Math 251: Multivariable Calculus, Exam #1Instructor: Blair Seidler

- 1. The planes \mathcal{P}_1 and \mathcal{P}_2 are described by the following equations. $\mathcal{P}_1: x - 2y + 4z = 2$ $\mathcal{P}_2: x + y - 2z = 5$
- (a) Find the angle between \mathcal{P}_1 and \mathcal{P}_2 .
- (b) The planes \mathcal{P}_1 and \mathcal{P}_2 intersect in the line \mathcal{L} . Find a parametrization of \mathcal{L}
- 2. A particle travels on a path which satisfies the equation $\frac{d\vec{r}}{dt} = \left\langle e^{t-2}, 3\pi \cos\left(\frac{\pi}{4}t\right), t^2 \right\rangle$ for all $t \ge 0.$
- (a) Find the general solution $\vec{r}(t)$ of the equation above which gives the position of the particle.
- (b) Find the particular solution $\vec{r}(t)$ when $\vec{r}(2) = \langle 4, 10, 3 \rangle$. 5 pts
 - 3. Calculate each limit or show that the limit does not exist.

6 pts 6 pts

6 pts

9 pts

8 pts

(a) $\lim_{(x,y)\to(2,0)} \frac{x^2 \sin(3y)}{y}$ (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + xy + y^2}$

- 4. Let \mathcal{L}_1 and \mathcal{L}_2 be two lines in \mathbb{R}^3 representing the position of two particles at time t with the following parametrizations: $\mathcal{L}_1: \vec{r}_1(t) = \langle 2+3t, -4+\lambda t, -4 \rangle$ $\mathcal{L}_2: \vec{r}_2(t) = \langle 18 - t, 4 - 4t, -12 + 2t \rangle$
- 3 pts 3 pts $2 \, \mathrm{pts}$ 7 pts
- (a) For what value of λ do the lines intersect?
- (b) What is the point of intersection?
- (c) Do the particles collide?
- (d) Find an equation of the plane containing both lines.

- 5. Consider the function $f(x, y) = \ln(x y^2 + 1)$
- 5 pts (a) Sketch any 3 level curves of the function. Label each curve with the appropriate function value.
 - (b) Give a complete and concise English description of the set of all level curves of f(x, y).
 - 6. Let $\vec{v} = \langle 2, -4, 8 \rangle$ and $\vec{w} = \langle 1, a, b \rangle$.
- 5 pts 8 pts

3 pts

- (a) For what values of a and b are \vec{v} and \vec{w} parallel?
- (b) For what values of a and b are \vec{v} and \vec{w} perpendicular?
- 7. Let $\vec{r}(t) = (3\cos t)\hat{\mathbf{i}} + (3\sin t)\hat{\mathbf{j}} + \sqrt{7}t\hat{\mathbf{k}}.$

- (a) Find the tangent vector to $\vec{r}(t)$ at t = 0.
- (b) Find the arc length of $\vec{r}(t)$ from t = 0 to $t = \pi$.

8. Let
$$\beta = \frac{1 + \sqrt[3]{8.03}}{\sqrt{15.99}}$$

10 pts Use an appropriate function f(x, y) and linear approximation to estimate the value of β . Your answer should be a single fraction in lowest terms.