin.
Solution:

We want the point on the surface closest to the origin, so we are minimizing d(x, y, z) =√
x2 + y2 + z2 subject to the constraint z2 = xy+4. We can equivalently minimize f(x, y, z) =

(d(x, y, z))2 = x2 + y2 + z2. We will use the technique of Lagrange multipliers to do so.

Let g(x, y, z) = z2 − xy − 4. We compute the gradients of f and g:

∇f = 〈2x, 2y, 2z〉

∇g = 〈−y,−x, 2z〉

Now setting ∇f = λ∇g and using the constraint gives us four equations:

2x = −λy

2y = −λx

2z = 2λz

z2 = xy + 4

From the third equation, we see that either z = 0 or λ = 1

Case 1: z = 0
From the first two equations, we get 2x2 = −λxy = 2y2, so x2 = y2.
From the fourth equation, we get 0 = xy + 4. Combining these gives (x, y) = (−2, 2) or
(x, y) = (2,−2). Therefore we have the points (−2, 2, 0) and (2,−2, 0) which are both at
distance 2

√
2 from the origin.

Case 2: λ = 1
Now the first two equations give us 2x = −y and 2y = −x, which are only satisfied by
(x, y) = (0, 0). Then the constraint equation becomes z2 = 4, so z = ±2. This gives us the
points (0, 0,−2) and (0, 0, 2) which are both at distance 2 from the origin.

Therefore (0, 0,−2) and (0, 0, 2) are the points on the surface closest to the origin.
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2. 16 pts Calculate

∫ 3

0

∫ 9−y2

0

ye2x

9− x
dx dy Solution:

We don’t know how to integrate

∫
e2x

9− x
dx (in fact this integral does not have a closed form),

so we will need to switch the order of integration. The domain of integration is the region
pictured below, which is both vertically and horizontally simple.

We can write the equation of the parabola as y =
√

9− x, which allows us to proceed.∫ 3

0

∫ 9−y2

0

ye2x

9− x
dx dy =

∫ 9

0

∫ √9−x
0

ye2x

9− x
dy dx =

∫ 9

0

e2x

9− x

∫ √9−x
0

y dy dx

=

∫ 9

0

e2x

9− x

(
y2

2

∣∣∣∣
√
9−x

0

)
dx =

∫ 9

0

e2x

9− x
9− x

2
dx =

∫ 9

0

e2x

2
dx =

e2x

4

∣∣∣∣9
0

=
e18 − 1

4

3. 10 pts Let x, y, and z be related implicitly by the equation xy2 − 2xz + 5z2 = 11.

Find
∂z

∂x
and

∂z

∂y

Solution:
Because we are computing partial derivatives of z with respect to the other variables, we are
treating z as an implicit function of independent variables x and y.
First we differentiate with respect to x:

y2 − 2z − 2xzx + 10zzx = 0

zx(10z − 2x) = 2z − y2

zx =
2z − y2

10z − 2x

Then we differentiate with respect to y:

2xy − 2xzy + 10zzy = 0

zy(−2x+ 10z) = −2xy

zy =
−2xy

−2x+ 10z
=

xy

x− 5z
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4. 12 pts Let f(x, y) = x3 + y3 − 3xy + 15. Find all critical points and critical values of f .

Classify each critical point as a maximum, minimum, or saddle point.

Solution:

fx = 3x2 − 3y and fy = 3y2 − 3x

In order to satisfy fx = fy = 0, we must have y = x2 and x = y2. The only such points are
(x, y) = (0, 0) or (x, y) = (1, 1), so those are the only critical points. The associated critical
values are f(0, 0) = 15 and f(1, 1) = 14.

fxx = 6x fxy = −3 fyy = 6y

So the discriminant is

D =

∣∣∣∣6x −3
−3 6y

∣∣∣∣ = 36xy − 9

At (0, 0), we have D < 0, so (0, 0, 15) is a saddle point.
At (1, 1), we have D > 0 and fxx > 0, so (1, 1, 14) is a minumum.

5. 16 pts Let R be the rectangle {(x, y) : −2 ≤ x ≤ 2, 0 ≤ y ≤ 2} and let f(x, y) =
y

4 + x2
.

Calculate

∫∫
R

f(x, y) dA.

Solution:
We are integrating over a rectangle, so the limits of integration are the obvious ones:∫∫

R

f(x, y) dA =

∫ 2

−2

∫ 2

0

y

4 + x2
dy dx =

(∫ 2

0

y dy

)(∫ 2

−2

1

4 + x2
dx

)

=

(
y2

2

∣∣∣∣2
0

)(
1

4

∫ 2

−2

1

1 +
(
x
2

)2 dx
)

= (2)

(
1

4

)(
2 tan−1

(x
2

) ∣∣∣∣2
−2

)

=
(π

4
−
(
−π

4

))
=
π

2
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6. 16 pts The temperature in a room is modeled by T (x, y, z) = xz2 − 4y. An insect flies

through the room along the path ~r(t) =
〈
et−1, 4

π
sin
(
π
2
t
)
, 4− t

〉
.

(a) Calculate ∇T (x, y, z).

(b) Find a parametrization of the line tangent to the insect’s path at t = 2.

(c) What is the rate of change in temperature for the insect at t = 2? (i.e. what is the
change in temperature along the insect’s path at that moment?)

Solution:
(a) ∇T (x, y, z) = 〈z2,−4, 2xz〉

(b) We need the tangent vector and the point of tangency.
~r(2) = 〈e, 0, 2〉
~r ′(t) =

〈
et−1, 2 cos

(π
2
t
)
,−1

〉
~r ′(2) = 〈e,−2,−1〉
A parametrization of the line tangent to the insect’s path is ~L(s) = 〈e, 0, 2〉+ s〈e,−2,−1〉

(c) By the Chain Rule for Paths,

d

dt
T (~r(2)) = ∇T (~r(2)) · ~r ′(2) = ∇T (e, 0, 2) · 〈e,−2,−1〉

= 〈4,−4, 4e〉 · 〈e,−2,−1〉 = 4e+ 8− 4e = 8

7. 18 pts Let S be the sphere of radius 2 centered at the origin.

Let P be the paraboloid x2 + y2 = 3z.
Let W be the region inside S and above P (so W includes part of the positive z-axis).

(a) Write

∫∫∫
W
z dV as an iterated integral in rectangular coordinates.

(b) Write

∫∫∫
W
z dV as an iterated integral in cylindrical coordinates.

(c) Write

∫∫∫
W
z dV as an iterated integral in spherical coordinates (Warning: this one is

significanty more difficult than the first two).

(d) Choose any one of these integrals and use it to calculate

∫∫∫
W
z dV .
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Solution:
Here is the projection of W in the xz-plane.

The projection ofW in the xy-plane is the circle of radius
√

3 centered at the origin, which has
the equation x2 +y2 = 3. The sphere has equation x2 +y2 +z2 = 4 in rectangular coordinates.

(a) If we integrate in the order dz dy dx, we first have to move in the z direction. If we start
in the xy-plane and travel upwards, we first intersect the paraboloid and then the sphere. So
we need to integrate w.r.t. z on the interval [(x2 + y2)/3,

√
4− x2 − y2]. Then we need to

integrate over the circle in the xy-plane, so the integral we need is:∫ √3
−
√
3

∫ √3−x2
−
√
3−x2

∫ √4−x2−y2

(x2+y2)/3

z dz dy dx

(b) This is the same basic idea as (a). We can integrate in the order dz dr dθ. The equations
for the sphere and the paraboloid are r2 + z2 = 4 and r2 = 3z. This gives us the interval
[r2/3,

√
4− r2] for z. In cylindrical coordinates, the circle is easier. We do need to remember

that dV = r dz dr dθ: ∫ 2π

0

∫ √3
0

∫ √4−r2
r2/3

zr dz dr dθ

(c) I did warn you this one is hard. If you look at the projection in the xz-plane, you can see
that when φ ∈ [0, π/3] that ρ goes from 0 to the sphere. But when φ ∈ [π/3, π/2], ρ goes from
0 to the paraboloid. Our region is not radially simple, so we will end up with two integrals.
The equation of the sphere is just ρ = 2, so that part is easy. The equation of the paraboloid is
ρ2 sin2 φ(cos2 θ + sin2 θ) = 3ρ cosφ, or ρ = 3 cotφ cscφ. Also remembering that our integrand
is z = ρ cosφ, we get:∫ 2π

0

∫ π/3

0

∫ 2

0

(ρ cosφ)(ρ2 sinφ) dρ dφ dθ +

∫ 2π

0

∫ π/2

π/3

∫ 3 cotφ cscφ

0

(ρ cosφ)(ρ2 sinφ) dρ dφ dθ

∫ 2π

0

∫ π/3

0

∫ 2

0

(
1

2
ρ3 sin(2φ)) dρ dφ dθ +

∫ 2π

0

∫ π/2

π/3

∫ 3 cotφ cscφ

0

(
1

2
ρ3 sin(2φ)) dρ dφ dθ
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I assure you that all three of these integrals do have the same value. If you tried computing
anything other than the one in cylindrical coordinates during a timed exam, you are a braver
soul than I am.∫ 2π

0

∫ √3
0

∫ √4−r2
r2/3

zr dz dr dθ = 2π

∫ √3
0

r

∫ √4−r2
r2/3

z dz dr = 2π

∫ √3
0

r

(
z2

2

∣∣∣∣
√
4−r2

r2/3

)
dr

= π

∫ √3
0

r

[
(4− r2)−

(
r4

9

)]
dr = π

∫ √3
0

[
4r − r3 −

(
r5

9

)]
dr

= π

(
2r2 − r4

4
− r6

54

) ∣∣∣∣
√
3

0

= π

(
6− 9

4
− 27

54

)
= π

(
24

4
− 9

4
− 2

4

)
=

13π

4
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