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ABSTRACT OF THE DISSERTATION

Experimental Mathematics Techniques for Boolean Functions and Combinatorial

Games

By BLAIR SEIDLER

Dissertation Director:

Doron Zeilberger

The theme of this dissertation is the application of experimental techniques to the

analysis of Boolean functions and combinatorial games. The three projects com-

prising this paper all employ Zeilberger’s overlapping stages methodology to build

successively more efficient algorithms to mitigate the exponential growth of the com-

binatorial objects being studied.

The first two projects concern Boolean functions. We produce a catalog of mini-

mal functions for Boolean circuits of a small number of variables using straight-line

programs as our representation of circuits. We then analyze the statistical moments

of subcubes contained in Boolean functions, extending the work of Thanatipanonda.

We also analyze mixed moments and the correlation between numbers of subcubes of

various sizes.

The third project analyzes the combinatorial game Juniper Green along with sev-

eral new variations. Lemoine completely solved the problem of which initial positions

of Juniper Green are winnable by the first player. We consider the Sprague-Grundy

values of initial positions in the original game and variations.
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Foreword

Many of my close family members have advanced degrees in the physical or biological

sciences. When I told them that I was going to focus on Experimental Mathematics,

they all gave me quizzical looks. “How can you experiment on something that doesn’t

exist?” they asked. I understood their skepticism. As my illustrious advisor has been

known to say, “Experimental Mathematics used to be considered an oxymoron.” But

the abstract nature of mathematical objects does not exempt them from the scientific

method!

What are the fundamental principles of experimentation which underlie the sci-

entific method? The scientist observes some interesting phenomenon, wonders what

causes it, and starts to reason why it should be so. After establishing some plau-

sible explanation, they design an experiment with which they will obtain evidence

either supporting or refuting that explanation. The hypothesis is updated with the

new information, and subsequent experiments are designed and implemented. If all

goes well, a satisfactory explanation for the observed phenomenon now becomes a

first-author paper, a Theory, or possibly even a Law.

Why should mathematics be so different? We mathematicians also observe phe-

nomena, some relating to tangible real-world objects and some admittedly much more

abstract. We wonder why it should be so. “There must be a pattern!” we rant to

nobody in particular. But this is where our experimentation comes into play. We

can program our computers to generate many cases. Sometimes, this first round of

x



results is enough for us to see what is going on. Sometimes, we need to rely on the

computer to help us analyze its own output. But eventually, if all goes well, we have

a pattern, an explanation, a conjecture, a theorem...

I suppose that herein lies the difference. In mathematics, absolute certainty is

not only possible, but desirable and common. Experimental methods in mathematics

frequently provide the ideas that drive a more traditional paper-and-pencil (more

likely keyboard-and-LaTeX) proof. Other times, we can build on early rounds of

experimentation to generate a computer-aided symbolic proof. Sometimes (as in the

original proof of the Four-Color Theorem), the computer’s analysis of all of the cases

IS the proof.

But sometimes the best we can do is to show that our conjecture is true for

however many cases our computer can process in a reasonable amount of time. We

may also have evidence beyond those cases that what we think is happening continues

to be true. There may even be disagreement among mathematicians about whether

this evidence constitutes a sufficiently rigorous proof to promote a conjecture to a

theorem.

This last case may well be the place where mathematics and the biological and

physical sciences seem most alike. Mathematicians generally have great respect for a

long-standing conjecture, supported by a host of supporting evidence, which nobody

has been able to disprove or significantly improve upon. To me, that sounds like what

scientists mean when they use the word Theory.
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Chapter 1

Introduction

“Then, about 2300 years ago came a fellow called Euclid, and Euclid ruined mathe-

matics by turning it into a deductive science.” - Doron Zeilberger

The origins of mathematics among prehistoric humans may well have started with

simple distinctions such as singular versus plural, large versus small, and curved ver-

sus straight. Our distant ancestors then discovered bijections (there are as many

rocks in this pile as I have fingers on both hands) and ordinals (I can place the largest

rock here, then the next largest, all the way down to this pebble). As humans looked

for explanations for how the world worked, they developed primitive religions. The

rituals of those religions may well have led to the advent of counting as an aid to

ordering the components of the ritual. [[BM11]] Desire to predict upcoming events

required inductive reasoning – record what has happened, try to find a meaningful

pattern, guess what is going to happen next, wait to see whether you were correct,

repeat and refine. Seasons, weather, and astronomical events all seemed to follow

some sort of pattern. The wise men and shamans were able to find the order in the

chaos, at least some of the time.
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As the millennia rolled on, humans developed arithmetic and algebra to handle

commerce and inheritance, geometry to aid with agriculture and architecture, and

other branches of mathematics as they were needed to solve practical problems. Later,

philosophers attempted to impose their particular brand of order on mathematical

thought, insisting that there should be some set of absolute truths from which all of

the other concepts could be deduced. Modern mathematicians, for the most part,

consider the Zermelo-Fraenkel set theory axioms to be that set of absolute truths

from which all other mathematical concepts flow, and to which they are somehow

subordinate. But even as we produce rigorous deductive proofs of our theorems,

there is a great deal of pattern-seeking at the core of what we do.

Mathematics is not a deductive science – that’s a cliché. When you try to
prove a theorem, you don’t just list the hypotheses and then start to reason.
What you do is trial and error, experimentation, guesswork. You want to
find out what the facts are, and what you do is in that respect similar to
what a laboratory technician does, but it is different in its degree of precision
and information. Possibly philosophers would look on us mathematicians
the same way as we look on the technicians, if they dared. [[Hal85], p. 321]

This dissertation is first and foremost an exploration of several techniques of ex-

perimental mathematics. The several projects contained herein have that essence

of inductive reasoning which is at the heart of experimentation. The experimental

mathematician employs computer programs to perform more calculations than could

reasonably be accomplished by hand. Even so, the objects being studied exhibit

exponential growth in some fashion, rendering brute force enumeration powerless at

a relatively early stage. Only by observing patterns and finding ways to prune the

number of objects under consideration are we able to progress beyond those cases.

One technique common to all three of the following chapters is the methodology

of overlapping stages suggested by Zeilberger. [[Zei04]]. In this paradigm, we first

employ computer programs which directly encode the definitions of the objects we
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are studying. These programs are generally quite slow and are only able to compute

the smallest cases of the problem, but they have the advantage of being relatively

easy to check for accuracy. We then try to find some clever idea which allows us

to write a faster program using algorithms which are somewhat removed from the

original definition of the problem. We hope that the clever algorithm will run enough

faster than the original version that we can extend the number of cases that we can

compute in whatever amount of time we consider reasonable. We then confirm that

the answers for the smaller cases match those generated by the simpler program,

providing some evidence of the validity of the new program. If all of this proceeds

well, we may iterate this process several times and be able to generate enough data

to yield the solution we are seeking.

In Chapter 2, we explore circuits for computing Boolean functions of small num-

bers of variables. Our primary goal is to produce a catalog of minimal circuits for all

Boolean functions of up to four variables. Our secondary goal is to produce a catalog

of minimal circuits using only AND and OR gates for (positive) monotone functions

of up to five variables. For any given Boolean function, finding a circuit to compute

it is easy: we can translate the set of true points into a full disjunctive normal form

expression, then build a circuit which computes that expression. We can also find a

reasonably efficient circuit by reducing the DNF using the Quine-McCluskey method

before constructing the circuit. Finding a minimal circuit presents more of a chal-

lenge, because we also need to show that no smaller circuit will work. The number

of possible circuits grows exponentially in the number of gates, so a full enumeration

becomes impractical quickly.

In Chapter 3, we shift our perspective to focus on Boolean functions as subsets of

the discrete n-dimensional unit cube. We explore the statistical moments of the num-
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ber of subcubes of each dimension contained within those subsets, extending the work

of Thanatipanonda [Tha20]. We derive a formula for the mixed moment E[XrXs],

and explore several of these mixed moments. We also analyze the asymptotic behav-

ior of the correlation between numbers of subcubes of distinct sizes. In all of these

situations, the number of functions we need to consider is 22
n
, where n is the number

of variables. We use a combination of the symmetries of the orientations of subcubes

and symbolic computation of the number of locations within the discrete n-cube to

slow the exponential growth to a manageable level.

In Chapter 4, we move to the field of combinatorial game theory, focusing our

attention on the game Juniper Green. Julien Lemoine elegantly solved the winnability

of the original game for all values of n, the number of spaces on the game board.

[[Lem22]] We consider the Sprague-Grundy values of the game for different values

of n. We also introduce several variations of the game, producing Sprague-Grundy

values for the initial positions. Several of these variations produce periodic sequences,

which we can verify from first principles for some cases.
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Chapter 2

Minimal Circuits for Boolean

Functions

2.1 Introduction

“Boolean functions, meaning {0, 1}-valued functions of a finite number of {0, 1}-

valued variables, are among the most fundamental objects investigated in pure and

applied mathematics.” Crama and Hammer [[CH11], p. xv]

Mathematicians (including theoretical computer scientists) have spent a great deal

of time and effort considering the asymptotic circuit complexity of Boolean functions

as the number of variables increases. One desirable result of such explorations would

be to find a class of functions representing a language in NP for which the asymptotic

circuit complexity is superpolynomial. This discovery would prove that P ̸= NP and

resolve perhaps the most perplexing open problem in theoretical computer science.

While this is a worthy endeavor, the result has proven to be elusive. Paul [[Pau77]]

and Blum [[Blu84]] used an excellent gate-elimination argument to achieve lower
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bounds for carefully constructed functions. They used similar inductive arguments in

which each stage of the induction fixed the value of a single variable in order to elimi-

nate some number of gates. But these heroic constructions were only able to produce

a linear lower bound (2.5n−O(1) for Paul and 3n−O(1) for Blum). It has recently

been shown that gate-elimination can never produce a superlinear bound [[GHKK18]].

We choose instead to investigate the other extreme of circuit complexity, circuits

for Boolean functions of a small number of variables. One of the attractions of the

small, finite cases is that we should be able to understand them completely. There are

only 65, 536 Boolean functions of four variables, which makes it practical to enumerate

them on any modern computer. Our primary objective is to find the circuit complexity

of every Boolean function of four or fewer variables. We also investigate the class of

monotone functions and produce a catalog containing circuits which will compute

each function.

2.1.1 Definition and Representation of Boolean Functions

Definition 2.1. Let K = {−1, 1}. A Boolean function of n variables is a function

f : Kn → K.

We deviate from the traditional notation K = {0, 1} in part because the labels

are irrelevant. The two elements of K are abstract labels, the former representing

false and the latter representing true. In practice, we use these labels to simplify an

implementation of the Quine-McCluskey algorithm [[Qui52]] for minimizing Boolean

functions, also known as “the method of prime implicants.” In this implementation,

a zero in a particular position in a prime implicant indicates that the corresponding

variable can be either true or false. Using 0 for the wildcard in the Maple implemen-

tation is much easier than the traditional * for technical reasons.
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We represent Boolean functions in several ways in our code and its output de-

pending on the context. The simplest form is as the set F = {v ∈ Kn : f(v) = 1}.

This is the set of “true points”, easiest to visualize as the subset of the Hamming

cube at which the function evaluates to true. One advantage of this representation is

that it provides both a simple way to evaluate the function at a point v (by checking

the condition v ∈ F ). It also confirms that the number of Boolean functions of n

variables is 22
n
, the size of the power set of Kn.

The second representation is as a set of vectors in {−1, 0, 1}n. This representation

is used in our implementation of the Quine-McCluskey algorithm mentioned earlier

in this section. As an example, the two functions

{[1, 0,−1, 0]} and {[1,−1,−1,−1], [1,−1,−1, 1], [1, 1,−1,−1], [1, 1,−1, 1]}

are equivalent. Several of the functions in our code support this representation of

functions. For example, the function EvalSLPn, which evaluates a straight-line pro-

gram on a given input, supports input vectors containing zeroes. It does so by re-

placing the first zero in the input vector by each of −1 and 1, making a recursive call

on each of those vectors, and returning true if either of those assignments returns true.

The third representation, used only internally in our Maple code, is functionally

equivalent to the first. Each vector in the set of true points is converted to an integer

between 1 and 2n by considering the vector as a binary number (using the traditional

0 for false) and adding one. The motivation for this representation is efficiency in

permuting and negating the variables. Arrays for the permutation and negation of

variables can be initialized and stored, and then each member of the set can be shifted

quickly using these arrays without having to treat each bit separately. We add one
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to the binary values for the mundane technical reason that Maple array indices are

constrained to start at one. Yes, this constraint makes us long for the more civilized

arrays of the C programming language which have indices starting at zero as nature

intended.

The final representation of Boolean functions is as a single integer. This is the most

compact representation, and it was implemented to be consistent with OEIS sequence

A227723 [[OEISd]]. As shown in Table 2.1, the input strings are arranged from least

to greatest when interpreted as binary numbers. The number of the function is

assigned by reading down the column of truth values, and again interpreting as a

binary number.

Table 2.1: Function numbers for Boolean functions of 2 variables.

Input f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
{−1,−1} -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
{−1, 1} -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
{1,−1} -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
{1, 1} -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

There are several inherent advantages to this numbering scheme. The first is that

if a function on n variables is fi, then the function fi on n+1 variables has the same

true points with a 1 prepended to each n-tuple. For example, the function f3 on

two variables is {[1,−1].[1, 1], while f3 on three variables is {[1, 1,−1], [1, 1, 1]}. This

will be useful in our discussion of Equivalence Classes below. Another advantage is

that because the function numbers encode the true points, we can perform bitwise

operations on the function numbers to find the result of using two subcircuits as

inputs to a gate. If we have an AND gate whose inputs are circuits computing fi and

fj, the output of the gate is fk where k is the bitwise AND of i and j.
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2.1.2 Equivalence Classes

It is often useful to think about Boolean functions in terms of equivalence classes,

particularly when designing Boolean circuits to compute them. Tilman Piesk [[Pie20]]

proposed Small Equivalence Classes and Big Equivalence classes as the names of par-

ticular groupings of Boolean functions.

A Small Equivalence Class (SEC) is a group of functions which can be expressed in

terms of one another by negating some subset of the input variables. If f(x1, x2, x3) =

g(¬x1, x2,¬x3),∀(x1, x2, x3), then f and g are members of the same SEC. OEIS se-

quence A000231 [[OEISb]] counts the number of SEC’s for n variables. We say that

the representative of a SEC is the lowest numbered function in the SEC using the

numbering scheme in table 2.1. OEIS sequence A227722 [[OEISc]] lists the first 10000

functions which are SEC representatives.

A Big Equivalence Class (BEC) is a group of functions which can be expressed

as one another by negating and permuting some subset of the input variables. If

f(x1, x2, x3) = g(¬x3, x1,¬x2),∀(x1, x2, x3), then f and g are members of the same

BEC. OEIS sequence A000616 [[OEISa]] counts the number of BEC’s for n variables.

We say that the representative of a BEC is the lowest numbered function in the BEC

using the numbering scheme in table 2.1. OEIS sequence A227723 [[OEISd]] lists the

first 10000 functions which are BEC representatives.

Any two functions in a single BEC can be computed by Boolean functions with

the same number of gates. In order to permute variables, we need only replace each

input to a gate by its image variable under the permutation. To negate a variable,

we instead change the type of gate as discussed in section 2.1.3 below. Since we are

interested primarily in finding the circuit complexity of small Boolean functions, it
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will suffice to find circuits which compute the representative function of each BEC.

Why is this useful? Because there are 22
4
= 65536 Boolean functions of 4 variables,

but there are only 402 Big Equivalence Classes. Since one of our primary objectives

is to create a catalog of a minimal circuit for every Boolean function of four variables,

this reduction in the size of the catalog is critical both the the efficiency of our search

and the manageability of the results.

2.1.3 Straight-Line Programs

Straight-line programs are a method of implementing Boolean circuits. Each line

of the program has a Boolean output associated with it, possibly dependent on the

outputs of previous lines. There are no loops, if-then statements, or other control

statements in a straight-line program. The input to a straight-line program is the

vector (x1, . . . , xn) ∈ Kn. We denote the output of line i as yi. For an n-variable

function, the first n lines are always [1], [2], . . . , [n], which sets each yi equal to the

corresponding input xi. Program lines after the first n represent gates which take the

outputs of previous lines as inputs. Table 2.2 lists the various line formats and the

contexts in which those formats are used.

These programs are represented as lists of lists in Maple. The program [[1], [2], [3], [2]]

takes an input vector (x1, x2, x3) and outputs the value of x2, ignoring the other vari-

ables. The program [[1], [2], [3], [1, 1, 2], [5, 3, 4]] outputs x3 ∨ (x1 ∧ x2).

Gate types 1 through 10 represent the ten Boolean functions of two variables

which depend on both of their inputs. The other six functions of two variables are

the two constant functions, the two functions whose outputs are equal to one of the

input variables, and the two functions whose outputs are the negation of one of the

input variables. Gates representing these six degenerate functions are only used to
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Table 2.2: Straight-line program line formats.
Line format Function Context

[i] Sets yi = xi, where xi is ith bit of input Appears on line i
[i] Outputs yi (= xi) After line i ( 0-gate only)

[NOT, i] Outputs ¬yi (= ¬xi) After line i ( 0-gate only)
[TRUE] Outputs 1 Constant function only
[FALSE] Outputs −1 Constant function only
[1, i, j] Sets yk = yi ∧ yj On line k with i, j < k
[2, i, j] Sets yk = yi ∧ ¬yj On line k with i, j < k
[3, i, j] Sets yk = ¬yi ∧ yj On line k with i, j < k
[4, i, j] Sets yk = yi ⊕ yj On line k with i, j < k
[5, i, j] Sets yk = yi ∨ yj On line k with i, j < k
[6, i, j] Sets yk = ¬yi ∧ ¬yj On line k with i, j < k
[7, i, j] Sets yk = yi ≡ yj On line k with i, j < k
[8, i, j] Sets yk = yi ∨ ¬yj On line k with i, j < k
[9, i, j] Sets yk = ¬yi ∨ yj On line k with i, j < k
[10, i, j] Sets yk = ¬yi ∨ ¬yj On line k with i, j < k

represent zero-gate circuits and will never be used in any circuit with one or more

non-degenerate gates.

As mentioned in the previous section, we need to demonstrate that the SLP rep-

resentation of a circuit computing a BEC representative function can be modified to

compute any other member of that BEC without changing the number of gates. If

f is a BEC representative and g is some other member of that BEC, we proceed as

follows. Let σ : [n] → [n] be a permutation of the variables and ν : [n] → {−1, 1} be

a function where the variables such that ν(xi) = −1 are negated. By the definition

of BEC’s, there exist σ, ν such that g(x1, . . . , xn) = f(ν(1)xσ(1), . . . , ν(n)xσ(n)) for all

input vectors (x1, . . . , xn).

We can now modify the circuit for f to compute g. First, we take every input i

to a gate which is one of the input variables (i.e. a number in 1 . . . n), and replace

that input with σ(i). We now proceed systematically through every j such that
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ν(j) = −1. Wherever j is an input to a type 4 or 7 gate (the XOR-type gates),

we switch the gate type to the other one. Wherever j is the first input to a gate of

types 1, 2, 3, 5, 6, 8, 9, 10, we change the gate to type 3, 6, 1, 9, 2, 10, 5, 8 respectively.

Wherever j is the second input to a gate of types 1, 2, 3, 5, 6, 8, 9, 10, we change the

gate to type 2, 1, 6, 8, 3, 5, 10, 9 respectively. By making these modifications for each

j in turn, we may end up switching the type of a particular gate twice. If both inputs

to an XOR-type gate are negated, we will in fact end up with the original gate type.

But this new circuit will compute g using the same number and structure of gates as

the original circuit for f .

2.2 General Functions of Four or Fewer Variables

In this section, we describe the process through which we produce a catalog of minimal

circuits for every Boolean function of up to four variables. The resultant catalogs

contain a (not necessarily unique) minimal SLP for the representative function of each

Big Equivalence Class. As described above, these SLP’s could be modified to produce

an SLP for any Boolean function in the BEC by finding the BEC representative,

determining the permutation and set of negations mapping the functions to each

other, and applying the above algorithm to transform the circuit.

2.2.1 Methodology

We first write procedures which create a list of the BEC representative functions of

n variables. This admittedly inelegant procedure loops through function numbers

0 . . . 22
n −1 using the previously discussed function numbering convention. The func-

tion is converted into our canonical format and then checked to see if it is equivalent

to any previous function under signed permutation of the input variables. If not,

the function is added to the list of BEC representative functions. When the process
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completes, the functions are written to a catalog file with each function designated

“Not Found”.

After the creation of the catalog, we use a procedure which generates a set of

SLP’s with a given number of variables and gates. We then check each SLP to see if

it computes a function for which we do not have an SLP in the catalog. If it does, we

associate that SLP to the function in our catalog and remove the function from the

list of functions we are seeking. By running this routine for n variables and 0, 1, 2, . . .

gates, we eventually complete the catalog of n-variable functions.

A central issue is which SLP’s to generate in such a procedure. We would like to

generate all syntactically valid SLP’s for n variables and g gates to guarantee that we

are checking every possible circuit of a given size. But even for the relatively innocu-

ous case of n = 4 and g = 7, there are 107
∏10

i=4 i
2 ≈ 3.66 × 1018 syntactically valid

SLP’s. We therefore need to find a subset of those SLP’s which a) is small enough

that we can generate it practically, b) is complete in the sense that if there exists an

SLP in the entire set for a given f there will be one in the subset, and c) we know

how to produce.

The most obvious optimization is to eliminate any circuit where the output of a

gate is unused. Our recursive algorithm for generating circuits takes care of that by

generating the final gate and then creating one subcircuit for each input. A subcircuit

can be empty, in which case it will represent either an input variable or a previously

constructed gate.

The next obvious optimization is to restrict all gates to be of the form [g, i, j] with

i < j. We can safely do this because if i = j, the gate output is either constant (for
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gate types 2, 3, 4, 7, 8, 9), the input value yi (for gate types 1 and 5), or the negation

of yi (for gate types 6 and 10). In fact, any such gate can be eliminated, meaning

that the Boolean function could be computed by a circuit with fewer gates. If i > j,

we can reverse the inputs and change the gate type (by swapping types 2 ⇔ 3 or

8 ⇔ 9) if the gate is not symmetric with respect to its inputs.

A slightly less obvious simplification is to eliminate circuits and subcircuits which

are mirror images of each other. The justification for doing this is that if the final

gate G (which produces the overall output of the circuit) has two inputs representing

subcircuits A and B, then there is another circuit whose final gate has B as the first

input and A as its second which is functionally identical. Swapping the inputs may

require changing the gate type of G (again by swapping types 2 ⇔ 3 or 8 ⇔ 9)

if the gate is not symmetric with respect to its inputs. We accomplish this in our

Maple code by limiting the recursive construction of circuits. When we are building

a circuit with g gates, we only allow the first input to be a subcircuit of between 0

and ⌊(g − 1)/2⌋ gates.

We realize one other (admittedly minor) optimization by restricting the inputs

to any gate which has zero gates in exactly one of its subcircuits. The input corre-

sponding to the zero-gate subcircuit is not allowed to match either input to the gate

producing the other input. In this situation, which we can think of as having the child

of a gate match a grandchild of that gate, we would be able to merge the two gates

into one or eliminate them completely. To see why this must be the case, consider

the two-gate subcircuit as a black box. The only inputs are the duplicated input and

one other input. Because our gate model contains all non-degenerate functions of two

variables, the black box must be equivalent to one of those functions, be constant, or

be equivalent to either one of the inputs or its negation.
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We were, however, somewhat overzealous with our original attempt at these re-

ductions. In early versions of our code, any gate which had a zero-gate subcircuit as

its left input was given one of the xi as its input. While this is efficient in the sense

that it provides for a very significant reduction in the number of SLP’s generated, we

eventually realized a flaw in this optimization. It does not allow for fan-out of gates.

It is possible that the smallest circuit for computing a particular function may use the

output of a gate more than once. We therefore modified the code to allow the inputs

of any gate which does not have at least one gate in each of its input subcircuits to

be any prior line number in the SLP (with the exception noted in the immediately

preceding paragraph).

This ability to reuse prior gates dramatically increases the total number of SLP’s

being generated. In order to limit the impact of the change, we add one other level

of pruning. As each recursive call in the chain is producing its set of SLP’s, we select

only one which computes the same Boolean function when considered as a SLP in

its own right. This means that each level of recursion can return at most 22
n
SLP’s.

This is the version of the code which produced the output on the author’s webpage.

We note that there is a potential issue with this last pruning in the case that the

optimal circuit for computing a function f uses some gate G in each subcircuit of

its output gate. If there are multiple ways to compute the function represented by

the left subcircuit, we may return an equivalent subcircuit which does not contain G.

This issue is discussed in the following sections.

https://sites.math.rutgers.edu/~bas312/Research/slp/slp.html
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2.2.2 Results

By running our code (See Appendix B) for 1 ≤ n ≤ 4 and starting at g = 0, we have

compiled catalogs of minimal circuits for all Boolean functions of up to 4 variables.

In the catalogs we produced, each entry is the representative function of a Big Equiv-

alence Class. The first line contains the number of the representative function (as in

OEIS sequence A227723 [[OEISd]]) followed by the set of true points for the function.

The next line is the encoding of a minimal straight-line program which computes the

function. Using the techniques discussed in sections 2.1.2 and 2.1.3 above, the circuits

for a BEC representative function can be modified to compute any function in the

BEC.

A summary of the circuit complexities for functions of up to 4 variables is shown in

tables 2.3 and 2.4. As expected, 1-variable functions never require any gates because

they are either constant or take the value or negation of the input variable (and we

do not consider NOT to be a gate). Because our definition of a gate is any function

of two variables which depends on both inputs, the 2-variable functions are similarly

unexciting. There are 6 trivial functions (false, x1, ¬x1, x2, ¬x2, and true), and the

other 10 functions are each computed by one of the gates we define.

Table 2.3: Number of BEC’s by circuit complexity
vars 0-gate 1-gate 2-gate 3-gate 4-gate 5-gate 6-gate 7-gate Total
1 3 3
2 3 3 6
3 3 3 8 5 3 22
4 3 3 8 34 59 139 130∗ 26∗ 402

The entries marked with ∗’s for four-variable functions may be inaccurate due the

gate reuse issue described in the previous section. In a 2006 paper, Saarinen wrote,
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Table 2.4: Number of functions by circuit complexity
vars 0-gate 1-gate 2-gate 3-gate 4-gate 5-gate 6-gate 7-gate Total
1 4 4
2 6 10 16
3 8 30 114 80 24 256
4 10 60 456 2474 10624 24184 24784∗ 2944∗ 65536

“We have determined the gate complexity of all 22
4
= 65536 four-bit Boolean func-

tions. This was done by performing an exhaustive search over all circuits with one

gate, two gates, etc., until circuits for all functions had been found.” [[Saa06], p. 263]

If we assume that Saarinen’s values are accurate, then the circuits we produce for

several BEC’s are seven-gate circuits when some six-gate circuit would suffice. We

describe a potential future project for reconciling this issue in section 2.2.3 below.

For 3 or 4 variables, a natural question is which functions have the highest circuit

complexity? In the 3-variable case, there are 3 BEC’s with the maximum complexity

of 4 gates. The representative functions of these classes are 22, 23, and 107. Func-

tion 22 is true when exactly two of the input variables are true. Function 23 is the

majority function (at least two inputs are true). Function 107 is true when exactly

one input is true OR its first two inputs are both true.

Taking the majority function as an example, the particular SLP our algorithm

found to compute this function is [[1], [2], [3], [4, 1, 2], [4, 1, 3], [1, 4, 5], [4, 1, 6]]. In more

traditional notation, this circuit is x1 ⊕ ((x1 ⊕ x2) ∧ (x1 ⊕ x3)). There are certainly

other ways to compute the majority function with 4 gates, but it cannot be computed

with 3 or fewer gates.

In the 4-variable case, there are 26 BEC’s which have the maximum circuit com-

plexity of 7 gates. Many of them have a similar flavor to the 3-variable functions
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requiring 4 gates. A few typical examples are function 278 (exactly three inputs are

true), function 279 (at least three inputs are true), and function 6015 (at least two

inputs are true). Most of the other functions in this group are more akin to 107 in the

3-variable case. Function 1633 is probably best described as ((x1 ⊕ x2) ∧ (x3 ⊕ x4))

or (x1x2x3x4).

2.2.3 Future Project

There is a potential flaw in the methodology utilized above. The discrepancy between

our results and Saarinen’s results for functions of four variables suggests that we have

some seven-gate circuits for functions which may only require six gates. Suppose there

exists some six-gate circuit to compute a function f . Further suppose that there is

some gate whose output feeds (directly or indirectly) into both inputs of the final

gate of this circuit. The pruning method described in the penultimate paragraph of

Section 2.2.1 may inadvertently discard this circuit. If it is the only six-gate circuit

which computes f , the entry in our catalog for f is not minimal.

This final pruning was added to overcome the explosive growth of the number of

circuits for n = 4 and g = 7. Without this pruning, and constrained by the single-

threaded and memory-intensive limitations of Maple, our existing code would take

several years to execute. Fixing the issue will require a complete rewrite of the code,

either in Maple or switching to a more efficient environment such as Python.

The idea for this project is the following: we modify the symmetry condition for

the number of gates in the left subcircuit to allow three gates on the left and two

on the right. We do this to guard against the case in which the two subcircuits use

a common gate (which could be specified in either subcircuit), but each subcircuit

requires three gates including the common one. Generate a list of all functions (not
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just Big Equivalence Classes) which can be computed using at most three gates. For

each of those functions, produce and save a list of all circuits which compute the

function using three or fewer gates.

Next, for every BEC representative function f which is currently assigned a seven-

gate circuit in the catalog, perform the following sequence of steps:

1. Select a function g from the list of functions which can be computed in three

or fewer gates. Let A be the set of all circuits which compute g.

2. For each gate type t ∈ [1..10], produce a list of functions H = {h1 . . . hk} such

that a t-type gate with g as its left input and hi as its right input will output

function f .

3. For each circuit A ∈ A and each hi ∈ H, try to find a circuit B which satisfies

the following conditions:

� B computes hi.

� The inputs of each gate in B are chosen from input variables, the output

of any gate in A, and the output of any previously constructed gate in B.

� The total number of gates in A and B is five. This ensures that the total

number of gates in the circuit is six.

4. If no such B can be constructed, select a new g and repeat the previous steps.

If the above process fails, then f has a gate-complexity of seven.
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2.3 Monotone Functions of Five or Fewer Vari-

ables

There are two major advantages to restricting our analysis to monotone functions.

The first is that there are many fewer monotone Boolean functions (and Big Equiv-

alence Classes thereof) than there are general Boolean functions. The second is that

we need fewer types of gates to construct Boolean circuits which compute monotone

functions. In practice, the representative of each monotone Big Equivalence Class is

a positive function, i.e. changing the value of an input variable from true to false will

never change the output from false to true. We can therefore model the circuits for

these functions using only AND and OR gates, which are gate types 1 and 5 in our

existing representation.

It is important to note that the minimal circuit using only AND and OR gates

may be larger than the minimal circuit if we allow the full range of gates used in the

preceding section. In fact, Razborov [[Raz85]] and Tardos [[Tar88]] showed that the

gap between monotone and non-monotone circuit complexities can be exponential.

2.3.1 Definitions and Notation

For the most part, we use the same conventions as we do in the general case. We do

need a few definitions, which we will take directly from Crama and Hammer [[CH11]]

with only notational modification.

Definition 2.2. Let f be a Boolean function on Kn, and let k ∈ {1, 2, . . . , n}. We

say that f is positive (respectively, negative) in the variable xk if f|xk=−1 ≤ f|xk=1

(respectively f|xk=−1 ≥ f|xk=1). We say that f is monotone in xk if f is either positive

or negative in xk.
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Here the notation f ≤ g for Boolean functions f and g means f(x) = 1 ⇒ g(x) = 1

for all x ∈ Kn. The notation f|xk=−1 is the restriction of f to input vectors where

input xk is false.

Definition 2.3. A Boolean function is positive (respectively, negative) if it is positive

(respectively, negative) in each of its variables. The function is monotone if it is

monotone in each of its variables.

2.3.2 Methodology

As mentioned above, a useful byproduct of the numbering scheme we are using for

Boolean functions is that the lowest numbered function in each monotone BEC is a

positive function. We therefore do not need to worry about negating variables in our

gates, and we can use only gate types 1 and 5. This mean that while the number of

circuits with each number of gates still grows exponentially, the base of the exponen-

tial is 2 rather than 10 as it is in the general case.

The other numerical advantage we have is that even with 5 variables, there are

only 210 monotone BEC’s, so we are hunting for many fewer needles in our proverbial

haystack. By comparison, there are over 1.2 million BEC’s for general functions of 5

variables, which is why we do not attempt to catalog those.

The methodology for producing this catalog is nearly identical to that for general

functions. The most interesting difference (see Maple code in section B.2) is in the ini-

tialization of the catalog with the BEC representative functions. In the general case,

we loop through every function and discard it if we have already seen an equivalent

function under signed permutation of the variables. That is obviously not feasible for

the 22
5
functions of 5 variables.
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Table 2.5: Number of BEC’s by monotone circuit complexity
vars 0-gate 1-gate 2-gate 3-gate 4-gate 5-gate 6-gate 7-gate Total
1 3 3
2 3 2 5
3 3 2 4 1 10
4 3 2 4 10 2 6 1 2 30
5 3 2 4 10 26 16 42 35 . . .

vars 8-gate 9-gate 10gate 11gate 12gate 13gate Total
5 44 18 3 6 1 210

Instead, we start with the function {[1, 1, 1, 1, 1]} as our working list. The main

loop then pulls a function from the working list, adds it to the list of monotone func-

tions, then calculates all of the functions which have one additional true point formed

by negating one value in an existing true point. If that function is already in the

main list, already in the working list, or not monotone, it is discarded. Otherwise it

is appended to the working list. This allows us to generate the initial blank catalog

in a reasonable amount of time.

The only other relevant difference is that the SLP generation procedure only uses

AND and OR gates at every level beyond the 0-gate SLP’s. See Appendix B.2 for

code excerpts and additional resources.

2.3.3 Results

By running the aforementioned code for 1 ≤ n ≤ 5 and starting at g = 0, we have

compiled catalogs of minimal circuits for all monotone Boolean functions of up to

5 variables. In the catalogs we produced, each entry is the representative function

of a Big Equivalence Class. The first line contains the number of the representative

function (as in OEIS sequence A349743 [[OEISe]], submitted to OEIS as part of this

project) followed by the set of true points for the function. The next line is the en-

coding of a minimal straight-line program which computes the function. A summary
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of the results is provided in table 2.5.

As in the general case, these SLP’s could be modified to handle any function in

the respective BEC. If any variables are negated in a signed permutation, so that

the function is monotone without being positive, we would need to introduce gates of

types other than 1 or 5. We would still not need either of the XOR-type gates, since

any function which depends on the output of such a gate is not monotone (or at least

could be written without such a gate).
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Chapter 3

Moments of the Number of

Subcubes in Boolean Functions

“The expectation functional, E[X] is a powerful tool to study combinatorial objects,

and often gives us quite useful information... For the higher moments, E[Xr], the

computation gets complicated fast and we need computers to do symbolic computa-

tion.” - Thotsaporn Aek Thanatipanonda [[Tha20], p. 1]

This chapter overlaps significantly with a stand-alone paper on arXiv.org [[JSZ23]]

which has been accepted for publication in the Palestine Journal of Mathematics.

3.1 Introduction

When analyzing the distribution of a combinatorial quantity or random variable X,

the statistical moments of X provide information about the shape of the distribution.

The first moment, denoted E[X] , is the expected value (or mean µ). The second

moment, E[X2], indicates how spread out the distribution is. Higher moments yield

further information about the distribution including asymmetries and the relative im-

portance of the tails of the distribution to its shape. We will calculate both the raw
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moments and the central moments (often referred to as moments about the mean).

In this chapter, we consider the space of all Boolean functions on n variables. We

are particularly interested in the number and sizes of implicants contained within

each Boolean function. An implicant is an expression in the same variables as the

function such that the function evaluates to true on any input for which the expres-

sion evaluates to true. In the traditional view of Boolean functions, we might write

a function as f(x1, x2) = x1 ∨ x2. This function has 3 implicants containing 1 point,

namely x1x2, x1x2, and x1x2. It has 2 implicants with 2 points, x1 and x2.

Equivalently, we can think about a Boolean function as the subset of points

(x1, . . . , xn) ∈ {−1, 1}n for which the function evaluates to true. In this context,

implicants are subcubes of the cube which are also subsets of the function. In the

previous example, f would have 3 points (0-dimensional subcubes) and 2 edges (1-

dimensional subcubes) contained in the 2-dimensional cube. We will primarily use

the subset and subcube terminology throughout the remainder of this chapter, setting

aside that our interest in these objects originally stemmed from the Boolean function

interpretation.

3.1.1 Definitions and Notation

We use the same definition of a Boolean function as in 2.1.1. Let n be the number

of variables, so our functions will be subsets of the n-dimensional cube. We define

Fn to be the set of all Boolean functions on n variables. We will generally use r

as the dimension of a subcube of interest. We will also use k as the number of the

moment we are calculating, effectively the number of r-dimensional subcubes we are

considering at a time. 1

1We note that our k and r are reversed from Thanatipanonda’s 2020 paper.
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The combinatorial quantity we are studying should probably be denoted Xn,f,r

signifying the number of r-dimensional subcubes in the function f ∈ Fn. In practice,

n and f will be sufficiently obvious from context that they will be omitted for ease of

notation. In addition, most of our computations will be symbolic in n. Therefore the

symbol X2 should be interpreted as the number of 2-dimensional subcubes contained

in an unspecified function on n variables.

Our goal is to calculate E[Xk
r ] and E[(Xr −µr)

k] for as many combinations of r, k

as is feasible.

3.2 Previous Results

Thanatipanonda’s approach [[Tha20]] uses linearity of expectation and a variation of

inclusion-exclusion. He first enumerates all of the combinations of r-subcubes of size

k, arranging them by how the subcubes overlap. For example, in the case of k = 2

and r = 1, we are considering pairs of edges. Two edges can be disjoint, overlap

at a point, or coincide. The total number of points included in the pair of edges is

therefore 4, 3, or 2 respectively, and the probability of that particular pair of edges

being present in a random subset of the n-cube is 1
16
, 1

8
, or 1

4
respectively. Using

inclusion-exclusion to determine the number of each such type permits a calculation

of the moment (in this example E[X2
1 ]) by linearity of expectation. The calculation

of the first two moments is relatively straightforward. He produces general formulas

for the first two moments of r-dimensional subcubes in functions of n variables.

E[X] =

(nr)2n−r∑
i=1

E[Xi] =

(
n

r

)
2n−r · 1

22r
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E[X2] =
r∑

i=0

(
n

i,r−i,r−i,n−2r+i

)
2n−i

22r+1 ·
(
22

i − 1
)
+

[(
n
r

)
2n−r

]2
22r+1

Thanatipanonda was able to use his inclusion-exclusion approach to produce for-

mulas for the third moment for r = 0 and r = 1 but “did not manage to find formulas

for other moments.” [[Tha20], p. 21] The number of cases for how the subcubes

can overlap grows too quickly for this method to remain practical beyond the third

moment.

3.3 Methodology

For a fixed number of variables n, it is theoretically possible to generate all Boolean

functions on n variables, compute the number of subcubes of each size contained in

each one, and add the contributions together to find the statistical moments. This is

feasible for n = 4, because there are only 65, 536 such functions. However, there are

over 4 billion functions on 5 variables, so this näıve approach is already impractical.

Furthermore, we want to produce a symbolic expression in n for each of the moments,

so enumerating the functions for any particular n does not suffice.

We employ an approach which is more efficient than enumeration and less com-

plicated than inclusion-exclusion, instead taking advantage of many available sym-

metries to perform direct computations on a small number of functions. We use the

overlapping stages approach described by Zeilberger [[Zei04]] to build successively

more efficient algorithms while ensuring the accuracy of our methods.
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3.3.1 Data Structure

Every r-dimensional subcube of {0, 1}n has the form

C = {(x1, . . . , xn) ∈ {0, 1}n |xi1 = αi1 , . . . , xin−r = αin−r},

for some 1 ≤ i1 < i2 < · · · < in−r ≤ n and (αi1 , . . . αin−r) ∈ {0, 1}n−r. A good way

to represent it on a computer is as a row-vector of length n, in the alphabet {0, 1, ∗},

where the entries corresponding to i1, i2, . . . , in−r have αi1 , . . . .αin−r respectively and

the remaining r entries are filled with wildcards, denoted by ∗.

For example, if n = 7 and r = 3, the 3-dimensional cube

{(x1, . . . , x7) ∈ {0, 1}7 |x2 = 1, x4 = 1, x5 = 0, x7 = 1},

is represented by

∗1 ∗ 10 ∗ 1.

We are trying to find a weighted count of ordered k-tuples of r-dimensional

subcubes. The natural data structure for these is the set of k by n matrices in the

alphabet {0, 1, ∗} where every row has exactly r wildcards.

For any specific, numeric n, there are only (2n−r
(
n
r

)
)k of these matrices, and

for each and every one of them one can find the cardinality of the union of the

corresponding subcubes, call it v, and add 1/2v to the running sum. But we want to

do it for symbolic n, i.e. for all n. We will soon see how, for each specific (numeric)

r and k this can be done in principle, but only for relatively small r and k in practice.

An interesting consequence of our algorithm is the precise degree in n and 2n of the

expression for E[Xk
r ](n).
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3.3.2 Kernels and Remainders

A key object in our approach is the kernel. Given a k×n matrix M in the alphabet

{0, 1, ∗}, we call a column active if it contains at least one ‘∗’. Note that the matrix

has exactly k · r ‘∗’s, hence the number of active columns, call it a, is between r

and k · r. 2 The kernel of M is the submatrix of M consisting of its active columns.

We will say that a matrix is in canonical form if the active columns are occupied

by the a leftmost columns (i.e. its kernel is contiguous starting in the first column).

Obviously, there are
(
n
a

)
ways to choose which of the n columns are active, therefore

we can compute the contribution to the expectation for the set of matrices in canon-

ical form and multiply by
(
n
a

)
.

It remains to do a weighted-count in which every matrix contributes 1/2v, where

v is the cardinality of the union of the corresponding subcubes represented by the

k rows, for the set of matrices in canonical form. Note that there are only finitely

many choices for the a leftmost columns, i.e. the set of k×a matrices in the alphabet

{0, 1, ∗} with the property that every column has at least one ‘∗’, and every row has

exactly r ‘∗’s. These can be divided into equivalence classes obtained by permuting

rows and columns and transposing 0 and 1 in any given column. Once these are

sorted into equivalence classes, one needs only examine one representative, and then

multiply the weight by the cardinality of the class.

But what about the n − a rightmost columns? We refer to these submatrices as

remainders. There are 2k(n−a) possible submatrices; there are no wildcards in this

region, so the alphabet here is {0, 1}. Almost all of these have distinct rows, more

2More generally, if we want to find an expression for the mixed moment E[Xr1 · · ·Xrk ] the number
of active columns is between max(r1, . . . , rk) and r1 + · · ·+ rk.
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precisely,

(
2n−a

k

)
k!

of them, and these will produce the smallest possible weight in conjunction with any

kernel. The other extreme is that all the rows of the remainder are identical, and

then there are only 2n−a choices to fill them in.

In general, every remainder determines a set partition of the set of rows {1, . . . , k},

where two rows are roommates if they have the same last n−a entries. If that set par-

tition has m members 1 ≤ m ≤ k, then the number of choices of assigning different

{0, 1} vectors of length n− a to each of the parts of the set partition is

(
2n−a

m

)
m!.

Now for each a and for each set partition, we let the computer generate the finite

set of k×a matrices in the alphabet {0, 1, ∗}. Each of the members of the set partition

has its own submatrix, and we ask our computer to find the number of vertices in the

corresponding union of subcubes corresponding to each member of the examined set

partition. Since they are disjoint, we add them up, getting v for that particular pair

(matrix, set partition), giving credit 1/2v.

3.4 Moments of Numbers of 1-dimensional Sub-

cubes

Our computations confirm the first three moments for 1-dimensional subcubes as

computed by Thanatipanonda [[Tha20]]. Our approach produces the fourth, fifth,

and sixth moments as well.
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Fourth (raw) moment for edges:

E[X4
1 ] =

1

4096
(n424n + 24n423n + 144n422n + 160n42n + 12n323n

+ 48n322n − 192n32n + 12n222n + 48n22n − 64n2n)

Fourth central moment for edges:

E[(X1 − µ1)
4] =

1

1024
(40n42n − 48n32n + 12n22n − 16n2n + 12n422n

+ 12n322n + 3n222n)

Fifth (raw) moment for edges:

E[X5
1 ] =

n22n

32768
(n324n + 40n323n + 480n322n + 1760n32n + 640n3

+ 20n223n + 240n222n − 480n22n − 3840n2

+ 60n22n + 240n2n + 1280n− 320 · 2n)

Fifth central moment for edges:

E[(X1 − µ1)
5] =

5n32n

1024

(
6n22n + 4n2 + 3n2n − 24n+ 8

)
Sixth (raw) moment for edges:

E[X6
1 ] =

n2n

262144
(n525n + 60n524n + 1200n523n + 9120n522n + 19200n52n

− 14336n5 + 30n424n + 720n423n + 1440n422n − 29760n42n

− 42240n4 + 180n323n + 1440n322n + 4800n32n + 30720n3

− 840n222n − 2400n22n + 30720n2 − 1920n2n − 53760n+ 38912)
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Sixth central moment for edges:

E[(X1−µ1)
6] =

n2n

32768
·
(
120n522n + 1920n52n − 1792n5 − 840n42n + 180n422n − 5280n4

+ 90n322n − 360n32n + 3840n3 + 15n222n − 300n22n + 3840n2

− 240n2n − 6720n+ 4864
)

From these moments, it follows that (as n approaches infinity) the third through

sixth scaled moments about the mean converge to 0, 3, 0, and 15 respectively. This

suggests that the random variable X1 is asymptotically normal. Konieczna [[Kon93]]

proved the asymptotic normality of Xr in the more general case where each subcube

appears with probability p ∈ (0, 1).

3.5 Moments of Numbers of 2-dimensional Sub-

cubes

Our computations confirm the first two moments for 2-dimensional subcubes as com-

puted by Thanatipanonda [[Tha20]]. We are able to find the third and fourth moments

as well.

Third (raw) moment for squares:

E[X3
2 ] =

n(n− 1)2n

2097152
(n422n + 48n42n + 576n4 − 2n322n + 384n3 + n222n

+ 24n22n + 1344n2 − 72n2n − 1024n− 2176)



33

Third central moment for squares:

E[(X2 − µ2)
3] =

n (n− 1) 2n

32768

(
9n4 + 6n3 + 21n2 − 16n− 34

)
Fourth (raw) moment for squares:

E[X4
2 ] =

n(n− 1)2n

268435456
(n623n + 96n622n + 3072n62n + 33280n6 − 3n523n − 96n522n

− 1536n5 + 3n423n + 48n422n + 5376n42n + 81408n4 − n323n

− 192n322n − 10240n32n − 53760n3 + 144n222n − 5184n22n

− 334848n2 + 6976n2n − 177152n+ 15360)

Fourth central moment for squares:

E[(X2 − µ2)
4] =

n (n− 1) 2n

4194304
·
(
12n62n + 520n6 + 12n52n − 24n5 + 24n42n + 1272n4 − 12n32n

− 840n3 − 9n22n − 27n2n − 5232n2 − 2768n+ 240
)

3.6 Moments of Numbers of 3-dimensional Sub-

cubes

Our computations confirm the first two moments for 3-dimensional subcubes as com-

puted by Thanatipanonda [Tha20]. We are able to find the third moment as well.
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Third (raw) moment for cubes:

E[X3
3 ] =

n(n− 1)(n− 2)2n

1855425871872
(n622n + 192n62n + 10752n6 − 6n522n − 288n52n

+ 18432n5 + 13n422n + 3360n42n + 367872n4

− 12n322n + 6480n32n + 1571328n3

+ 4n222n − 44592n22n + 5206272n2

+ 34848n2n + 11860992n− 17750016)

Third central moment for cubes:

E[(X3 − µ3)
3] =

n(n− 1)(n− 2)2n

2415919104
(14n6 + 24n5 + 479n4 + 2046n3

+ 6779n2 + 15444− 23112)

3.7 Mixed Moments

We also compute a number of mixed moments, such as E[X1X2]. These moments are

of interest because they provide insight into the correlation between the presence of

subcubes of different sizes.

The first method for producing these mixed moments is the brute force enumer-

ation of functions. As in previous cases, this is only feasible up to n = 4. Using the

Moms routine described above, we can generate mixed moments up to 10-dimensional

subcubes. The first six mixed moments are



35

E[X0X1] =
n2n

16
(2n + 2)

E[X0X2] =
n(n− 1)2n

256
(2n + 4)

E[X0X3] =
n(n− 1)(n− 2)2n

24576
(2n + 8)

E[X1X2] =
n(n− 1)2n

1024
(n2n + 8n+ 8)

E[X1X3] =
n(n− 1)(n− 2)2n

98304
(n2n + 16n+ 24)

E[X2X3] =
n(n− 1)(n− 2)2n

1572864
(n22n − n2n + 32n2 + 64n+ 240)

We generalize Thanatipanonda’s formula for second moments to the case of the

mixed moment E[XrXs] as follows:

E[XrXs] =

min(r,s)∑
i=0

2r+s−2i

(
n

i, r − i, s− i, n− r − s+ i

)
2n−r−s+i

22r+2s−2i
+

Rest

22r+2s

=

min(r,s)∑
i=0

(
n

i,r−i,s−i,n−r−s+i

)
2n−i

22r+2s
·
(
22

i − 1
)
+

(
n
r

)
2n−r

(
n
s

)
2n−s

22r+2s

where Rest =

(
n

r

)
2n−r

(
n

s

)
2n−s −

min(r,s)∑
i=0

(
n

i, r − i, s− i, n− r − s+ i

)
2n−i.

As suggested in the original paper [[Tha20], p. 22], we can think of the i in the

summation as the dimension of the intersection between two subcubes. This inter-

section can be no larger than min(r, s). The multinomial coefficient represents the

number of ways to select the i columns with wildcards in both rows, r − i and s− i

columns with a wildcard in one row but not the other, and n− r− s+ i columns with

no wildcards.
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This generalized formula computes mixed moments more efficiently than the Moms

procedure. We are now able to compute mixed moments up to E[X19X20].

3.7.1 Correlation

Recall that the correlation of two random variables X, Y is:

Cor(X, Y ) =
E[XY ]− E[X]E[Y ]√

(E[X2]− E[X]2) (E[Y 2]− E[Y ]2)

Now, having the ability to calculate mixed moments lets us find correlation. It

certainly seems reasonable that the correlation between any two sizes of subcube

should approach 1 as n → ∞, since functions with more edges will also have more

squares, etc. It seems natural to wonder how quickly the correlations approach 1.

Here are some sample asymptotics:

Cor(X0, X1) = 1− 1

4n
+

3

32n2
− 5

128n3
+

35

2048n4
− 63

8192n5
+O

(
1

n6

)
Cor(X0, X2) = 1− 1

n
− 1

4n2
+

1

n3
− 21

32n4
− 21

32n5
+O

(
1

n6

)
Cor(X0, X3) = 1− 9

4n
− 261

32n2
− 1317

128n3
+

508275

2048n4
+

3004953

8192n5
+O

(
1

n6

)
Cor(X0, X4) = 1− 4

n
− 39

n2
− 625

n3
− 148811

4n4
+

697875

2n5
+O

(
1

n6

)
Cor(X1, X2) = 1− 1

4n
− 37

32n2
+

131

128n3
+

115

2048n4
− 10543

8192n5
+O

(
1

n6

)
Cor(X1, X3) = 1− 1

n
− 45

4n2
− 79

4n3
+

7595

32n4
− 21735

32n5
+O

(
1

n6

)
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Cor(X1, X4) = 1− 9

4n
− 1485

32n2
− 88509

128n3
− 78400125

2048n4
+

2327192169

8192n5
+O

(
1

n6

)
Cor(X1, X5) = 1− 4

n
− 131

n2
− 5000

n3
− 4357195

4n4
− 8037710954

n5
+O

(
1

n6

)
Cor(X2, X3) = 1− 1

4n
− 173

32n2
− 5461

128n3
+

343299

2048n4
+

6491553

8192n5
+O

(
1

n6

)
Cor(X2, X4) = 1− 1

n
− 137

4n2
− 809

n3
− 1271453

32n4
+

7260179

32n5
+O

(
1

n6

)
Cor(X2, X5) = 1− 9

4n
− 3573

32n2
− 690357

128n3
− 2252335149

2048n4
− 65861548283271

8192n5
+O

(
1

n6

)

It is obvious that the coefficient on 1
n
must be negative, since the correlation

can never exceed 1. More specifically, the coefficient of 1
n
in Cor(Xr, Xs) is always

(r−s)2

4
. The coefficients of lower order terms are more complicated, so we find these by

computing Cor(Xr, Xs) for as many particular pairs (r, s) as possible and analyzing

the pattern of the coefficients. For each 1
ni , we treat the matrix of coefficients of that

term in Cor(Xr, Xs) as a function of r and s. We then attempt to find a polynomial

which describes that function whose degree in r (respectively s) is at least two less

than the number of rows (respectively columns) of the coefficient matrix. We find the

following polynomials for the first four nonconstant terms:

1

n
: −(r − s)2

4
1

n2
: −(r − s)2

32

(
11r2 + 26rs+ 11s2 − 28r − 28s+ 14

)
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1

n3
: −(r − s)2

384

(
661r4 + 1388r3s+ 2166r2s2 + 1388rs3 + 661s4

− 4380r3 − 9012r2s− 9012rs2 − 4380s3

+ 10078r2 + 17236rs+ 10078s2

− 9600r − 9600s+ 3256
)

1

n4
: −(r − s)2

6144

(
500327r6 + 1005942r5s+ 1510761r4s2 + 2021492r3s3

+ 1510761r2s4 + 1005942rs5 + 500327s6

− 6062280r5 − 12161448r4s− 18268176r3s2

− 18268176r2s3 − 12161448rs4 − 6062280s5

+ 29496884r4 + 59093296r3s+ 77488056r2s2

+ 59093296rs3 + 29496884s4

− 73568880r3 − 141137616r2s− 141137616rs2 − 73568880s3

+ 98912180r2 + 160996184rs+ 98912180s2

− 67796448r − 67796448s+ 18518112)

Coefficients for additional terms are available in Appendix C. We observe that for

each 1
ni , the degree of the corresponding polynomial for its coefficients is 2i. Each

polynomial is uniformly 0 when r = s, which we expect because Cor(Xr, Xr) = 1 by

definition. We also note that these polynomials are symmetric in r, s, which must be

true because Cor(Xr, Xs) = Cor(Xs, Xr).
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Chapter 4

Combinatorial Game - Juniper

Green

“Consider any game played with a number of heaps in which each move affects just

one of the heaps on the table, and in which exactly the same moves are available

to each player. Any position in such a game is therefore the sum of its single heap

positions, so the game is solved when we know the value of a heap of n beans for

every n. Moreover, since the games are impartial, each such value is a Nim-heap,

∗m.” Berlekamp, Conway, and Guy [[BCG01], p. 82]

4.1 Introduction

Games have existed since pre-historic times, dating back at least as far as the first

time one of our bipedal ancestors realized that when one throws the knuckle bones

of last night’s dinner, those bones can land in various positions. Mathematicians

have applied their techniques to the analysis of games for hundreds of years, since

Cardano, Pascal, and others applied their reasoning to popular games of chance.

Game theory became its own branch of mathematics about a century ago when von

Neumann analyzed perfect-information zero-sum games. In the 1930’s, Sprague (in
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Germany) and Grundy (in England) independently derived what is now known as the

Sprague-Grundy Theorem, launching the field of combinatorial game theory.

4.1.1 Combinatorial Games - Definitions

A combinatorial game is an open-information game without randomness (in the form

of dice or similar devices) in which any current position of the game leads to a finite

number of new positions via a legal move by the player whose turn it is. Each player

has “perfect information” in the sense that they are aware of the current state of the

game and know what moves are available to every player. We will generally refer to

the current state of the game as the position of the game. Frequently, the goal of the

game is to be the last player to make a legal move.

A combinatorial game is finite if it is guaranteed to produce a winner after some

finite sequence of moves. In particular, this means that there can not be any cyclical

sequence of moves (i.e. a situation in which the position of the game is identical

before and after a non-zero number of moves). In some sense, this is equivalent to

saying that the space of eventually reachable positions of the game is strictly decreas-

ing. Tic-tac-toe is a finite combinatorial game because each move permanently uses

one square on the board, so the total number of moves to reach a conclusion cannot

exceed the number of spaces on the board. Checkers is not a finite game; if each

player has promoted at least one checker to a king, those kings can move between

spaces in a manner which repeats a previous position.

A combinatorial game is called impartial if any move that is legal for one player is

also legal for the other. For example, chess is a combinatorial game by these defini-

tions, but it is not impartial. All of the pieces are visible, and the possible moves for

each piece depend only on the current position, so the perfect information require-



41

ment is met. The first player can only move the white pieces, and the second the

black, so the same moves are not legal for both of them.

Nim is perhaps the prototypical impartial combinatorial game. In this game, there

are a finite number of objects divided into some number of distinct piles. Each player

in turn removes one or more objects from a single pile. The player who cannot make

a legal move (because all objects have been removed) loses the game. There are many

variations of Nim. In the misère version, the player who removes the last piece loses.

There are also variations in which there is a maximum number of objects which can

be removed, players can remove objects from more than one pile in a turn, or there is

a preliminary phase in which the object are placed into piles before the game starts.

4.1.2 Position Graphs

We can model a finite combinatorial game as a directed graph. The vertices represent

positions, and there is an edge from position A to position B if and only if there is

a legal move from position A which results in position B. There is one distinguished

vertex representing the initial position of the game (e.g. the empty tic-tac-toe board).

There can be no cycles if the game is finite, but the underlying undirected graph need

not be a tree. It may be possible for multiple sequences of moves to arrive at identical

positions.

We will use the notation N (A) = {B1, B2, . . . , Bk} to indicate that from position

A, there are legal moves resulting in positions B1 . . . Bk. If N (A) = ∅, there are no

legal moves from that position - the player whose turn it is to move has lost the game.

In fact, we can classify every position as either a P -position (the player who made

the previous move achieving this position will win the game) or an N -position (the
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player about to make the next move from this position will win the game). These

statements about who will win do rely on both players choosing rationally among

their available moves. The algorithm for classifying all positions as N or P from the

directed graph is as follows:

1. Label every position V such that N (V ) = ∅ as a P -position because the next

player has no legal move and the previous player has won.

2. For every unlabeled position W , check whether any position in N (W ) is already

labeled as a P -position. If so, labelW as anN -position because the player about

to move can choose to go to a P -position and win.

3. For every unlabeled positionX, check whether every position inN (X) is already

labeled as an N -position. If so, label X as a P -position because every possible

move for the current player gives the opponent a winning strategy.

4. If any position remains unlabeled, repeat steps 2 and 3.

This process must terminate for the position graph of a finite game. There are

no cycles, so any sequence of moves through the graph must be of finite length. If

there are no edges leaving a vertex, that position will be classified in step 1. The first

iteration of steps 2 and 3 will certainly classify every vertex from which the maximum

path length is 1 (and some whose maximum path length is longer). Each subsequent

iteration will classify all previously unclassified vertices whose maximum path length

is the number of the iteration. Therefore, the process must terminate after no more

than d iterations of steps 2 and 3, where d is the maximum length of a path starting

at the distinguished vertex representing the initial position.
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4.1.3 Sprague-Grundy Values

We define the minimum excluded number of a set A, denoted mex(A), as the smallest

non-negative integer which is not an element of A. Some examples:

mex({0, 1, 2, 3, 5, 6, 7}) = 4

mex({1, 2, 3}) = 0

mex(∅) = 0

The Sprague-Grundy value of a position V (often called the Grundy value) is

defined recursively as follows:

G(V ) =


0 if N (V ) = ∅

mex(N (V )) otherwise

The Sprague-Grundy value of a position V is 0 if and only if V is a P -position by

the definitions of the previous section. The reason for this is that the two ways that

G(V ) can be assigned the value 0 are because there are no legal moves or because

mex(N (V )) = 0. In the former case, there is no legal move for the current player.

In the latter case, every legal move has a nonzero Sprague-Grundy value, so there

are no options for the current player to force their opponent to lose. Therefore G(V )

includes the information of whether V is a P -position or an N -position.

Sprague-Grundy values also provide deeper information. Perhaps the simplest

way to understand this information is in terms of Nim. A game of Nim with one

pile is trivial: the player whose turn it is can remove all of the objects in the pile to

win, unless the pile is already empty. It is clear from the recursive definition above

that a position in a single-pile Nim game has a Sprague-Grundy value equal to the

number of objects. It may seem from this observation that the Sprague-Grundy value
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is merely a measure of how many fundamentally different mistakes the current player

can make, and for the single-pile game that may well be the case.

For Nim with more than one pile, the power of the Sprague-Grundy value becomes

apparent. We denote a position in k-pile Nim as X = (x1, x2, . . . , xk) where xi is the

number of objects remaining in pile i. It is well-known that G(X) =
k⊕

i=1

xi, i.e. the

Sprague-Grundy value of the position is the bitwise XOR of the pile sizes. [[BCG01]]

4.2 Juniper Green

Juniper Green is a two-player impartial combinatorial game invented by teacher

Richard Porteous [[Ste97], [SB99]]. The basic game uses a board labeled with the

integers 1 to n, with a typical value of n = 100. The first player chooses any number

on the board. The second player then chooses any integer in [1, n] which is either a

factor or an integer multiple of the first. The players alternate selecting a factor or

multiple of the current number, but they may not choose any number which has been

selected previously. Whichever player is left without a legal move loses.

The basic game (which we refer to as “easy” in the accompanying Maple package)

is trivial for any n ≥ 7 except for n = 10. The first player can select any prime

number p > ⌊n
2
⌋. The second player must choose 1, since it is the only unselected

factor of p and all multiples are greater than n. The first player then chooses another

prime greater than ⌊n
2
⌋ and the second player has no response. The case n = 10 is

exceptional because there is only one prime in the interval [6, 10], so the strategy fails.

The standard version of the game (“hard” in the Maple package), and the one

that is typically played, adds one additional rule: the first player must select an even
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number. When considering strategy, it is still in a player’s best interest to force their

opponent to select 1. As soon as either player does so, their opponent can select a

large prime and the game ends.

4.2.1 Winning Strategies

For the standard game, Julien Lemoine [[Lem22]] has determined whether the first

player has a winning strategy for all values of n. He models the game as an undi-

rected graph in which each integer from 1 to n is represented by a vertex, and two

vertices are connected if and only if the larger number is a multiple of the smaller

number. (Note that this is not a position graph as defined in Section 4.1.2.) When a

player selects a number, that vertex is highlighted as the current vertex. When the

next number is selected, the highlighted vertex and its associated edges are deleted

from the graph. This method simplifies the analysis because once the graph becomes

disconnected, one need only consider the component containing the active vertex. A

further simplification results from the fact stated above that the player who chooses

1 loses coupled with the rule that the initial choice must be even: we can delete the

vertex 1 and all of the vertices for primes greater than n
2
, since these are now isolated

vertices not available for initial selection.

One striking example of the power of this model is the case where there are at

least three primes p, q, r such that n
4
< p < q < r ≤ n

3
. With 1 removed, vertex p is

adjacent only to 2p and 3p and similarly for q and r. In turn, 2p is adjacent to only

2 and p, and 3p is adjacent only to 3 and p. This results in the configuration shown

in Figure 4.1.

For any game including such a subgraph, the first player can win by selecting any
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Figure 4.1: The subgraph containing primes p, q, r

of the pictured vertices adjacent to 2 or 3. Say the first player chooses 2p as indicated

in the diagram. The second player can only choose to move left or right, eventually

selecting either 2 or 3. Then the first player can select the adjacent vertex in the

center row, eventually forcing the second player to select the other of 2 and 3. Now

the first player selects the adjacent vertex in the bottom row and must win two moves

later.

4.3 Methodology

Our initial implementation includes three procedures for each variation. The first of

these generates a (potentially empty) set of positions corresponding to the legal moves

from the current position. The second procedure generates a (potentially empty) set

of positions for the winning moves from the current position. The final procedure

calculates the Sprague-Grundy value of a given position. These procedures näıvely

compute legal moves by considering the currently selected number and finding all un-

used legal moves, as a human player presumably would. The Sprague-Grundy value

is recursively computed by generating the list of moves, finding the Sprague-Grundy

value of each of the resultant positions, and taking the mex of that set of values.

We achieve a slightly greater efficiency with a modified set of procedures. In this

second version, the legal moves are not recomputed at each step of the game. Instead,

we generate a directed graph (similar to the graph used by Lemoine) with vertices

representing the numbers 1 through n. The graph contains an edge from i to j if and
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only if j is a legal move from i, supposing that j has not previously been selected. The

graph is stored as a Maple table whose indices are the vertices and whose entries are

the set of vertices reachable from the index under the rules of the current variation

in the initial position. We will refer to this structure as the adjacency table below.

Using this stored data structure allows us to compute the moves from any position

by subtracting the set of previously selected numbers from the entry in this table for

the current selection without recomputing the legal moves. We use a directed graph

because while the original game is symmetric (i.e. if i → j is a legal move, so is j → i,

several of the variations are not.

Details of the implementations for two of the variations are included in the fol-

lowing sections. Links to the code for all variations are available in Appendix D.

4.3.1 Traditional Game - “Hard Version”

For the initial implementation, each procedure takes two arguments: the number of

spaces on the board n and the current position P . The position is a two-element list

[c, S] consisting of the currently selected number and a set of numbers which have

already been selected. We use the convention that the initial position (player one is

about to make their first selection) is represented as [n, {}].

The procedure for computing the list of legal moves from a position is Mh(n,P).

If the second argument is [n, {}], the procedure returns all positions for which the

current and only selection is an even number. Otherwise, it computes all factors and

multiples of c which are in the interval [1..n], removes all elements of S from that list,

then returns the set of positions corresponding to each of the remaining options being

chosen from the current position. The following sequence of calls to Mh represent a

possible game played with n = 10:
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� Mh(10,[10,{}]) returns {[2, {2}], [4, {4}], [6, {6}], [8, {8}], [10, {10}]}, because

player one must initially select an even number.

� Mh(10,[4,{4}]) returns {[1, {1, 4}], [2, {2, 4}], [8, {4, 8}]}. After player one has

selected 4, player two must select a factor or multiple of 4.

� Mh(10,[1,{1,4}]) returns {[2, {1, 2, 4}], [3, {1, 3, 4}], [5, {1, 4, 5}], [6, {1, 4, 6}],

[7, {1, 4, 7}], [8, {1, 4, 8}], [9, {1, 4, 9}], [10, {1, 4, 10}]}. Player two has made a

terrible mistake by selecting 1! Player one can now choose any unused number.

� Mh(10,[7,{1,4,7}]) returns {}. Player one has chosen 7, and player two has

no legal move. Player one wins the game.

The procedure for computing the list of winning moves from the current position is

WMh(n,P). This procedure is not used in the computation of Sprague-Grundy values,

but it provides a way to determine the correct sequence of move for a player who is

in a winning position. Some examples from the game traced in the previous example:

� WMh(10,[10,{}]) returns {}. Player one does not have an initial selection from

which they can win the game without an error by player two.

� WMh(10,[1,{1,4}]) returns {[6, {1, 4, 6}], [7, {1, 4, 7}], [8, {1, 4, 8}], [9, {1, 4, 9}]}.

Player one had several winning options at this point, although 7 was the only

choice which resulted in an immediate win.

The procedure for computing the Sprague-Grundy value of a position is Gh(n,P).

If P is in the form [n, {}], this procedure computes the mex of the positions repre-

senting an initial selection of an even number. Otherwise, it computes the mex of

Gh(n, Pi) for all Pi ∈ Mh(n, P ). Continuing with the above example:

� Gh(10,[10,{}]) returns 0. Player one does not have an initial selection from

which they can win the game without an error by player two, so this position

is a P -position.
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Table 4.1: Output of Mhgraph(10)
Index Entry
1 {2, 3, 4, 5, 6, 7, 8, 9, 10}
2 {1, 4, 6, 8, 10}
3 {1, 6, 9}
4 {1, 2, 8}
5 {1, 10}
6 {1, 2, 3}
7 {1}
8 {1, 2, 4}
9 {1, 3}
10 {1, 2, 5}

� Gh(10,[1,{1,4}]) returns 3. This value is positive, so this position is an N -

position. Player one has winning options for which the SG value of the ensuing

position is 0 (selecting 6, 7, 8, or 9) and losing options where the SG value of

the ensuing position is 1 (selecting 3 or 5) or 2 (selecting 2 or 10).

The improved implementation is principally designed to produce Sprague-Grundy

values. There is no procedure for computing winning moves, although one could use

the existing procedures to find moves with positive Sprague-Grundy values to accom-

plish that task. This implementation does not recompute the factors and multiples

of c at every stage. Instead, the procedure Mhgraph(n) produces and stores an adja-

cency table for the game. See Table 4.1 for an example.

The procedure Ghgraph1(n,c,S) computes the Sprague-Grundy value for a po-

sition in the game with n numbers, current selection c, and set of numbers already

selected S. It first produces a (possible empty) list of legal moves by subtracting

S from the entry in the adjacency table corresponding to c. If there are no legal

moves, the procedure returns 0. If there are legal moves, we return the mex of the

Sprague-Grundy values of those moves from the current position.
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The procedure Ghgraph(n) returns the Sprague-Grundy value of the initial po-

sition for a board with n spaces and player one about to make the initial selection.

It first calls Mhgraph to produce the adjacency graph, then finds the mex of the

Sprague-Grundy values of every even initial selection c using Ghgraph1(n,c,{c}).

4.3.2 Additive Version

In the additive variation, described in more detail in Section 4.6 below, the parame-

ters of a game are integer n and sets A,B. The number of spaces on the board is still

n, but the legal moves are no longer factors and multiples of the current selection.

Instead, players can either subtract an element of A or add an element of B to the

current number.

In the initial implementation for this variation, each procedure takes four argu-

ments: the number of spaces on the boardn, the current position P , and the sets A

and B. The position is again a two-element list [c, S] consisting of the currently se-

lected number and a set of numbers which have already been selected. We retain the

convention that the initial position (player one is about to make their first selection)

is represented as [n, {}].

The procedure for computing the list of legal moves from a position is Ma(n,P,A,B).

If the second argument is [n, {}], the procedure returns all positions for which the

current and only selection is any number in [1..n]. Otherwise, it makes a list of all

numbers between 1 and n of the form c − a, a ∈ A or c + b, b ∈ B, removes all ele-

ments of S from that list, then returns the set of positions corresponding to each of

the remaining options being chosen from the current position. The following sequence

of calls to Ma represent a possible game played with n = 10, A = B = {1, 2}:

� Ma(10,[10,{}],{1,2},{1,2}) returns the set containing [i, {i}] for every 1 ≤
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i ≤ 10

� Ma(10,[3,{3}],{1,2},{1,2}) returns {[1, {1, 3}], [2, {2, 3}], [4, {3, 4}], [5, {3, 5}]}.

After player one has selected 3, player two must select 1, 2, 4, or 5.

� Ma(10,[2,{2,3}],{1,2},{1,2}) returns {[1, {1, 2, 3}], [4, {2, 3, 4}]}. Player two

has made a terrible mistake by selecting 2! Player one can now choose 1 and

win the game.

� Ma(10,[1,{1,2,3}]) returns {}. Player one has chosen 1, and player two has

no legal move. Player one wins the game.

The procedure for computing the list of winning moves from the current position

is WMa(n,P,A,B). This procedure is not used in the computation of Sprague-Grundy

values, but it provides a way to determine the correct sequence of move for a player

who is in a winning position. Some examples from the game traced in the previous

example:

� WMa(10,[10,{}],{1,2},{1,2}) returns {}. Player one does not have an initial

selection from which they can win the game without an error by player two.

� WMa(10,[3,{3}],{1,2},{1,2}) returns {[1, {1, 3}], [4, {3, 4}], [5, {3, 5}]}. Player

two would have been in a winning position had they chosen any legal option

other than 2.

The procedure for computing the Sprague-Grundy value of a position is Ga(n,P,A,B).

If P is in the form [n, {}], this procedure computes the mex of the positions repre-

senting an initial selection. Otherwise, it computes the mex of Gh(n, Pi, A,B) for all

Pi ∈ Ma(n, P,A,B). Continuing with the above example:

� Ga(10,[10,{}],{1,2},{1,2}) returns 0. Player one does not have an initial

selection from which they can win the game without an error by player two, so

this position is a P -position.
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Table 4.2: Output of Magraph(10,{1,2},{1,2})
Index Entry
1 {2, 3}
2 {1, 3, 4}
3 {1, 2, 4, 5}
4 {2, 3, 5, 6}
5 {3, 4, 6, 7}
6 {4, 5, 7, 8}
7 {5, 6, 8, 9}
8 {6, 7, 9, 10}
9 {7, 8, 10}
10 {8, 9}

� Ga(10,[3,{3}],{1,2},{1,2}) returns 2. This value is positive, so this position

is an N -position. Player two has winning options for which the SG value of the

ensuing position is 0 (selecting 1, 4, or 5) and the losing option where the SG

value of the ensuing position is 1 (selecting 2).

As in the previous case, the improved implementation is principally designed to

produce Sprague-Grundy values. There is no procedure for computing winning moves,

although one could use the existing procedures to find moves with positive Sprague-

Grundy values to accomplish that task. This implementation does not recompute the

differences c−a and sums c+b at every stage. Instead, the procedure Magraph(n,A,B)

produces and stores an adjacency table for the game. See Table 4.2 for an example.

The procedure Gagraph1(n,A,B,c,S) computes the Sprague-Grundy value for a

position in the game with n numbers, current selection c, and set of numbers already

selected S. It first produces a (possible empty) list of legal moves by subtracting

S from the entry in the adjacency table corresponding to c. If there are no legal

moves, the procedure returns 0. If there are legal moves, we return the mex of the

Sprague-Grundy values of those moves from the current position.
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The procedure Gagraph(n,A,B) returns the Sprague-Grundy value of the initial

position for a board with n spaces and player one about to make the initial selection. It

first calls Magraph to produce the adjacency graph, then finds themex of the Sprague-

Grundy values of every initial selection 1 ≤ c ≤ n using Gagraph1(n,A,B,c,{c}).

4.4 Original Game

As described previously, Lemoine has determined completely for which values of n

Juniper Green is winnable by a player one using optimal strategy. We are interested

in whether the Sprague-Grundy values of the initial positions for each n exhibit some

pattern. In particular, we hope to discover whether the Sprague-Grundy values are

eventually periodic.

4.4.1 Pruning Attempt

It seems at first glance that we should be able to employ Lemoine’s pruning method

described in Section 4.2.1. If we remove the number 1 from our game along with every

prime p > n
2
, the total number of game positions would be significantly reduced.

Deleting vertex 1 and any vertices which are now isolated from the adjacency

graph does not change whether or not the game is winnable by player 1. Unfortu-

nately, it does change the Sprague-Grundy values of the initial positions. That is, any

Sprague-Grundy value that is 0 will remain 0, but non-zero Sprague-Grundy values

can change.

One small case which illustrates this discrepancy is n = 8. The adjacency graph

for n = 8 is shown in Figure 4.2. This case is small enough that we can compute its

Sprague-Grundy value by hand.
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Figure 4.2: Adjacency graph for n = 8

If player one selects 2, 4, or 8, then player two has the following options:

� They can select 1, in which case they lose immediately when player one chooses

5 or 7.

� They can select one of the remaining powers of 2. In this case, they lose two

moves later when player one selects the other power of 2, forcing player two to

take 1.

� In the specific case that one of player one’s selections is 2, player two could

instead choose 6. Player one can respond to that by choosing 3, again forcing

player two to select 1.

Therefore, the Sprague-Grundy values for the position where player one has initially

selected 2, 4, or 8 are all 0 (no winning option).

If player one selects 6 initially, there are more possibilities. Player 2 can now

choose 2 or 3 (which are winning choices - the Sprague-Grundy value for player one

after selections [6,2] or [6,3] is 0). Alternatively, player two can select 1 (a losing
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Figure 4.3: Reduced adjacency graph for n = 8

option - the SG value after selections [6,1] is 1). So the Sprague-Grundy value for the

position where player one has initially selected 6 is mex({0, 1}) = 2. This means that

the Sprague-Grundy value of the game (before the opening move) is mex({0, 2}) = 1.

If we prune vertex 1 from the adjacency graph, we get the reduced form shown

in Figure 4.3. Here, if player one selects 2, 4, or 8 initially, we are in essentially the

same case as above. The only difference is that instead of being forced to choose 1,

player two is left with no legal move one turn earlier.

The discrepancy arises from the case that player one (incorrectly) chooses 6 as the

opening move. Now, player two actually has no losing option. They can choose 3 and

win immediately, or they can choose 2 and win one turn later. We have effectively

removed a possible mistake for player two. The Sprague-Grundy value of the position

after an initial selection of 6 is therefore 1.

At this point, we see that instead of having mex({0, 2}) = 1 for the value of the

game, we have mex({0, 1}) = 2. Although the game is still a forced win for player
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one using optimal strategy, the Sprague-Grundy value has changed. As a result, we

can not use this pruning method to explore Sprague-Grundy values.

4.4.2 Results

Using the methodology presented above, we are able to produce the Sprague-Grundy

values for 1 ≤ n ≤ 35. These values are

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 0].

The cases above n = 30 take a long time to run, even with the improved speed

resulting from storing the adjacency table. The exponential growth in the tree of

game positions quickly overwhelms the elimination of the duplicate calculations. We

know from Lemoine’s results that the last 0 in the sequence of Sprague-Grundy val-

ues appears at n = 118, so any attempts to discern periodic behavior would need to

extend well beyond that case. While further optimization of the current algorithm

is possible, it seems unlikely that any direct computation of Sprague-Grundy values

which recursively churns through game positions will be able to approach solving

cases above n = 118.

We may explore other algorithms in the future to try and compute Sprague-

Grundy values in some indirect fashion. For now, we abandon the attempt to find

periodicity in the values for the original game and turn our attention to variations

which alter the manner in which the legal moves are determined.

4.5 Factor Restriction Variation

As in the basic game, we have a board numbered with the integers from 1 to n. In

this variation, we have two additional game parameters, positive integers a and b.
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Player 1 starts the game by selecting an even number on the board. Players then

alternate selecting previously unused numbers which are factors or multiples of the

current number c, with the additional restriction that the largest permissible divisor

is a and the largest permissible multiplier is b. More precisely, the set of legal moves

from a position where c is the current selection is

({x : x = c/a1, a1 ≤ a}∪{x : x = c∗b1, b1 ≤ b})\{x : x has been selected previously}

4.5.1 Symmetric Cases

In this section, we consider the cases where A = B. For the simplest of these cases,

A = B = 2, we see the following pattern of Sprague-Grundy values:

[1, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3].

We further note that the Sprague-Grundy value remains 3 for all n > 30, having

tested cases up to n = 600. This case is trivial in the sense that once player one has

made the initial selection, there are only two possible ways the game can proceed:

player two can either divide by two or multiply by two. After that point, each player

has as most one legal option until one end of the board is reached.

For A = B = 3, each player is permitted to multiply or divide the current number

by 2 or 3. The first 200 Sprague-Grundy values are:
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[1, 0, 2, 0, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Starting at n = 18, we see alternating blocks of 3’s and 4’s. The blocks of 3’s are

of lengths 9, 22, 71, and 29. The blocks of 4’s are of length 5, 10, 25, and 54. We

suspect that these blocks will continue to alternate, but we do not have a conjecture

for the block lengths.

For A = B = 4, each player is permitted to multiply or divide the current number

by 2, 3, or 4. The first 100 Sprague-Grundy values are:

[1, 0, 2, 0, 3, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3,

3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Starting at n = 18, we see alternating blocks of 3’s and 4’s. The blocks of 3’s are

of lengths 9, 28, and 4. The blocks of 4’s are of length 5, 20, and 28. Once again, we

suspect that these blocks will continue to alternate, but we do not have a conjecture

for the block lengths.
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4.5.2 Asymmetric cases

In this section, we consider the cases where A ̸= B. For A = 2, B = 3, we see the

following pattern of Sprague-Grundy values for 1 ≤ n ≤ 200:

[1, 0, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3,

3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Here, the blocks of 3’s and 4’s start at n = 4. It appears that the Sprague-Grundy

value remains 4 for all n ≥ 162, which we have confirmed for 162 ≤ n ≤ 500.

For A = 3, B = 2, we see the following for 1 ≤ n ≤ 80:

[1, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

The block of 3’s at the end of that list runs from n = 48 to n = 127. It is followed

by a block of 4’s from n = 128 to n = 335, after which there is another block of 16

3’s, and then a block of 4’s which extends at least to n = 500.

4.6 Additive Variations

As in the basic game, we have a board numbered with the integers from 1 to n. In

this variation, we have two additional game parameters, sets of positive integers A
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and B. Player 1 starts the game by selecting any number on the board. We do not

restrict the initial selection to an even number. Divisibility is relevant in the basic

game, but it is not relevant in the additive scenario. Players then alternate selecting

previously unused numbers by subtracting an element of A from the current number

c or adding an element of B to c. That is, the legal moves from a position where c is

currently selected are

({x : x = c− a, a ∈ A}∪{x : x = c+ b, b ∈ B}) \ {x : x has been selected previously}

4.6.1 Equal Singleton Sets

In the case where A and B each contain the same single integer, say i, the analysis

is relatively simple. In all such games, the first player chooses any number c to start

the game. The second player then has at most two options: c − i and c + i. Nei-

ther player has any options after that point and must continue in the same direction.

We can therefore compute the Sprague-Grundy value of a game by considering each

starting value in turn and calculating which player wins after each of the two possible

responses by player two. It is clear that the Sprague-Grundy value of the position

after the initial selection can be at most 2, since there are only two legal moves from

that position. Therefore, we know that the Sprague-Grundy value of the game before

the initial selection is at most 3. These cases are simple enough that we can compute

these values by hand. We will denote the Sprague-Grundy value of the game with n

numbers and A = B = {m} as Gm(n).

In the specific case A = B = {1}, we reason as follows. For n = 1, the first player

selects 1 and wins. The SG value after the selection is 0, so G1(1) = 1. For n = 2,

the first player selects a number, the second player selects the other, and player two

wins. The SG value after either initial choice is 1, so we have G1(2) = 0. For any odd
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n ≥ 3, the first player can select either an odd number or an even number. An odd

selection leaves an even number of numbers remaining on each side, so the first player

will win; the SG value after choosing an odd number is 0. An even selection leaves

an odd number remaining, so the second player will always win; the SG value after

choosing an even number is 1. Therefore, G1(n) = 2 for any initial game with odd

n > 3. For any even n ≥ 4, any selection by the first player will leave an odd number

of moves remaining on one side and an even number on the other. The second player

can always win the game by moving in the direction with an odd number of moves,

so we must have G1(n) = 0 for even n ≥ 4. We therefore expect that the sequence

of Sprague-Grundy values for this game is 1, 0, 2, 0, 2, 0, 2, 0, . . . . This sequence is

confirmed by our Maple program.

In the more general case A = B = {m}, while each game is still completely de-

termined by the first two selections, the analysis is slightly more involved. For all

n ≤ m, the first player selects any number and wins immediately, so Gm(n) = 1 for

1 ≤ n ≤ m. When m < n < 2m, the first player can either select a number close

enough to n
2
which will result in an immediate win or a number farther away from n

2

which results in the second player having a legal (and winning) move, so Gm(n) = 2

in these cases. For the specific case n = 2m, the first player’s initial selection will

always leave exactly one legal move for the second player, so Gm(2m) = 0. For any

2m < n < 3m, either the first player chooses a number near n
2
which results in the

second player having a legal (and winning) move or a number towards the ends of the

range which allows the game to consist of exactly two more moves and a first player

win. Again, we have Gm(n) = 2 in these cases.

For larger values of n, there are often initial moves for the first player which allow

the second player to have both winning and losing options. If n = 2km for some
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integer k, every initial move leaves the second player with options resulting in an

even (possibly zero) number of moves to complete the game in one direction, and

an odd number in the other. Since the second player always has a winning option,

Gm(2km) = 0.

If n = (2k+1)m for some integer k, then there will be blocks of length m at each

end of the board such that if player one starts with a selection in that block, the game

will consist of zero moves in one direction or 2k moves in the other direction. Both

of these are wins for player one. As the initial selections move toward the middle of

the board, there will be alternating blocks of length m for which both directions have

an odd number of remaining moves (player two has only winning options) and blocks

of length m for which both directions have an even number of moves (player two has

only losing options). Therefore, Gm((2k + 1)m) = 2.

If n mod m ̸= 0, there will be positions representing all four of the possible sce-

narios: even in both directions, odd in both directions, even to the left and odd to

the right, even to the right and odd to the left. These latter two cases give player

two both winning and losing options, so the Sprague-Grundy value after the initial

selection is 2 for these cases. The first two cases have Sprague-Grundy values of 0

and 1 respectively. Therefore, Gm(n) = mex({0, 1, 2}) = 3 when n mod m ̸= 0.

We can summarize these findings as follows: the sequence of Sprague-Grundy

values for A = B = {m} will be

1m 2m−1 0 2m−1
(
2 3m−1 0 3m−1

)∗
where the exponents indicate the number of times a particular Sprague-Grundy value
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repeats. The ∗ after the final parenthesis indicates that the values inside the paren-

theses repeat for all subsequent values of n.

4.6.2 Unequal Singleton Sets

When A = {a} and B = {b} are distinct singleton sets, the gameplay is somewhat

more complicated than the A = B case. One obvious difference is that for any initial

selection which is not near 1 or n, player one will have two options at their second

turn. Even with this additional flexibility of movement, however, there will come a

point in any game starting near the middle of the range where the game reduces to

some smaller case. If at any point, there are max(a, b) consecutive numbers which

have already been selected, the remainder of the game will necessarily be played en-

tirely on one side of that group. Effectively, this means that the remaining moves are

isomorphic to a game with a smaller value of n where the current selection is near

one of the endpoints of the range.

One other observation is that the sequences of Sprague-Grundy values for A =

{a}, B = {b} and A = {b}, B = {a} must be identical. This occurs because an initial

selection of c by player one in the former case is isomorphic to an initial selection of

n− c+ 1 in the latter case. Therefore, without loss of generality, we will only report

results in this section for A = {a}, B = {b} with a < b.

Table 4.3: Sprague-Grundy Values with A = {1}, B = {b}, b > 1
b Initial Segment Cycle
2 [1, 2, 1, 2, 3, 3, 2, 3, 2] [3]
3 [1, 2, 2, 0, 2] [3, 3, 0, 3]
4 [1, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2] [3]
5 [1, 2, 2, 2, 2, 0, 2] [3, 3, 3, 3, 0, 3]
6 [1, 2, 2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2] [3]
7 [1, 2, 2, 2, 2, 2, 2, 0, 2] [3, 3, 3, 3, 3, 3, 0, 3]
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Table 4.3 presents the results for A = {1} and B = {k} for 2 ≤ k ≤ 7. These

results suggest two conjectures. For k even, the sequence of Sprague-Grundy values is

eventually constant with value 3. For k odd, the sequence of Sprague-Grundy values

is periodic, with the cycle consisting of k 3’s and a 0.

Table 4.4 presents the results for A = {2} and B = {k} for 3 ≤ k ≤ 6.

Table 4.4: Sprague-Grundy Values with A = {2}, B = {b}, b > 2
b Initial Segment Cycle
3 [1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2] [3]
4 [1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2] [3]
5 [1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2] [3]
6 [1, 1, 2, 2, 2, 2, 2, 0, 2, 2] [3, 3, 3, 3, 3, 0, 3, 3]

4.6.3 Sets of the Form {1,k}

If we set A = B = {1, k} for k > 1, we see some initial segment of Sprague-Grundy

values followed by eventual periodic behavior. These results are summarized in Table

4.5.

Table 4.5: Sprague-Grundy Values with A = B = {1, k}
A=B Initial Segment Cycle
{1, 2} [ 1 ] [0, 1]
{1, 3} [ 1 ] [0, 2]
{1, 4} [1, 0, 2] [0, 1]
{1, 5} [ 1 ] [0, 2]
{1, 6} [1, 0, 2, 0, 2] [0, 1]
{1, 7} [ 1 ] [0, 2]

All of these sequences start with a 1 for the trivial case n = 1 in which player one

selects 1 and the game ends immediately. For even k, the initial segment consists of

that 1 followed by k
2
− 1 repetitions of [0, 2]. After the initial segment, the Sprague-
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Grundy values are periodic with cycle [0, 1]. For odd k, the initial segment consists

only of the 1 from the trivial case, and the cycle [0, 1] begins at n = 2.

4.6.4 Sets of the Form {2,k}

If we set A = B = {2, k} for k > 2, we see some initial segment of Sprague-Grundy

values followed by eventual periodic behavior as we do in the previous section. These

results are summarized in Table 4.6.

Table 4.6: Sprague-Grundy Values with A = B = {2, k}
A=B Initial Segment Cycle
{2, 3} [1, 1, 2, 0, 1, 0, 3] [0, 1]
{2, 4} [1, 1, 2, 0, 2] [1, 3, 0, 3]
{2, 5} [1, 1, 2, 0, 2, 0, 1, 0, 3] [0, 1]
{2, 6} [1, 1] [2, 0, 2, 2]
{2, 7} [1, 1, 2, 0, 2, 2, 3, 0, 1, 0, 3, 0, 1, 0, 3] [0, 1]

4.7 Future Work

The first project that presents itself for consideration is extending several of the cases

for the additive variation. As part of this work, we would like to verify some of

our conjectures for larger values of n and for a wider variety of sets A and B. In

particular, the current version of the Maple code is not efficient enough to generate

meaningful amounts of data if A and B are larger than two elements each.

It would also be desirable to find a more efficient way to compute Sprague-Grundy

values for the original game in which all factors and multiples are legal moves. It is

clear that recursive searching of position graphs will not extend even to n = 118

where any search for periodic behavior can begin.



66

For both of these projects, an auxiliary goal is to generate enough terms of se-

quences to make them viable candidates for submission to the Online Encyclopedia

of Integer Sequences.
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Chapter 5

Conclusions

There are several common themes shared by the projects presented in the previous

three chapters. In each case, we were interested in counting or using a family of

objects for which the number of objects grew exponentially with some parameter.

Brute force enumeration was of limited utility, able to handle only a few more cases

than hand computation. By using pruning techniques, improving code efficiency, and

considering the symmetries of the underlying objects, we were able to mitigate the

exponential growth to some extent. Eventually, even these improvements were over-

whelmed by the exponential growth rate, limiting the number of cases which could

be explored.

In Chapter 2, we were able to discard most of the syntactically valid circuits using

a combination of techniques. Circuits and subcircuits which were symmetric about

their topmost gate provided a significant reduction in the number of circuits which

needed to be tested. We were also able to remove any circuit containing two or more

gates which could be collapsed. These improvements allowed us to find a (nearly)

complete catalog of minimal circuits for Boolean functions of few variables.



68

In Chapter 3, most of the improvement on Thanatipanonda’s results came from

a change of perspective. We were able to shift all of the difficult parts of the com-

putations into our kernel. Instead of enumerating all of the different ways in which

subcubes can intersect, we were able to compress the different types of intersections

into small enough regions of a matrix that we could fully enumerate those submatri-

ces. We were able to use combinatorial analysis to recover the number of symmetric

cases for each intersection configuration and complete the computation symbolically.

In Chapter 4, we were admittedly unsuccessful in finding applicable pruning tech-

niques. The main improvement from the earliest version of our code was the storage

of the adjacency graph which reduced the number of mathematical operations sig-

nificantly at a minimal cost in memory. In addition to our analysis of the original

Juniper Green game, we created several new variations which may be of interest for

future research projects.
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Appendix A

Catalog of Circuits

In the catalogs which follow, each entry is the representative function of a Big Equiv-

alence Class. The first line contains the number of the representative function (as in

OEIS sequence A227723 [[OEISd]]) followed by the set of true points for the function.

The next line is the encoding of a minimal straight-line program which computes the

function.

The catalogs for general functions of up to three variables are included here. The

catalogs for general functions of four variables and monotone functions of up to five

variables are available on the author’s website.

A.1 Functions of 1 variable

0: {}

[[1], [FALSE]]

1: {[1]}

[[1], [1]]

3: {[-1], [1]}

https://sites.math.rutgers.edu/~bas312/Research/slp/slp.html
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[[1], [TRUE]]

A.2 Functions of 2 variables

0: {}

[[1], [2], [FALSE]]

1: {[1, 1]}

[[1], [2], [1, 1, 2]]

3: {[1, -1], [1, 1]}

[[1], [2], [1]]

6: {[-1, 1], [1, -1]}

[[1], [2], [4, 1, 2]]

7: {[-1, 1], [1, -1], [1, 1]}

[[1], [2], [5, 1, 2]]

15: {[-1, -1], [-1, 1], [1, -1], [1, 1]}

[[1], [2], [TRUE]]

A.3 Functions of 3 variables

0: {}

[[1], [2], [3], [FALSE]]

1: {[1, 1, 1]}
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[[1], [2], [3], [1, 1, 2], [1, 3, 4]]

3: {[1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [1, 1, 2]]

6: {[1, -1, 1], [1, 1, -1]}

[[1], [2], [3], [4, 2, 3], [1, 1, 4]]

7: {[1, -1, 1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [5, 2, 3], [1, 1, 4]]

15: {[1, -1, -1], [1, -1, 1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [1]]

22: {[-1, 1, 1], [1, -1, 1], [1, 1, -1]}

[[1], [2], [3], [5, 1, 2], [3, 3, 4], [4, 1, 5], [4, 2, 6]]

23: {[-1, 1, 1], [1, -1, 1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [4, 1, 2], [4, 1, 3], [1, 4, 5], [4, 1, 6]]

24: {[-1, 1, 1], [1, -1, -1]}

[[1], [2], [3], [4, 1, 2], [4, 1, 3], [1, 4, 5]]

25: {[-1, 1, 1], [1, -1, -1], [1, 1, 1]}

[[1], [2], [3], [5, 1, 2], [3, 3, 4], [4, 2, 5]]

27: {[-1, 1, 1], [1, -1, -1], [1, 1, -1], [1, 1, 1]}
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[[1], [2], [3], [4, 1, 2], [1, 3, 4], [4, 1, 5]]

30: {[-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, -1]}

[[1], [2], [3], [1, 2, 3], [4, 1, 4]]

31: {[-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [1, 2, 3], [5, 1, 4]]

60: {[-1, 1, -1], [-1, 1, 1], [1, -1, -1], [1, -1, 1]}

[[1], [2], [3], [4, 1, 2]]

61: {[-1, 1, -1], [-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, 1]}

[[1], [2], [3], [10, 1, 3], [1, 2, 4], [4, 1, 5]]

63: {[-1, 1, -1], [-1, 1, 1], [1, -1, -1], [1, -1, 1], [1, 1, -1],

[1, 1, 1]}

[[1], [2], [3], [5, 1, 2]]

105: {[-1, -1, 1], [-1, 1, -1], [1, -1, -1], [1, 1, 1]}

[[1], [2], [3], [4, 1, 2], [4, 3, 4]]

107: {[-1, -1, 1], [-1, 1, -1], [1, -1, -1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [1, 1, 2], [5, 3, 4], [4, 1, 5], [4, 2, 6]]

111: {[-1, -1, 1], [-1, 1, -1], [1, -1, -1], [1, -1, 1], [1, 1, -1],

[1, 1, 1]}

[[1], [2], [3], [4, 2, 3], [5, 1, 4]]
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126: {[-1, -1, 1], [-1, 1, -1], [-1, 1, 1], [1, -1, -1], [1, -1, 1],

[1, 1, -1]}

[[1], [2], [3], [4, 1, 2], [4, 1, 3], [5, 4, 5]]

127: {[-1, -1, 1], [-1, 1, -1], [-1, 1, 1], [1, -1, -1], [1, -1, 1],

[1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [5, 1, 2], [5, 3, 4]]

255: {[-1, -1, -1], [-1, -1, 1], [-1, 1, -1], [-1, 1, 1], [1, -1, -1],

[1, -1, 1], [1, 1, -1], [1, 1, 1]}

[[1], [2], [3], [TRUE]]
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Appendix B

Maple Code for Boolean Functions

Additional material is available on the author’s website. This web page contains all of

the Maple code used for the implementation of this project. It also includes an early

version of Chapter 2 as an unpublished standalone paper, the full circuit catalogs,

and other related information. Some highlights from the code are included in this

appendix.

The code is organized into three files:

BoolFns.txt Tools for exploration of Boolean functions and DNFs (in-

cludes a variant of the Quine-McCluskey method)

CanonicalBF.txt Routines for finding the canonical representatives for

each equivalence class of Boolean functions of a particular

number of variables

SLprog.txt Routines for the generation and evaluation of straight-

line programs (a model of Boolean circuits)

B.1 General Boolean Functions

This is the code from SLprog.txt which generates the straight-line programs. This

procedure implements the logic described in section 2.2.1 to generate the subset of

https://sites.math.rutgers.edu/~bas312/Research/slp/slp.html
https://sites.math.rutgers.edu/~bas312/Research/slp/BoolFns.txt
https://sites.math.rutgers.edu/~bas312/Research/slp/CanonicalBF.txt
https://sites.math.rutgers.edu/~bas312/Research/slp/SLprog.txt
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straight-line programs to be checked against the partially complete catalog at each

stage.

AllSLPng:=proc(n,lo,hi) local g,i,j,vars,rvs,rff,slp,slp1,slp2,slpn,

SLP,SLPn,S1,S2,prefix:

option remember:

g:=hi-lo+1:

print("lo",lo,"hi",hi):

#vars:={seq(k,k=1..n)}: #Changed to allow for reuse of prior gates

vars:={seq(k,k=1..hi-1)}:

if g<1 then print(’error’): RETURN(FAIL): fi:

prefix:=[seq([i],i in 1..n),seq([FALSE],j in 1..lo-n-1)]:

SLPn:={}:

SLP:={}:

if g=1 then

for rff from 1 to 10 do

# for rvs in choose(n,2) do #Changed to allow for reuse of prior gates

for rvs in choose(hi-1,2) do

slp:=[[rff,op(rvs)]]:

slpn:=BoolToInt(n,SLPntoBool([op(prefix),op(slp)])):

if not (slpn in SLPn) then

SLPn:=SLPn union {slpn}:

SLP:=SLP union {slp}:

fi:

od:

od:

RETURN(SLP):



76

fi:

for i from 0 to floor((g-1)/2) do

if i=0 then

S1:=AllSLPng(n,lo,hi-1):

for rff from 1 to 10 do

for slp1 in S1 do

for j in vars minus {op(2..3,slp1[-1])} do

slp:=[op(slp1),[rff,j,hi-1]]:

slpn:=BoolToInt(n,SLPntoBool([op(prefix),op(slp)])):

if not (slpn in SLPn) then

SLPn:=SLPn union {slpn}:

SLP:=SLP union {slp}:

fi:

od:

od:

od:

else

S1:=AllSLPng(n,lo,lo+i-1):

S2:=AllSLPng(n,lo+i,hi-1):

for rff from 1 to 10 do

for slp1 in S1 do

for slp2 in S2 do

slp:=[op(slp1),op(slp2),[rff,lo+i-1,hi-1]]:

slpn:=BoolToInt(n,SLPntoBool([op(prefix),op(slp)])):

if not (slpn in SLPn) then

SLPn:=SLPn union {slpn}:

SLP:=SLP union {slp}:
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fi:

od:

od:

od:

fi:

od:

SLP:

end:

The following procedures from CanonicalBF.txt initialize and then populate the cat-

alog file. For each number of variables n, we run GenBFCatFileAll(n) first. We then

run CatFileFindSLPAll(n,g) successively for g = 0, 1, 2, . . . until every function has

been matched to a straight-line program which computes it.

GenBFCatFileAll:=proc(n) local fn,F,f,T:

fn:=cat("BFCatFileA",n,"var.txt"):

F:=FindCanonBFNP(n):

T := table():

for f in F do

T[BoolToInt(n, f)] := f;

od:

FileTools[Text][WriteLine](fn, cat("Functions: ",convert(nops(F),string),

" Found: 0")):

for f in indices(T,indexorder) do

FileTools[Text][WriteLine](fn, cat(convert(op(f),string),": ",

convert(T[op(f)],string))):

FileTools[Text][WriteLine](fn, "NF"):
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FileTools[Text][WriteLine](fn, ""):

od:

FileTools[Text][Close](fn):

fn:

end:

CatFileFindSLPAll:=proc(n,g) local numf,numfd,l1,l2,l3,fn,fnold,A,T,

F,f,SLP,slp,slpf,i:

fn:=cat("BFCatFileA",n,"var.txt"):

fnold:=cat("BFCatFileA",n,"var-OLD.txt"):

FileTools[Text][Open](fn):

l1:=FileTools[Text][ReadLine](fn):

l2:=sscanf(l1,"%s %d %s %d"):

numf:=l2[2]:

numfd:=l2[4]:

F:={}:

T:=table():

for i from 1 to numf do

l1:=FileTools[Text][ReadLine](fn):

if l1=NULL then break: fi:

l2:=FileTools[Text][ReadLine](fn):

l3:=FileTools[Text][ReadLine](fn):

l3:=sscanf(l1,"%d: %s"):

f:=l3[1]:

T[f]:=parse(l2):

if l2="NF" then
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F:=F union {f}:

fi:

od:

if nops(F)=0 then RETURN(F): fi:

FileTools[Text][Close](fn):

SLP:=AllSLPn(n,g):

print("Have SLP’s - entering loop"):

print(nops(SLP)," - number of SLPs"):

for i from 1 to nops(SLP) while nops(F)>0 do

slp:=SLP[i]:

slpf:=BoolToInt(n,SLPntoBool(slp)):

if T[slpf]=NF then

F:=F minus {slpf}:

T[slpf]:=slp:

numfd:=numfd+1:

fi:

if i mod 1000=0 then print(i): fi:

od:

if FileTools[Exists](fnold) then FileTools[Remove](fnold): fi:

FileTools[Rename](fn,fnold):

FileTools[Text][WriteLine](fn, cat("Functions: ",convert(numf,string),

" Found: ",convert(numfd,string))):

for f in indices(T,indexorder) do

FileTools[Text][WriteLine](fn, cat(convert(op(f),string),": ",

convert(IntToBool(n,op(f)),string))):

FileTools[Text][WriteLine](fn, convert(T[op(f)],string)):

FileTools[Text][WriteLine](fn, ""):
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od:

FileTools[Text][Close](fn):

F:

end:

B.2 Monotone Functions

The following procedures find the set of monotone functions on n variables. This

logic checks many fewer functions than the brute-force iteration used for general

functions. Without this modification, it would not be possible to generate the list of

BEC representatives for functions of five variables.

IsMonotone:=proc(n,f) local i,j,v,s,nv:

if nops(f)=0 then RETURN(true): fi:

for v in f do

s:={}:

for i from 1 to n do

if v[i]=-1 then s:=s union {i}: fi:

od:

for i in powerset(s) do:

nv:=v:

for j in i do nv[j]:=1: od:

if not (nv in f) then RETURN(false): fi:

od:

od:

RETURN(true):

end:
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FindMonoBFP:=proc(n) local PT,i,j,v,nv,nv2,f,F,ff,W:

F:={{}}: #Adds empty function because it is only monotone function

# not containing [1$n]

W:={{[1$n]}}: # Adds the AND of all variables as the seed function

# in working set W

while nops(W)>0 do

ff:=W[1]: #pull function from W

if not (ff in F) then

F:=F union {ff}:

for v in ff do

for i from 1 to n do

if v[i]=1 then

nv:=[op(1..i-1,v),-1,op(i+1..n,v)]:

f:=ff union {nv}:

if not (f in F) and IsMonotone(n,f) then W:=W union {f}: fi:

fi:

od:

od:

fi:

W:=W minus {ff}:

od:

ff:={}:

for i in F do

if IsBECrep(n,i) then

ff:=ff union {i}:

fi:

od:
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ff:

end:
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Appendix C

Maple Code for Subcubes of

Boolean Functions

Additional material is available on the author’s website. This web page contains all

of the Maple code used for the implementation of this project and selected outputs.

https://sites.math.rutgers.edu/~bas312/Research/subcubes/subcubes.html
https://sites.math.rutgers.edu/~bas312/Research/subcubes/SMCboole.txt
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Appendix D

Maple Code for Juniper Green

Additional material is available on the author’s website. This web page contains all

of the Maple code used for the implementation of this project and selected outputs.

The following code finds the Sprague-Grundy values for initial positions of the

original version of Juniper Green. The code for the variations discussed in Chapter 4

is similar. The complete Maple package can be found here.

This routine builds the adjacency graph.

Mhgraph:=proc(n) local G,i,j,v:

option remember:

G:=table():

for v from 1 to n do

G[v]:={seq(i,i in (divisors(v) union

{seq(v*i,i=1..trunc(n/v))}) minus {v})}:

od:

op(G):

end:

https://sites.math.rutgers.edu/~bas312/Research/JG/jg.html
http://www.math.rutgers.edu/~bas312/Research/JG/JGgraph.txt
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The following pair of procedures finds Sprague-Grundy values. The procedure call

to find the Sprague-Grundy value for n = 100 in the original game is Ghgraph(100).

Ghgraph1:=proc(n,c,S) local N,i:

option remember:

N:=Mhgraph(n)[c] minus S:

if nops(N)=0 then

0:

else

mex({seq(Ghgraph1(n,i,S union {i}),i in N)}):

fi:

end:

Ghgraph:=proc(n) local G,v,sv,i,j:

option remember:

sv:={seq(2*j,j in 1..trunc(n/2))}:

mex({seq(Ghgraph1(n,i,{i}),i in sv)}):

end:

The above procedures rely on the mex function defined by:

mex:=proc(A) local i:

if A={} then

RETURN(0):

fi:

for i from 0 while member(i,A) do od:

i:

end:
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