Math 251: Multivariable Calculus, Exam #2 Instructor: Blair Seidler

- 1. 12 pts Find the point or points on the surface $z^2 = xy + 4$ closest to the origin.
- 2. 16 pts Calculate $\int_0^3 \int_0^{9-y^2} \frac{ye^{2x}}{9-x} dx dy$
- 3. 10 pts Let x, y, and z be related implicitly by the equation $xy^2 2xz + 5z^2 = 11$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
- 4. 12 pts Let $f(x, y) = x^3 + y^3 3xy + 15$. Find all critical points and critical values of f. Classify each critical point as a maximum, minimum, or saddle point.
- 5. 16 pts Let \mathcal{R} be the rectangle $\{(x, y) : -2 \le x \le 2, 0 \le y \le 2\}$ and let $f(x, y) = \frac{y}{4 + x^2}$. Calculate $\iint_{\mathcal{R}} f(x, y) \, dA$.
- 6. 16 pts The temperature in a room is modeled by $T(x, y, z) = xz^2 4y$. An insect flies through the room along the path $\vec{r}(t) = \langle e^{t-1}, \frac{4}{\pi} \sin\left(\frac{\pi}{2}t\right), 4-t \rangle$.
 - (a) Calculate $\nabla T(x, y, z)$.
 - (b) Find a parametrization of the line tangent to the insect's path at t = 2.
 - (c) What is the rate of change in temperature for the insect at t = 2? (i.e. what is the change in temperature along the insect's path at that moment?)

- 7. 18 pts Let S be the sphere of radius 2 centered at the origin. Let \mathcal{P} be the paraboloid $x^2 + y^2 = 3z$. Let \mathcal{W} be the region inside S and above \mathcal{P} (so \mathcal{W} includes part of the positive z-axis).
 - (a) Write $\iiint_{\mathcal{W}} z \, dV$ as an iterated integral in rectangular coordinates.
 - (b) Write $\iiint_{\mathcal{W}} z \, dV$ as an iterated integral in cylindrical coordinates.
 - (c) Write $\iiint_{\mathcal{W}} z \, dV$ as an iterated integral in spherical coordinates (Warning: this one is significantly more difficult than the first two).
 - (d) Choose any one of these integrals and use it to calculate $\iiint_{\mathcal{W}} z \ dV$.