Math 251: Multivariable Calculus, Exam \#1
 Instructor: Blair Seidler

1. The planes \mathcal{P}_{1} and \mathcal{P}_{2} are described by the following equations.
$\mathcal{P}_{1}: x-2 y+4 z=2$
$\mathcal{P}_{2}: x+y-2 z=5$

6 pts
9 pts
(a) Find the angle between \mathcal{P}_{1} and \mathcal{P}_{2}.
(b) The planes \mathcal{P}_{1} and \mathcal{P}_{2} intersect in the line \mathcal{L}. Find a parametrization of \mathcal{L}

Solution:

(a) The angle between the planes is the same as the angle between their normal vectors.

Using the coefficients in the equations of the planes gives us $\vec{n}_{1}=\langle 1,-2,4\rangle$ and $\vec{n}_{2}=\langle 1,1,-2\rangle$.
Now we can use the formula for dot product: $\vec{n}_{1} \cdot \overrightarrow{n_{2}}=\left\|\vec{n}_{1}\right\|\left\|\vec{n}_{2}\right\| \cos \theta$

$$
\theta=\cos ^{-1}\left(\frac{\vec{n}_{1} \cdot \overrightarrow{n_{2}}}{\left\|\vec{n}_{1}\right\|\left\|\vec{n}_{2}\right\|}\right)=\cos ^{-1}\left(\frac{-9}{\sqrt{21} \sqrt{6}}\right)=\cos ^{-1}\left(\frac{-3}{\sqrt{14}}\right)
$$

(b) \mathcal{L} is orthogonal to both \vec{n}_{1} and \vec{n}_{2}, so its direction vector is $\vec{v}=\vec{n}_{1} \times \vec{n}_{2}=\langle 0,6,3\rangle$.

Because the z-component of \vec{v} is not $0, \mathcal{L}$ intersects the $x y$-coordinate plane.
So we can set $z=0$ and solve the equations of the planes for x, y.
$x-2 y=2$ and $x+y=5$ gives us $x=4, y=1$. So we use $\vec{x}_{0}=\langle 4,1,0\rangle$
Therefore a parametrization of \mathcal{L} is $\vec{r}(t)=\vec{x}_{0}+t \vec{v}=\langle 4,1,0\rangle+t\langle 0,6,3\rangle$.
2. A particle travels on a path which satisfies the equation $\frac{d \vec{r}}{d t}=\left\langle e^{t-2}, 3 \pi \cos \left(\frac{\pi}{4} t\right), t^{2}\right\rangle$ for all $t \geq 0$.

8 pts (a) Find the general solution $\vec{r}(t)$ of the equation above which gives the position of the particle.
5 pts
(b) Find the particular solution $\vec{r}(t)$ when $\vec{r}(2)=\langle 4,10,3\rangle$.

Solution:

(a) We may find the antiderivatives of a vector-valued function componentwise, so

$$
\vec{r}(t)=\int\left\langle e^{t-2}, 3 \pi \cos \left(\frac{\pi}{4} t\right), t^{2}\right\rangle d t=\left\langle e^{t-2}, 12 \sin \left(\frac{\pi}{4} t\right), \frac{t^{3}}{3}\right\rangle+\vec{c}
$$

(b) Using the condition $\vec{r}(2)=\langle 4,10,3\rangle$:

$$
\langle 4,10,3\rangle=\left\langle e^{2-2}, 12 \sin \left(\frac{\pi}{4}(2)\right), \frac{2^{3}}{3}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle
$$

$$
\begin{gathered}
\langle 4,10,3\rangle=\left\langle 1,12, \frac{8}{3}\right\rangle+\left\langle c_{1}, c_{2}, c_{3}\right\rangle \\
\left\langle 3,-2, \frac{1}{3}\right\rangle=\left\langle c_{1}, c_{2}, c_{3}\right\rangle
\end{gathered}
$$

This gives us the particular solution:

$$
\vec{r}(t)=\left\langle 3+e^{t-2},-2+12 \sin \left(\frac{\pi}{4} t\right), \frac{1}{3}+\frac{t^{3}}{3}\right\rangle
$$

3. Calculate each limit or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(2,0)} \frac{x^{2} \sin (3 y)}{y}$

6 pts
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}$

Solution:

(a)

$$
\lim _{(x, y) \rightarrow(2,0)} \frac{x^{2} \sin (3 y)}{y}=\left(\lim _{(x, y) \rightarrow(2,0)} x^{2}\right)\left(\lim _{(x, y) \rightarrow(2,0)} \frac{\sin (3 y)}{y}\right)=\left(\lim _{x \rightarrow 2} x^{2}\right)\left(\lim _{y \rightarrow 0)} \frac{\sin (3 y)}{y}\right)=4 \cdot 3=12
$$

(b) We consider the paths approaching the origin along the x-axis and along the line $y=x$:

Along x-axis: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0$
Along $y=x: \lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{3 x^{2}}=\frac{1}{3}$
Because we have different limits along two paths to $(0,0)$, the limit does not exist.
4. Let \mathcal{L}_{1} and \mathcal{L}_{2} be two lines in \mathbb{R}^{3} representing the position of two particles at time t with the following parametrizations:
$\mathcal{L}_{1}: \vec{r}_{1}(t)=\langle 2+3 t,-4+\lambda t,-4\rangle$
$\mathcal{L}_{2}: \vec{r}_{2}(t)=\langle 18-t, 4-4 t,-12+2 t\rangle$
(a) For what value of λ do the lines intersect?
(b) What is the point of intersection?

2 pts
(c) Do the particles collide?

7 pts
(d) Find an equation of the plane containing both lines.

Solution: (a) In order for the lines to intersect, we must have $\vec{r}_{1}(t)=\vec{r}_{2}(s)$ for some $s, t \in \mathbb{R}$.
This gives us the system of equations
(1) $2+3 t=18-s$
(2) $-4+\lambda t=4-4 s$
(3) $-4=-12+2 s$

Now, from (3) we get $s=4$. Substitute into (1) to get $t=4$.
Substitute both into (2) to get $\lambda=-2$.
(b) Plug 4 into either equation to get $(14,-12,-4)$ as the point of intersection.
(c) Yes, because both particles reach the intersection point at time $t=4$.
(d) To find the normal vector of the plane, we take the cross product of two non-parallel vectors in the plane. The direction vectors of our lines are $\langle 3,-2,0\rangle$ and $\langle-1,-4,2\rangle$.
Therefore $\vec{n}=\langle 3,-2,0\rangle \times\langle-1,-4,2\rangle=\langle-4,-6,-14\rangle$. We also need the position vector of a point on the plane. You could use the intersection point (or any other point on either line), but I choose to use $\vec{r}_{1}(0)=\langle 2,-4,-4\rangle$.
So the plane has equation $-4(x-2)-6(y+4)-14(z+4)=0$
5. Consider the function $f(x, y)=\ln \left(x-y^{2}+1\right)$

5 pts (a) Sketch any 3 level curves of the function. Label each curve with the appropriate function value.
(b) Give a complete and concise English description of the set of all level curves of $f(x, y)$.

Solution: (a) This is a graph of three level curves for $f(x, y)=c$. The red curve for $c=0$, blue for $c=1$, green for $c=2$.

(b) Each level curve $f(x, y)=c$ is a parabola with axis of symmetry on the x-axis and vertex at ($e^{c}-1,0$). As c increases, the level curves become farther apart (exponentially, in fact). As
c decreases, the level curves get more closely packed with the vertices approaching the point $(-1,0)$.
6. Let $\vec{v}=\langle 2,-4,8\rangle$ and $\vec{w}=\langle 1, a, b\rangle$.
$5 \mathrm{pts} \quad$ (a) For what values of a and b are \vec{v} and \vec{w} parallel?
8 pts (b) For what values of a and b are \vec{v} and \vec{w} perpendicular?

Solution: (a) You could have used $\vec{v} \times \vec{w}=\overrightarrow{0}$, but that is more work than using the definition. Since both vectors are nonzero, $\vec{v} \| \vec{w}$ iff $\vec{v}=\lambda \vec{w}$ for some scalar λ. The first component tells us that $\lambda=2$, so we must have $a=-2$ and $b=4$
(b) $\vec{v} \perp \vec{w}$ iff $\vec{v} \cdot \vec{w}=0$, so $\vec{v} \cdot \vec{w}=2-4 a+8 b$ must be 0 .

Therefore, any pair (a, b) satisfying $a=2 b+\frac{1}{2}$ will make \vec{w} perpendicular to \vec{v}.
7. Let $\vec{r}(t)=(3 \cos t) \hat{\mathbf{i}}+(3 \sin t) \hat{\mathbf{j}}+\sqrt{7} t \hat{\mathbf{k}}$.

8 pts (a) Find the tangent vector to $\vec{r}(t)$ at $t=0$.
6 pts (b) Find the arc length of $\vec{r}(t)$ from $t=0$ to $t=\pi$.

Solution: (a) $\vec{r}^{\prime}(t)=\langle-3 \sin t, 3 \cos t, \sqrt{7}\rangle$, so $\vec{r}^{\prime}(0)=\langle 0,3, \sqrt{7}\rangle$ is the tangent vector.
You could have given me the tangent line $\vec{L}(s)=\langle 3,0,0\rangle+s\langle 0,3, \sqrt{7}\rangle$, but that was not required.
(b) The arc length calculation is usually not so easy to integrate explicitly, but this one was:

$$
s=\int_{0}^{\pi}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{0}^{\pi} \sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}+(\sqrt{7})^{2}} d t=\int_{0}^{\pi} 4 d t=4 \pi
$$

8. Let $\beta=\frac{1+\sqrt[3]{8.03}}{\sqrt{15.99}}$

10 pts Use an appropriate function $f(x, y)$ and linear approximation to estimate the value of β. Your answer should be a single fraction in lowest terms.

Solution: We should use the function $f(x, y)=\frac{1+\sqrt[3]{x}}{\sqrt{y}}$ and linearize it at the point $(a, b)=$ $(8,16)$.

$$
\begin{aligned}
f(8,16) & =\frac{3}{4} \\
f_{x}(x, y) & =\frac{1}{3 x^{2 / 3} y^{1 / 2}}, \text { so } f_{x}(8,16)=\frac{1}{48} \\
f_{y}(x, y) & =\frac{1+x^{1 / 3}}{2 y^{3 / 2}}, \text { so } f_{y}(8,16)=\frac{-3}{128}
\end{aligned}
$$

So $L(x, y)=\frac{3}{4}+\frac{1}{48}(x-8)+\frac{-3}{128}(y-16)$
And $L(8,16)=\frac{3}{4}+\frac{1}{48}\left(\frac{3}{100}\right)+\frac{-3}{128}\left(\frac{-1}{100}\right)=\frac{3}{4}+\frac{1}{1600}+\frac{3}{12800}=\frac{9611}{12800}$

