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Abstract. In this we paper we prove several new identities of the Rogers-

Ramanujan-Slater type. These identities were found as the result of computer
searches. The proofs involve a variety of techniques, including series-series

identities, Bailey pairs, a theorem of Watson on basic hypergeometric series

and the method of q-difference equations.

1. introduction

The most famous of the “q-series=product” identities are the Rogers-Ramanujan
identities:

∞∑
n=0

qn2

(q; q)n
=
∞∏

j=0

1
(1− q5j+1)(1− q5j+4)

,(1.1)

∞∑
n=0

qn2+n

(q; q)n
=
∞∏

j=0

1
(1− q5j+2)(1− q5j+3)

.(1.2)

These identities have a curious history ([15], p. 28). They were first proved by L.J.
Rogers in 1894 ([20]) in a paper that was completely ignored. They were rediscov-
ered (without proof) by Ramanujan sometime before 1913. In 1917, Ramanujan
rediscovered Rogers’s paper. Also in 1917, these identities were rediscovered and
proved independently by Issai Schur ([22]). They were also discovered indepen-
dently by R. Baxter (see [4] for details). An account of the many proofs of the
Rogers-Ramanujan identities can be found in [3].

There are numerous identities that are similar to the Rogers-Ramanujan identi-
ties. These include identities by Jackson ([16]), Rogers ([20] and [21]) and Bailey ([8]
and [9]). Of special note is Slater’s 1952 paper [27], which contains a list of 130 such
identities, many of them new (see the paper by the third author [24], for an anno-
tated version of Slater’s list). There are also other identities of Rogers-Ramanujan
type in the literature.

In the present paper we prove several new identities, mostly found through com-
puter searches. The proof of these identities lets us present examples of the various
methods used to prove identities of the Rogers-Ramanujan type. These methods
include using series-series identities, q-difference equations, Bailey pairs, and some
miscellaneous methods.
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One search involved computing to high precision, for q = 0.1, series of the form

(1.3) S :=
∞∑

n=0

q(an2+bn)/2(−1)cn(d, e; q)n

(f, g, q; q)n
,

where
d, e, f, g ∈ {0,−1, q,−q,−q2, q2}, c ∈ {0, 1},

and where a and b are integers such that 1 ≤ a ≤ 10 and −a ≤ b ≤ 10. This choice
for the form of S was motivated by the fact that many series on the Slater list have
this form.

Suppose, for example, that for particular values of a, b, c, d, e, f and g, such a
series is identically (i.e. for all q) equal to an infinite product, say modulo 20. In
other words,

S =
20∏

j=1

(qj ; q20)sj
∞,

for integers sj . Upon taking logarithms of both sides we have that

logS −
20∑

j=1

sj log(qj ; q20)∞ = 0.(1.4)

If the LLL-algorithm is applied to the set

{logS, log(q; q20)∞, log(q2; q20)∞, . . . , log(q20; q20)∞},
it will hopefully output the integers sj , thus giving a series-product identity which
must then be proved. (Since computations are not exact, the output may be a set
of sj ’s that just make the left side of (1.4) just very small, and not zero.)

In practice we select a modulus, say 20 as above, and set q = 0.1. Then we
compute the set of values

A = {log(q; q20)∞, log(q2; q20)∞, . . . , log(q20; q20)∞}
to sufficiently high precision. For our purposes, using pari-gp, 200 decimal places
gave sufficient precision, and it was enough to compute the first 50 terms in each
of the infinite products.

Next, we let the parameters a, b, c, d, e, f and g loop through their allowed
values, and compute S for each particular set of choices (for precision purposes,
computing the first 30 terms in the series was sufficient in each case). We append
logS to the list A and then apply the LLL-algorithm, in the form of Pari’s lindep
command, to the new list A.

For practical reasons, we had the program output the set of sj ’s, and the choices
for the parameters a, b, c, d, e, f and g, only when maxj |sj | < 100. Thus each line
of output, listing the choices for the parameters and the sj ’s, either represented a
known identity or a potential new identity.

We looked for identities where the products had moduli 20, 24, 28, 32, 36, 40
and 44. We also tried searches where the series had the forms

S′ :=
∞∑

n=0

q(an2+bn)/2(−1)cn(d, e; q2)n

(f, g, q2; q2)n
,

S′′ :=
∞∑

n=0

q(an2+bn)/2(−1)cn(d; q2)n

(e; q2)n+1(q; q)n+1
,
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the latter form being motivated by identity (56) on Slater’s list.
It is possible that other choices for the form of the series, or extending the choices

for the various parameters, may turn up new identities.

2. New Identities

2.1. Infinite Series Transformations. We first recall Heine’s q-Gauss sum.
∞∑

n=0

(a, b; q)n

(c, q; q)n

( c
ab

)n

=
(c/a, c/b; q)∞
(c, c/ab; q)∞

Let b→∞ to get

(2.1)
∞∑

n=0

(a; q)nq
n(n−1)/2(−c/a)n

(c; q)n(q; q)n
=

(c/a; q)∞
(c; q)∞

.

Theorem 2.1.
∞∑

n=0

(−q2; q2)nq
n2

(q; q)2n+1
=

(−q; q2)∞
(q; q2)∞

.

Proof. In (2.1), replace q by q2 and set a = −q2 and c = q3.
∞∑

n=0

(−q2; q2)nq
n2

(q; q)2n+1
=

1
1− q

∞∑
n=0

(−q2; q2)nq
n2

(q3; q2)n(q2; q2)n

=
1

1− q
(−q; q2)∞
(q3; q2)∞

=
(−q; q2)∞
(q; q2)∞

.

�

Shortly after proving the above result, we discovered while reading a pre-print
version of [6] that it had previously been stated by Ramanujan (see [6, Entry
1.7.13]).

We next recall a result of Ramanujan.

(2.2)
∞∑

n=0

(a; q)nq
n(n−1)/2γn

(b; q)n(q; q)n
=

(−γ; q)∞
(b; q)∞

∞∑
n=0

(−aγ/b; q)nq
n(n−1)/2(−b)n

(−γ; q)n(q; q)n
,

This identity, in a more symmetric form, is found in Ramanujan’s lost notebook
[19] and a proof can be found in the recent book by Andrews and Berndt [5]. It
also follows from the second iteration of Heine’s transformation for a 2φ1 series
[14, equations III.1 and III.2, page 359]. The form at (2.2) is better suited to our
present requirements than Ramanujan’s more symmetric form.

Theorem 2.2.
∞∑

n=0

(−1; q)2nq
n2+n

(q2; q2)n(q2; q4)n
=

(−q3; q6)2∞(q6; q6)∞(−q2; q2)∞
(q2; q2)∞

.

Proof. We use the following identity ((25) from Slater’s list, with q replaced by
−q):

(2.3)
∞∑

n=0

(−1)nqn2
(q; q2)n

(q4; q4)n
=

(−q3; q6)2∞(q6; q6)∞(q; q2)∞
(q2; q2)∞

.
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In (2.2), replace q by q2 and set a = −1, b = q and γ = q2. Then
∞∑

n=0

(−1; q)2nq
n2+n

(q2; q2)n(q2; q4)n

=
∞∑

n=0

(−1; q2)n(−q; q2)nq
n2+n

(q2; q2)n(q; q2)n(−q; q2)n

=
∞∑

n=0

(−1; q2)nq
n2−n(q2)n

(q; q2)n(q2; q2)n

=
(−q2; q2)∞

(q; q2)∞

∞∑
n=0

(−q)nqn2−n(q; q2)n

(−q2; q2)n(q2; q2)n

=
(−q2; q2)∞

(q; q2)∞

∞∑
n=0

(−1)nqn2
(q; q2)n

(−q2; q2)n(q2; q2)n

=
(−q2; q2)∞

(q; q2)∞

∞∑
n=0

(−1)nqn2
(q; q2)n

(q4; q4)n

=
(−q2; q2)∞

(q; q2)∞
(−q3; q6)2∞(q6; q6)∞(q; q2)∞

(q2; q2)∞
(by (2.3)).

The result now follows. �

Theorem 2.3.
∞∑

n=0

(−q; q2)nq
n2+2n

(q4; q4)n
=

(q, q5, q6; q6)∞(−q; q2)∞
(q2; q2)∞

.

Proof. In (2.2), replace q by q2 and set a = −q, b = −q2 and γ = q3. Then
∞∑

n=0

(−q; q2)nq
n2+2n

(q4; q4)n
=
∞∑

n=0

(−q; q2)nq
n2−n(q3)n

(−q2; q2)n(q2; q2)n

=
(−q3; q2)∞
(−q2; q2)∞

∞∑
n=0

qn2+n(−q2; q2)n

(−q3; q2)n(q2; q2)n

=
(−q; q2)∞
(−q2; q2)∞

∞∑
n=0

qn2+n(−q2; q2)n

(−q; q2)n+1(q2; q2)n

=
(q, q5, q6; q6)∞(−q; q2)∞

(q2; q2)∞
.

The last equality follows from the identity below ((28) from Slater’s list, with q
replaced by −q):

(2.4)
∞∑

n=0

qn2+n(−q2; q2)n

(q; q)2n+1
=

(−q,−q5, q6; q6)∞(−q2; q2)∞
(q2; q2)∞

.

�

The result above was also stated by Ramanujan and alternative proofs can be
found in [6, Entry 4.2.11] and [28].
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2.2. Watson’s Transformation. Before proving the next identity, we introduce
some notation.

An rφs basic hypergeometric series is defined by

rφs

(
a1, a2, . . . , ar

b1, . . . , bs
; q, x

)
:=

∞∑
n=0

(a1; q)n(a2; q)n . . . (ar; q)n

(q; q)n(b1; q)n . . . (bs; q)n

(
(−1)nqn(n−1)/2

)s+1−r

xn,

for |q| < 1.
Watson’s identity is the following.

(2.5) 8φ7

(
a, q
√
a, −q

√
a, b, c, d, e, q−n

√
a, −
√
a, aq/b, aq/c, aq/d, aq/e, aqn+1 ; q,

a2qn+2

bcde

)
=

(aq)n(aq/de)n

(aq/d)n(aq/e)n
4φ3

(
aq/bc, d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

)
,

where n is a non-negative integer. Watson [29] used his transformation in his proof
of the Rogers-Ramanujan identities (1.1).

Theorem 2.4. Let a, b and q ∈ C satisfy |q| < min{|b|, 1}. Then

(2.6)
∞∑

r=0

(1 + aqr)(a2; q)r(b; q)r (−a/b)r
qr(r+1)/2

(a2q/b; q)r(q; q)r

=
(−a; q)∞(a2q; q2)∞(aq/b; q)∞

(a2q/b; q)∞
.

Proof. We will use Bailey’s identity [7]:

(2.7)
∞∑

n=0

(a; q)n(b; q)n

(aq/b; q)n(q; q)n

(
−q
b

)n

=
(aq; q2)∞(−q; q)∞(aq2/b2; q2)∞

(aq/b; q)∞(−q/b; q)∞
.

First, let n, b→∞ in (2.5) to get

(2.8)
∑
r≥0

(1− aq2r)(a)r(c)r(d)r(e)r

(
a2/cde

)r
qr(r−1)+2r

(1− a)(aq/c)r(aq/d)r(aq/e)r(q)r

=
(aq)∞(aq/de)∞
(aq/d)∞(aq/e)∞

∑
r≥0

(d)r(e)r(aq/de)r

(aq/c)r(q)r
.

Next, replace a by −a, set c = −b, d = a and e = b, so that (2.8) becomes

∑
r≥0

(1 + aq2r)(−a)r(−b)r(a)r(b)r

(
−a/b2

)r
qr(r−1)+2r

(1 + a)(aq/b)r(−q)r(−aq/b)r(q)r

=
(−aq)∞(−q/b)∞
(−q)∞(−aq/b)∞

∑
r≥0

(a)r(b)r(−q/b)r

(aq/b)r(q)r
,

and the result now follows from (2.7), after replacing b2 by b and q2 by q. �
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2.3. Bailey Pairs. A pair of sequences (αn, βn) that satisfy α0 = 1 and

(2.9) βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r

is termed a Bailey pair relative to a. Bailey [8, 9] showed that, for such a pair,
(2.10)

∞∑
n=0

(y, z; q)n

(
aq

yz

)n

βn =
(aq/y, aq/z; q)∞
(aq, aq/yz; q)∞

∞∑
n=0

(y, z; q)n

(aq/y, aq/z; q)n

(
aq

yz

)n

αn.

We note two special cases which will be needed later. Firstly, upon letting y, z →∞
we get that

(2.11)
∞∑

n=0

anqn2
βn =

1
(aq; q)∞

∞∑
n=0

anqn2
αn.

Secondly, upon setting y = q1/2 and letting z →∞ we get that
(2.12)

∞∑
n=0

(q1/2; q)n(−1)nanqn2/2βn =
(aq1/2; q)∞

(aq; q)∞

∞∑
n=0

(q1/2; q)n

(aq1/2; q)n
an(−1)nqn2/2αn.

Lemma 2.5. The pair (αn, βn) is a Bailey pair relative to 1, where

αn =

{
1, n = 0,
2(−1)nqn2/2, n ≥ 1,

βn =
(
√
q; q)n

(−√q,−q, q; q)n
.

Proof. Set a = 1, c = −√q, d = −1 in Slater’s equation (4.1) from [26, page 468]:
n∑

r=0

(1− aq2r)(a, c, d; q)rq
(r2+r)/2

(a; q)n+r+1(q; q)n−r(aq/c, aq/d, q; q)r

(
−a
cd

)r

=
(aq/cd; q)n

(aq/c, aq/d, q; q)n
.

The result follows from (2.9), after a little simplification. �

Theorem 2.6.

(2.13)
∞∑

n=0

q2n2
(q; q2)n

(−q; q2)n(q4; q4)n
=

(q3; q6)2∞(q6; q6)∞
(q2; q2)∞

.

Proof. Substitute the Bailey pair from Lemma 2.5 into (2.11), with a = 1, and
replace q with q2. The result follows after using using the Jacobi triple product
identity

(2.14)
∞∑

n=−∞
znqn2

= (−q/z,−qz, q2; q2)∞

to sum the resulting right side. �

Remark: This is a companion identity to number (27) on Slater’s list, with q
replaced by −q:

∞∑
n=0

q2n2+2n(q; q2)n

(−q; q2)n(q4; q4)n
=

(q; q6)∞(q5; q6)∞(q6; q6)∞
(q2; q2)∞

.
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2.4. An identity of Bailey. Before coming to the next identity we recall a result
of Bailey([10], p. 220):

(2.15) (−z2q,−z−2q3, q4; q4)∞ + z(−z2q3,−z−2q, q4; q4)∞ = (−z,−z−1q, q; q)∞.

We also recall Slater’s Bailey pair G3 (relative to 1) from [26].

αn =


1, n = 0,
q3r2

(q3r/2 + q−3r/2), n = 2r, r ≥ 1,
−q3r2

(q3r/2 + q9r/2+3/2), n = 2r + 1,
(2.16)

βn =
qn

(q2; q2)n(−q1/2; q)n
.

We note that Slater used G3 to derive two other series-product identities, (16) and
(32) in [27], so we may regard the identity in Theorem 2.7 as one she missed. 1

Theorem 2.7. Let |q| < 1. Then

(2.17)
∞∑

n=0

(−1)nqn2+2n(q; q2)n

(−q; q2)n(q4; q4)n
=

(−q; q5)∞(−q4; q5)∞(q5; q5)∞(q; q2)∞
(q2; q2)∞

.

Remark: This identity is clearly a companion to Identity (21) on Slater’s list:

(2.18)
∞∑

n=0

(−1)nqn2
(q; q2)n

(−q; q2)n(q4; q4)n
=

(−q3; q5)∞(−q2; q5)∞(q5; q5)∞(q; q2)∞
(q2; q2)∞

.

Proof of Theorem 2.7. We insert the Bailey pair (2.16) into (2.12), set a = 1 and
replace q by q2 to get

∞∑
n=0

(−1)nqn2+2n(q; q2)n

(−q; q2)n(q4; q4)n

=
(q; q2)∞
(q2; q2)∞

(
1 +

∞∑
r=1

q10r2
(q3r + q−3r) +

∞∑
r=0

q10r2+4r+1(q3r + q9r+3)

)

=
(q; q2)∞
(q2; q2)∞

( ∞∑
r=−∞

q10r2+3r + q4
∞∑

r=−∞
q10r2+13r

)

=
(q; q2)∞
(q2; q2)∞

(
(−q7,−q13, q20; q20)∞ + q4(−q−3,−q23, q20; q20)∞

)
=

(−q3; q5)∞(−q2; q5)∞(q5; q5)∞(q; q2)∞
(q2; q2)∞

.

The next-to-last equation follows from (2.14), and the last equation follows from
(2.15), with q replaced by q5 and z = q4. �

1In an earlier version of this paper we proved Theorem 2.7 by the method of q-difference
equations. However, that proof was much longer and less transparent than the present proof.
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2.5. Miscellaneous Methods. Before coming to the next identity, we recall two
other necessary results. The first of these is an identity of Blecksmith, Brillhart
and Gerst [11] (a proof is also given in [13]):

(2.19)
∞∑

n=−∞
qn2
−

∞∑
n=−∞

q5n2
= 2q

(q4, q6, q10, q14, q16, q20; q20)∞
(q3, q7, q8, q12, q13, q17; q20)∞

.

If we replace q by −q and apply the Jacobi triple product identity to the left side,
(2.19) may be re-written as

(2.20) (q5, q5, q10; q10)∞ − (q, q, q2; q2)∞ = 2q
(q4, q6, q10; q10)∞

(−q3,−q7; q10)∞(q8, q12; q20)∞
.

The second is the following identity, due to Rogers [21, p. 330 (4), line 3,
corrected] recently generalized by the third author [25, p. 404, Eq. (3)]:

(2.21)
∞∑

n=0

qn(n+1)/2(−1; q)n

(q; q)n(q; q2)n
=

(q5, q5, q10; q10)∞
(q; q)∞(q; q2)∞

.

We are now able to prove another identity discovered during the present inves-
tigations.

Theorem 2.8. Let |q| < 1. Then

(2.22)
∞∑

n=0

q(n
2+3n)/2(−q; q)n

(q; q2)n+1(q; q)n+1
=

(q10; q10)∞
(q; q)∞(q; q2)∞(−q3,−q4,−q6,−q7; q10)∞

.

Proof.
∞∑

n=0

q(n
2+3n)/2(−q; q)n

(q; q2)n+1(q; q)n+1
=

1
2q

∞∑
n=0

q(n+1)(n+2)/2(−1; q)n+1

(q; q2)n+1(q; q)n+1

=
1
2q

( ∞∑
n=0

qn(n+1)/2(−1; q)n

(q; q2)n(q; q)n
− 1

)

=
1
2q

(
(q5, q5, q10; q10)∞
(q; q)∞(q; q2)∞

− 1
)

(by (2.21))

=
1

2q(q; q)∞(q; q2)∞

(
(q5, q5, q10; q10)∞ − (q; q2)∞(q; q2)∞(q2; q2)∞

)
=

(q4, q6, q10; q10)∞
(q; q)∞(q; q2)∞(−q3,−q7; q10)∞(q8, q12; q20)∞

(by (2.20))

=
(q10; q10)∞

(q; q)∞(q; q2)∞(−q3,−q4,−q6,−q7; q10)∞
.

�

3. An Application of the Two-Variable Generalization of a
Rogers-Ramanujan Type Series

In [2], Andrews showed that a certain two-variable generalization f(t, q) of a
Rogers-Ramanujan type series Σ(q) served as a generating function in t of a se-
quence of polynomials Pn(q) for which limn→∞ Pn(q) = Σ(q).
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For example, if

(3.1) Σ := Σ(q) :=
∞∑

n=0

qn2

(q; q)n
,

the series associated with the first Rogers-Ramanujan identity, and the two variable
generalization f(t, q) of Σ is given by

(3.2) f(t, q) :=
∞∑

n=0

t2nqn2

(t; q)n+1
,

then it is also the case that

(3.3) f(t, q) =
∞∑

n=0

Pn(q)tn

where

(3.4) P0(q) = P1(q) = 1; Pn(q) = Pn−1(q) + qn−1Pn−2(q) if n ≥ 2.

Note that the polynomials in (3.4), which are q-analogs of the Fibonacci numbers,
are sometimes called the Schur polynomials because they were employed by Schur
in his proof of the Rogers-Ramanujan identities. Indeed, Schur [22] showed that

(3.5) Pn(q) =
∞∑

j=−∞
(−1)jqj(5j+1)/2

[
n

bn+5j+1
2 c

]
q

,

while elsewhere MacMahon [17] showed that

(3.6) Pn(q) =
∑
j≥0

qj2
[
n− j
j

]
q

,

where [
A

B

]
q

:=
{

(q; q)A(q; q)−1
B (q; q)−1

A−B if 0 ≤ B ≤ A
0 otherwise.

Thus, by combining (3.6) and (3.5), we may observe, as Andrews did in [1], that we
have a polynomial identity which generalizes the first Rogers-Ramanujan identity
and that we may recover (1.1) by letting n→∞.

In [24], the third author used these two-variable generalizations f(t, q) of Rogers-
Ramanujan type series to find polynomial generalizations of all 130 identities in
Slater’s list [27]. Previously, Santos [23] had studied a large number of polyno-
mial sequences associated with two-variable generalizations of series in Slater’s list.
Indeed, the primary use of the f(t, q) has been as a generating function in t for
sequences of polynomials.

However, here we wish to turn our attention to a different use of the f(t, q) by
following up on an observation made by Andrews [2, p. 89]. Letting f(q, t) and
Σ(q) be as above, Andrews noted the following: not only do we have, as required,

lim
t→1−

(1− t)f(t, q) = Σ(q),

but also
lim

t→−1+
(1− t)f(t, q) = f0(q),
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where

f0(q) :=
∞∑

n=0

qn2

(−q; q)n
,

one of Ramanujan’s fifth order mock theta functions (cf. [30], [31]).
Elsewhere [2, p. 90–91], Andrews notes that if we take Σ to the be the Rogers-

Ramanujan type series associated with Eq. (46) on Slater’s list [27], and define its
two variable generalization as

f(t, q) :=
∞∑

n=0

t3nqn(3n−1)/2

(t; q)n+1(t2q; q2)n
,

we find that limt→−1+ f(t, q) is not a mock theta function, but rather a false theta
function studied by Rogers [21, p. 333(2)].

Andrews later comments [2, p. 93]: “Now if we view this as a curve y = f(t) the
points of which are functions of q, we find that frequently if f(1) is a modular form,
f(−1) is a mock or false theta function. Is there some general structure possible in
which this seemingly amazing occurrence becomes more explicable?” While we do
not have an answer to Andrews’ question, we have observed that there is a third
possibility. Namely, that f(1) is a modular form and f(−1) neither a mock nor
false theta function, but rather a sum of modular forms.

Consider the following family of Rogers-Ramanujan type identities related to the
modulus 27 which are due to Dyson [8, p. 433, Eqs. (B1)–(B4)] and reproved by
Slater [27, p. 161–2, Eqs. (90)–(93)].

1 +
∞∑

n=1

qn2
(q3; q3)n−1

(q; q)n(q; q)2n−1
=

(q12, q15, q27; q27)∞
(q; q)∞

(3.7)

∞∑
n=0

qn(n+1)(q3; q3)n

(q; q)n(q; q)2n+1
=

(q9; q9)∞
(q; q)∞

(3.8)

∞∑
n=0

qn(n+2)(q3; q3)n

(q; q)n(q; q)2n+2
=

(q6, q21, q27; q27)∞
(q; q)∞

(3.9)

∞∑
n=0

qn(n+3)(q3; q3)n

(q; q)n(q; q)2n+2
=

(q3, q24, q27; q27)∞
(q; q)∞

(3.10)

The relevant two-variable generalizations (see [24, p. 15, Thm. 2.2]) of (3.7)–
(3.10) are

f3.7(t, q) :=
1

1− t
+
∞∑

n=1

t2nqn2
(t3q3; q3)n−1

(t; q)n+1(t2q; q)2n−1
(3.11)

f3.8(t, q) :=
∞∑

n=0

t2nqn(n+1)(t3q3; q3)n

(t; q)n+1(t2q; q)2n+1
(3.12)

f3.9(t, q) :=
∞∑

n=0

t2nqn(n+2)(t3q3; q3)n

(t; q)n+1(t2q; q)2n+2
(3.13)

f3.10(t, q) :=
∞∑

n=0

t2nqn(n+3)(t3q3; q3)n

(t; q)n+1(t2q; q)2n+2
.(3.14)
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We believe that the four identities related to the modulus 108 recorded below,
which arise from the t = −1 cases of (3.11)–(3.14), are new.

(3.15) 1 +
∞∑

n=1

qn2
(−q3; q3)n−1

(−q; q)n(q; q)2n−1
=

(q12, q15, q27; q27)∞ − 2q2(−q33,−q75, q108; q108)∞ + 2q7(−q15,−q93, q108; q108)∞
(q; q)∞

(3.16)
∞∑

n=0

qn(n+1)(−q3; q3)n

(−q; q)n(q; q)2n+1
=

(q9, q18, q27; q27)∞ − 2q3(−q27,−q81, q108; q108)∞ + 2q9(−q9,−q99, q108; q108)∞
(q; q)∞

(3.17)
∞∑

n=0

qn(n+2)(−q3; q3)n

(−q; q)n(q; q)2n+2
=

(q6, q21, q27; q27)∞ − 2q4(−q21,−q87, q108; q108)∞ + 2q11(−q3,−q105, q108; q108)∞
(q; q)∞

(3.18)
∞∑

n=0

qn(n+3)(−q3; q3)n

(−q; q)n(q; q)2n+2

= (q3, q24, q27; q27)∞ − 2q5(−q15,−q93, q108; q108)∞ + 2q13(−q−3,−q111, q108; q108)∞
(q; q)∞

The identities (3.15)–(3.18) may be proved using Bailey pairs (see Sec. 2.3). Al-
though less well known than (2.9), the following characterization of Bailey pairs [2,
p. 29, Eq. (3.40) with a = 1] is equivalent to (2.9) with a = 1:

(3.19) αn = (1− q2n)
n∑

k=0

(−1)n−kq(
n−k

2 )(q; q)n+k−1

(q; q)n−k
βk

Furthermore, it is straightforward to show that (3.19) may be rewritten as

(3.20) αn = (−1)nq(
n
2)(1 + qn)

n∑
k=0

(qn; q)k(q−n; q)kq
kβk,

which is the form we shall employ.

Lemma 3.1. If, for n a nonnegative integer,

(3.21) αn =



1 if n = 0
(−1)rq

9
2 r2− 3

2 r(1 + q3r) if n = 3r > 0
−2q18r2+9r+1 if n = 6r + 1
2q18r2+15r+3 if n = 6r + 2
2q18r2+21r+6 if n = 6r + 4
−2q18r2+27r+10 if n = 6r + 5
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and

(3.22) βn =

{
(−q3;q3)n−1

(−q;q)n(q;q)2n−1
if n > 0

1 if n = 0,

then (αn, βn) forms a Bailey pair.

Proof. By inserting (3.21) and (3.22) into (3.20), it is clear that we will be done
once we show

(3.23) (−1)rq
9
2 r2− 3

2 r(1 + q3r)

= (−1)rq(
3r
2 )(1 + q3r)

{
1 +

3r∑
k=1

(q3r; q)k(q−3r; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1

}
,

(3.24) − 2q18r2+9r+1

= −q(
6r+1

2 )(1 + q6r+1)

{
1 +

6r+1∑
k=1

,
(q6r+1; q)k(q−6r−1; q)k(−q3; q3)kq

k

(−q; q)k(q; q)2k−1

}
,

(3.25) 2q18r2+15r+3

= q(
6r+2

2 )(1 + q6r+2)

{
1 +

6r+2∑
k=1

(q6r+2; q)k(q−6r−2; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1

}
,

(3.26) 2q18r2+21r+6

= q(
6r+4

2 )(1 + q6r+4)

{
1 +

6r+4∑
k=1

(q6r+4; q)k(q−6r−4; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1

}
,

and

(3.27) − 2q18r2+27r+10

= −q(
6r+5

2 )(1 + q6r+5)

{
1 +

6r+5∑
k=1

(q6r+5; q)k(q−6r−5; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1

}
,

for nonnegative integers r. Using elementary algebra, the equations (3.23)–(3.27)
are easily shown to be equivalent to

3r∑
k=1

(q3r; q)k(q−3r; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1
= 0,(3.28)

q6r+1 + 1
q6r+1 − 1

6r+1∑
k=1

(q6r+1; q)k(q−6r−1; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1
= 1,(3.29)

q6r+2 + 1
q6r+2 − 1

6r+2∑
k=1

(q6r+2; q)k(q−6r−2; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1
= 1,(3.30)

1 + q6r+4

1− q6r+4

6r+4∑
k=1

(q6r+4; q)k(q−6r−4; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1
= 1,(3.31)
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1 + q6r+5

1− q6r+5

6r+5∑
k=1

(q6r+5; q)k(q−6r−5; q)k(−q3; q3)kq
k

(−q; q)k(q; q)2k−1
= 1.(3.32)

Each of equations (3.28)–(3.32) may be verified using the WZ method [18, Chap-
ter 7] or induction on r. �

Theorem 3.2. Identity (3.15) is valid.

Proof. Recall that the weak form of Bailey’s lemma [2, p. 27, Eq. (3.33) with
a = 1] states that

(3.33)
∞∑

n=0

qn2
βn =

1
(q; q)∞

∞∑
n=0

qn2
αn

for any Bailey pair (αn, βn). Inserting the Bailey pair established in Lemma 3.1
into (3.33) yields

(3.34) 1 +
∞∑

n=1

qn2
(−q3; q3)n−1

(−q; q)n(q; q)2n−1

=
1

(q; q)∞

(
1 +

∞∑
r=1

(−1)rq
27
2 r2− 3

2 r(1 + q3r)− 2
∞∑

r=0

q54r2+21r+2

+2
∞∑

r=0

q54r2+39r+7 + 2
∞∑

r=0

q54r2+69r+22 − 2
∞∑

r=0

q54r2+87r+35

)

=
1

(q; q)∞

( ∞∑
r=−∞

(−1)rq
27
2 r2− 3

2 r − 2
∞∑

r=0

q54r2+21r+2 + 2
∞∑

r=0

q54r2+39r+7

+2
∞∑

r=1

q18r2−39r+7 − 2
∞∑

r=1

q54r2−21r+2

)

=
1

(q; q)∞

( ∞∑
r=−∞

(−1)rq
27
2 r2− 3

2 r − 2
∞∑

r=−∞
q54r2−21r+2 + 2

∞∑
r=−∞

q54r2−39r+7

)

=
(q12, q15, q27; q27)∞ − 2q2(−q33,−q75, q108; q108)∞ + 2q7(−q15,−q93; q108; q108)∞

(q; q)∞
.

�

The other identities (3.16)–(3.18) may be proved similarly.
The identity (3.16) deserves special attention because its right hand side may

be expressed as a single infinite product whereas it appears that of the other three
can not be simplified beyond a sum of three infinite products.

Theorem 3.3.

(3.35)
∞∑

n=0

qn(n+1)(−q3; q3)n

(−q; q)n(q; q)2n+1
=

(q3; q3)∞(q3; q18)∞(q15; q18)∞
(q; q)∞

Proof. We shall require Fricke’s quintuple product identity [12]
(3.36)
(z3q, z−3q2, q3; q3)∞ + z(z−3q, z3q2, q3; q3)∞ = (−z−1q,−z, q; q)∞(z−2q, z2q; q2)∞
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and an identity due to Bailey [10, p. 220, Eq. (4.1)]

(3.37) (−z2q,−z−2q3, q4; q4)∞ + z(−z2q3,−z−2q, q4; q4)∞ = (−z,−z−1q, q; q)∞.

By (3.16), we have
∞∑

n=0

qn(n+1)(−q3; q3)n

(−q; q)n(q; q)2n+1

= (q9, q18, q27; q27)∞ − 2q3(−q27,−q81, q108; q108)∞ + 2q9(−q9,−q99, q108; q108)∞
(q; q)∞

.

Expanding the first triple product in the numerator by (3.37) with q replaced by
q27 and z = −q9 yields

(−q45,−q63, q108; q108)∞ − 2q3(−q27,−q81, q108; q108)∞ + q9(−q9,−q99, q108; q108)∞
(q; q)∞

.

Two further applications of (3.37) shows that the preceding expression is equal to

(−q9,−q18, q27; q27)∞ − q3(−1,−q27, q27; q27)∞
(q; q)∞

=
(q3, q6, q9; q9)∞(q3, q15; q18)∞

(q; q)∞

=
(q3; q3)∞(q3, q15; q18)∞

(q; q)∞
,

where the penultimate equality follows from (3.36). �

We close this section by recalling that once a given Bailey pair is established,
it may be utilized in connection with limiting cases of Bailey’s lemma other than
(3.33), thus yielding additional Rogers-Ramanujan type identities. For instance, if
we insert the Bailey pair established in Lemma 3.1 into [2, p. 26, Eq. (3.28) with
n, ρ1 →∞ and ρ2 = −√q ], we obtain the identity related to the modulus 144:

(3.38) 1 +
∞∑

n=1

qn2
(−q; q2)n(−q6; q6)n−1

(−q2; q2)n(q2; q2)2n−1

=
(q15, q21, q36; q36)∞ − 2q3(−q42,−q102, q144; q144)∞ + 2q10(−q18,−q126, q144; q144)∞

(q; q2)∞(q4; q4)∞
.

A partner of (3.38) is

(3.39)
∞∑

n=0

qn2+4n(−q; q2)n+1(−q6; q6)n

(−q2; q2)n(q2; q2)2n+2

=
(q3, q33, q36; q36)∞ − 2q7(−q18,−q126, q144; q144)∞ + 2q12(−q6,−q138, q144; q144)∞

(q; q2)∞(q4; q4)∞
.

4. Concluding Remarks

For quite a long time we were convinced that there must exist a general transfor-
mation of the type found in Watson’s theorem (see (2.5)), a transformation which
would give the result in Theorem 2.7 as a special case for particular values of its
parameters.

One reason we thought this transformation had to exist was the appearance of the
(−q; q5)∞(−q4; q5)∞(q5; q5)∞ term on the product side, which can be represented
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as an infinite series via the Jacobi triple product. This in turn brought to mind
Watson’s proof of the Rogers-Ramanujan identities, where he showed that these
followed as special cases of (2.5).

However, we could not find such a transformation, but possibly our search was
incomplete. Does the identity in Theorem 2.7 follow as a special case of some
known transformation, perhaps some known transformation between basic hyper-
geometric series? Is this identity a special case of some as yet undiscovered general
transformation?

As remarked at the end of the introduction, varying the form of the series S
in (1.3) may lead to other new identities of the Rogers-Ramanujan-Slater type.
In particular, one might hope for the discovery of new identities which are not
readily proved within the framework of our present understanding of identities of
the Rogers-Ramanujan-Slater type.
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