Title

Differential Topology A Brief Journey

Maxwell Goldberg

Rutgers University

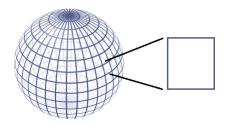
DRP Presentation, May 2022

What is a manifold?

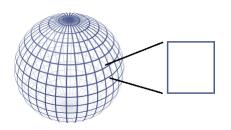
• A k-dimensional manifold is a subset of \mathbb{R}^N that locally looks like \mathbb{R}^k .

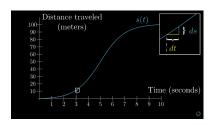
- A k-dimensional manifold is a subset of \mathbb{R}^N that locally looks like \mathbb{R}^k .
- Some examples:

- A k-dimensional manifold is a subset of \mathbb{R}^N that locally looks like \mathbb{R}^k .
- Some examples:



- A k-dimensional manifold is a subset of \mathbb{R}^N that locally looks like \mathbb{R}^k .
- Some examples:





In differential topology, we care about manifolds we can differentiate and do calculus on.

In differential topology, we care about manifolds we can differentiate and do calculus on.

Diffeomorphism - A function f that is a smooth bijection with a smooth inverse.

In differential topology, we care about manifolds we can differentiate and do calculus on.

Diffeomorphism - A function f that is a smooth bijection with a smooth inverse.

- smooth infinitely differentiable, or you can always take a derivatives
- bijection injective (function unique maps points) and surjection (codomain is equal to function's range)

In differential topology, we care about manifolds we can differentiate and do calculus on.

Diffeomorphism - A function f that is a smooth bijection with a smooth inverse.

- smooth infinitely differentiable, or you can always take a derivatives
- bijection injective (function unique maps points) and surjection (codomain is equal to function's range)

Two manifolds are *diffeomorphic* to each other if a diffeomorphism exists between them.

Inverse Function Theorem

If $f: X \to Y$ is smooth and df_x , the derivative of f at x, is an isomorphism, then f is a local diffeomorphism at x.

Inverse Function Theorem

If $f: X \to Y$ is smooth and df_x , the derivative of f at x, is an isomorphism, then f is a local diffeomorphism at x.

• isomorphism - linear bijection

Inverse Function Theorem

If $f: X \to Y$ is smooth and df_x , the derivative of f at x, is an isomorphism, then f is a local diffeomorphism at x.

• isomorphism - linear bijection

This gives us the following definitions:

Inverse Function Theorem

If $f: X \to Y$ is smooth and df_x , the derivative of f at x, is an isomorphism, then f is a local diffeomorphism at x.

• isomorphism - linear bijection

This gives us the following definitions:

• Immersion - $f: X \to Y$ is an immersion at x if $df_x: T_x(X) \to T_y(Y)$ is injective

Inverse Function Theorem

If $f: X \to Y$ is smooth and df_x , the derivative of f at x, is an isomorphism, then f is a local diffeomorphism at x.

isomorphism - linear bijection

This gives us the following definitions:

- Immersion $f: X \to Y$ is an immersion at x if $df_x: T_x(X) \to T_y(Y)$ is injective
- Submersion $f: X \to Y$ is a submersion at x if $df_x: T_x(X) \to T_y(Y)$ is surjective

Two Resulting Theorems

Two Resulting Theorems

Local Immersion Theorem

If $f: X \to Y$ is an immersion at x, then there exists a change of variables around x such that f is equivalent to the *canonical immersion*, which means

$$f(x_1,...,x_k) = (x_1,...,x_k,0,...,0)$$

Two Resulting Theorems

Local Immersion Theorem

If $f: X \to Y$ is an immersion at x, then there exists a change of variables around x such that f is equivalent to the *canonical immersion*, which means

$$f(x_1,...,x_k) = (x_1,...,x_k,0,...,0)$$

Local Submersion Theorem

If $f: X \to Y$ is a submersion at x, then there exists a change of variables around x such that f is equivalent to the *canonical submersion*, which means

$$f(x_1,\ldots,x_k,\ldots,x_n)=(x_1,\cdots,x_k)$$

Preimage Theorem

The local submersion theorem leads us to solutions of

$$f(x) = y$$

Preimage Theorem

The local submersion theorem leads us to solutions of

$$f(x) = y$$

Regular Value - If $f: X \to Y$ is a smooth map between manifolds, a point $y \in Y$ is a regular value of f if df_X is surjective at every x such that f(x) = y.

Preimage Theorem

The local submersion theorem leads us to solutions of

$$f(x) = y$$

Regular Value - If $f: X \to Y$ is a smooth map between manifolds, a point $y \in Y$ is a regular value of f if df_x is surjective at every x such that f(x) = y.

Preimage Theorem

If $y \in Y$ is a regular value of $f: X \to Y$, then $f^{-1}(y)$ is a submanifold of X with dimension dim X – dim Y.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is defined as $f(\mathbf{x}) = |\mathbf{x}|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. The level sets of this function are spheres.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is defined as $f(\mathbf{x}) = |\mathbf{x}|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. The level sets of this function are spheres.

$$f'(\mathbf{x})=(2x_1,2x_2,\ldots,2x_n)$$

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is defined as $f(\mathbf{x}) = |\mathbf{x}|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. The level sets of this function are spheres.

$$f'(\mathbf{x}) = (2x_1, 2x_2, \dots, 2x_n)$$

Recall that for a regular value $y \in Y$, we see if the derivative at each x such that f(x) = y is surjective. Here, we see this is true for all $y \neq 0$.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is defined as $f(\mathbf{x}) = |\mathbf{x}|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. The level sets of this function are spheres.

$$f'(\mathbf{x})=(2x_1,2x_2,\ldots,2x_n)$$

Recall that for a regular value $y \in Y$, we see if the derivative at each x such that f(x) = y is surjective. Here, we see this is true for all $y \neq 0$. By the preimage theorem, $f^{-1}(y)$ is a submanifold of dimension n-1, which is a sphere of radius y. This gives us the name S^{n-1} .

Now, we shall attempt to prove O(n) is a manifold.

Now, we shall attempt to prove O(n) is a manifold.

O(n) is the group of $n \times n$ orthogonal matrices, or all matrices A such that $AA^T = I$. They preserve distance and have determinant ± 1 .

Now, we shall attempt to prove O(n) is a manifold. O(n) is the group of $n \times n$ orthogonal matrices, or all matrices A such that $AA^T = I$. They preserve distance and have determinant ± 1 . In other words, it's the set of all rotation and reflection matrices!

Proof:

M(n) - group of all matrices

S(n) - group of all symmetric matrices Clearly, the matrix $AA^T \in S(n)$ for all matrices A. We define $f(A) = AA^T$. We check now if I is a regular value of f.

$$df_A(B) = BA^T + AB^T$$

Proof:

M(n) - group of all matrices

S(n) - group of all symmetric matrices Clearly, the matrix $AA^T \in S(n)$ for all matrices A. We define $f(A) = AA^T$. We check now if I is a regular value of f.

$$df_A(B) = BA^T + AB^T$$

Recall I is a regular value iff df_A is surjective for all A. So for some symmetric C, there must exist a B for each A such that $df_A(B) = C$.

Proof:

M(n) - group of all matrices

S(n) - group of all symmetric matrices Clearly, the matrix $AA^T \in S(n)$ for all matrices A. We define $f(A) = AA^T$. We check now if I is a regular value of f.

$$df_A(B) = BA^T + AB^T$$

Recall I is a regular value iff df_A is surjective for all A. So for some symmetric C, there must exist a B for each A such that $df_A(B) = C$. If we choose $B = \frac{1}{2}CA$, we find

Proof:

M(n) - group of all matrices

S(n) - group of all symmetric matrices Clearly, the matrix $AA^T \in S(n)$ for all matrices A. We define $f(A) = AA^T$. We check now if I is a regular value of f.

$$df_A(B) = BA^T + AB^T$$

Recall I is a regular value iff df_A is surjective for all A. So for some symmetric C, there must exist a B for each A such that $df_A(B) = C$. If we choose $B = \frac{1}{2}CA$, we find

$$df_A(B) = \frac{1}{2}CAA^T + \frac{1}{2}A(CA)^T = \frac{1}{2}C(AA^T) + \frac{1}{2}(AA^T)C^T = \frac{1}{2}C + \frac{1}{2}C^T = C$$

Therefore, I is a regular value, and $f^{-1}(I) = O(n)$ is a manifold.

8/9

Goldberg (RU) Differential Topology DRP Spring 2022

Thank you!

Presentation made with help from *Differential Topology* by Alan Pollack and Victor Guillemin.

A huge thanks to Soham Chanda, my DRP mentor!