Math 251: Multivariable Calculus, Exam \#1
 Instructor: Blair Seidler

1. The planes \mathcal{P}_{1} and \mathcal{P}_{2} are described by the following equations.
$\mathcal{P}_{1}: x-2 y+4 z=2$
$\mathcal{P}_{2}: x+y-2 z=5$

6 pts (a) Find the angle between \mathcal{P}_{1} and \mathcal{P}_{2}.
9 pts (b) The planes \mathcal{P}_{1} and \mathcal{P}_{2} intersect in the line \mathcal{L}. Find a parametrization of \mathcal{L}
2. A particle travels on a path which satisfies the equation $\frac{d \vec{r}}{d t}=\left\langle e^{t-2}, 3 \pi \cos \left(\frac{\pi}{4} t\right), t^{2}\right\rangle$ for all $t \geq 0$.

8 pts (a) Find the general solution $\vec{r}(t)$ of the equation above which gives the position of the particle.
5 pts
(b) Find the particular solution $\vec{r}(t)$ when $\vec{r}(2)=\langle 4,10,3\rangle$.
3. Calculate each limit or show that the limit does not exist.

6 pts
6 pts
(a) $\lim _{(x, y) \rightarrow(2,0)} \frac{x^{2} \sin (3 y)}{y}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+x y+y^{2}}$
4. Let \mathcal{L}_{1} and \mathcal{L}_{2} be two lines in \mathbb{R}^{3} representing the position of two particles at time t with the following parametrizations:
$\mathcal{L}_{1}: \vec{r}_{1}(t)=\langle 2+3 t,-4+\lambda t,-4\rangle$
$\mathcal{L}_{2}: \vec{r}_{2}(t)=\langle 18-t, 4-4 t,-12+2 t\rangle$
(a) For what value of λ do the lines intersect?

3 pts
(b) What is the point of intersection?

2 pts
(c) Do the particles collide?

7 pts
(d) Find an equation of the plane containing both lines.
5. Consider the function $f(x, y)=\ln \left(x-y^{2}+1\right)$

5 pts (a) Sketch any 3 level curves of the function. Label each curve with the appropriate function value.
3 pts (b) Give a complete and concise English description of the set of all level curves of $f(x, y)$.
\qquad
6. Let $\vec{v}=\langle 2,-4,8\rangle$ and $\vec{w}=\langle 1, a, b\rangle$.
$5 \mathrm{pts} \quad$ (a) For what values of a and b are \vec{v} and \vec{w} parallel?
8 pts
(b) For what values of a and b are \vec{v} and \vec{w} perpendicular?
7. Let $\vec{r}(t)=(3 \cos t) \hat{\mathbf{\imath}}+(3 \sin t) \hat{\mathbf{j}}+\sqrt{7} t \hat{\mathbf{k}}$.

8 pts (a) Find the tangent vector to $\vec{r}(t)$ at $t=0$.
6 pts
(b) Find the arc length of $\vec{r}(t)$ from $t=0$ to $t=\pi$.
8. Let $\beta=\frac{1+\sqrt[3]{8.03}}{\sqrt{15.99}}$
$10 \mathrm{pts} \quad$ Use an appropriate function $f(x, y)$ and linear approximation to estimate the value of β. Your answer should be a single fraction in lowest terms.

