SOLUTIONS TO HW 6

Section 3.2

- 4. For each of the following, verify that the relation is an equivalence relation. Then give the information about the equivalence class as specified.
- (a) The relation R on \mathbb{Z} is given by $x R y$ iff $x^{2}=y^{2}$. * (Reflexivity:) Let $n \in \mathbb{Z}$. Since $n^{2}=n^{2}$, we have $n R n$. * (Symmetry:) Let $n, m \in \mathbb{Z}$. Suppopse $n R m$. Thus $n^{2}=m^{2}$. Thus $m^{2}=n^{2}$. Thus $m R n$.
* (Transitivity:) Let $n, m, k \in \mathbb{Z}$. Suppose $n R m$ and $m R k$. Then $n^{2}=m^{2}=k^{2}$. Thus $n R k$.
$0 / R=\{0\} .4 / R=\{4,-4\} .-72 / R=\{72,-72\}$.
- (b) The relation R on \mathbb{N} is given by $m R n$ iff m and n have the same digit in the tens places.
* (Reflexivity:) Let $n \in \mathbb{N}$. Since n has the same digit in its tens place as n, we have $n R n$.
* (Symmetry:) Let $n, m \in \mathbb{N}$. Suppopse $n R m$. Thus n and m both have the same digit in the tens place. Thus $m R n$.
* (Transitivity:) Let $n, m, k \in \mathbb{Z}$. Suppose $n R m$ and $m R k$. Then n, m, and k all have the same digit in the tens place. Thus $n R k$.
The elements of $106 / R$ that are less than 50 are $1,2,3,4,5,6,7,8$, and 9 . The elements of $106 / R$ between 150 and 300 are 200, 201, $\ldots, 209$. An element of $106 / R$ greater than 1000 is, e.g., 1100. Three elements of $635 / R$ are, e.g., 32,635 , and 1131539.
- (c) The relation V on \mathbb{R} is given by $x V y$ iff $x=y$ or $x y=1$.
* (Reflexivity:) Let $x \in \mathbb{R}$. Since $x=x$, we have $x V x$.
* (Symmetry:) Suppopse $x V y$. Thus $x=y$ or $x y=1$. Thus $y=x$ or $y x=1$, so we have $y V x$.
* (Transitivity:) Let $x, y, z \in \mathbb{V}$. Suppose $x V y$ and $y V z$. Thus there are four cases. (1) If $x=y$ and $y=z$ then $x=z$, so $x V z$. (2) If $x=y$ and $y z=1$ then $x z=1$, so $x V z$. (3) If $x y=1$ and $y=z$, then $x z=1$, so $x V z$. (4) If $x y=y z=1$ then $x=z=\frac{1}{y}$, so $x V z$.

$$
3 / V=\left\{3, \frac{1}{3}\right\} . \quad-\frac{2}{3} / V=\left\{-\frac{2}{3},-\frac{3}{2}\right\} \quad 0 / V=\{0\} .
$$

- (j) The relation R on the set \mathcal{D} of all differentiable functions is given by $f R g$ iff $f^{\prime}=g^{\prime}$.
* (Reflexivity:) Let $f \in \mathcal{D}$. Since $f^{\prime}=f^{\prime}$, we have $f R f$.
* (Symmetry:) Let $f, g \in \mathcal{D}$. Suppopse $f R g$. Thus $f^{\prime}=g^{\prime}$, so $g^{\prime}=f^{\prime}$, so we have $g R f$.
* (Transitivity:) Let $f, g, h \in \mathcal{D}$. Suppose $f R g$ and $g R h$. Then $f^{\prime}=g^{\prime}=h^{\prime}$. Thus $f R h$.
$x^{2} / R=\left\{x^{2}+C: C \in \mathbb{R}\right\} . \quad\left(4 x^{3}+10 x\right) / R=\left\{4 x^{3}+10 x+C:\right.$ $C \in \mathbb{R}\} . \quad x^{3} / R=\left\{x^{3}+C: C \in \mathbb{R}\right\} . \quad 7 / R=\mathbb{R}$.
- 6(d) Calculate the equivalence classes for the relation of congruence modulo 7.

$$
\begin{aligned}
& 0 / \equiv_{7}=\overline{0} \\
& 1 / \equiv_{7}=\{\ldots,-14,-7,0,7,14,21, \ldots\} \\
& 2 / \equiv_{7}=\overline{2}=\{\ldots,-13,-6,1,8,15,22, \ldots\} \\
& 3 / \equiv_{7}=\overline{3}=\{\ldots,-12,-5,2,9,16,23, \ldots\} \\
& 4 / \equiv_{7}=\overline{4}=\{\ldots,-10,-3,4,11,18,25, \ldots\} \\
& 5 / \equiv_{7}=\overline{5}=\{\ldots,-9,-2,5,12,19,26, \ldots\} \\
& 6 / \equiv_{7}=\overline{6}=\{\ldots,-8,-1,6,13,20,27 \ldots\}
\end{aligned}
$$

- 9. Suppose that R and S are equivalence relations on a set A. Prove that $R \cap S$ is an equivalence relation on A.
- (Reflexivity:) Let $x \in A$. We have $(x, x) \in R$ (since R is reflexive) and $(x, x) \in S$ (since S is reflexive). Thus $(x, x) \in R \cap S$.
- (Symmetry:) Let $(x, y) \in R \cap S$. Thus $(x, y) \in R$ and $(x, y) \in$ S. By the symmetry of $R,(y, x) \in R$. By the symmetry of S, $(y, x) \in S$. Thus $(y, x) \in R \cap S$.
- (Transitivity:) Let $(x, y),(y, z) \in R \cap S$. Thus $(x, y),(y, z) \in R$ and $(x, y),(y, z) \in S$. We have $(x, z) \in R$ (resp. S) by the transitivity of R (resp. S). Thus $(x, z) \in R \cap S$.

Section 3.4

- 8. Define the relation on $\mathbb{R} \times \mathbb{R}$ by $(a, b) R(x, y)$ iff $a \leq x$ and $b \leq y$. Prove that R is a partial order on $\mathbb{R} \times \mathbb{R}$.
- (Reflexivity:) Let $(x, y) \in \mathbb{R} \times \mathbb{R}$. Since $x \leq x$ and $y \leq y$, we have $(x, y) R(x, y)$.
- (Anti-symmetry:) Let $(a, b) R(x, y)$ and $(x, y) R(a, b)$. Thus $a \leq x$ and $x \leq a$. Also, $b \leq y$ and $y \leq b$. Thus $a=x$ and $b=y$, so $(a, b)=(x, y)$.
- (Transitivity:) Let $(a, b) R(c, d)$ and $(c, d) R(e, f)$. Thus $a \leq c \leq e$ and $b \leq d \leq f$. So, $(a, b) R(e, f)$.
- Prove that the partial order in problem 8 is not a total (linear) order. All we need to do is produce two ordered pairs (a, b) and (x, y) in $\mathbb{R} \times \mathbb{R}$ such that neither $(a, b) R(x, y)$ nor $(x, y) R(a, b)$ holds. One such counterexample is given by $(1,2)$ and $(2,1)$.

