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Abstract. A generalized Bailey pair, which contains several special cases considered by Bailey london

Math. Soc. (2)50 (1949), 421-435), is derived and used to find a number of new Rogers-Ramanujan type
identities. Consideration of associatedlifference equations points to a connection with a mild extension of
Gordon’s combinatorial generalization of the Rogers-Ramanujan iden#tiesr( J. Math.83 (1961), 393-399).

This, in turn, allows the formulation of natural combinatorial interpretations of many of the identities in Slater’s
list (Proc. London Math. Soc. (B4 (1952), 147-167), as well as the new identities presented here. A list of 26
new double sum—product Rogers-Ramanujan type identities are included as an appendix.
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1. Introduction
1.1. Overview

We begin by recalling the famous Rogers-Ramanujan identities:

The Rogers-Ramanujan ldentities
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where
m—1
(@;¢)m = || (1 —ag?),
=0
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j=0
and

(a1,a2,...,ar;9)s = (a1;9)s(a2;Q)s - - - (ar; q)s,

and throughout this paper we assuipe< 1 to ensure convergence.

The Rogers-Ramanujan identities are due to L. J. Rogers [20], and were rediscovered
independently by S. Ramanujan[17]and . Schur[23]. Inthe 1940’s, W. N. Bailey undertook
a careful study of Rogers’ work, and greatly simplified it in a pair of papers ([8] and [9]).

In these papers, Bailey was able to prove what he termeaptheralizations” (i.e. formulae
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with a second variablein addition tog), of the Rogers-Ramanujan identities and a number
of additional identities of similar type (some of which were due to Rogers and others
of which were new at the time). Hereaftergeneralizations of Rogers-Ramanujan type
identities will be referred to simply as*RRT identities.”

By considering a certain “parametrized Bailey pair,” we will be naturally led to a variety
of a-RRT identities, some of which were found by Bailey, and others of which appear to be
new. Some examples of newRRT identities include
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From thea-RRT identities, such as (3) and (4), we may easily deduce elegant Rogers-
Ramanujan type identities (inonly); in these instances we obtain:
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which, surprisingly is not included in Slater’s list [26], and

n?42r? 8 10 ,18. .18
a*, 4", q"%;¢"°)
> | =. (6)

q
n=>07r=0 (Q§q2)n(q2;q2)r(q;q)n_gr ((Lq)oo

Remark. The referee pointed out that (3) follows from thel — oo, ¢ = —1 case of [14,

p. 68, (3.5.7)] and that Bailey actually had a generalization of (3), namely [9, p. 6 (6.3)],
which makes it all the more remarkable that (5) did not appear in Slater’s list. As we shall
see later, (3) and (5) follow from thel, k) = (2, 3) case of the parametrized Bailey pair,
and (4) and (6) follow from théd, k) = (2, 4) case.

Once we have amn-RRT identity in hand, we then study thelifference equations related
tothe associated set of of identities. Observing the patterns which emerge-diffexzence
equations associated with various sets of identities, one is led to consider the following mild
extension of Basil Gordon’s partition theorem:

Theorem 1.1 Let A, 4 ;(n) denote the number of partitions ef into parts # 0, +d:
(mod 2dk + d). Let B, ;(n) denote the number of partitions efwherein
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e The integer appears as a part at most— 1 times,

o the total number of appearancesdfanddj + d (i.e. any two consecutive multiples
of d) together is at most — 1, and

e nonmultiples ofl may appear as parts without restriction.
Thenforl £i <k, Agk,i(n) = Baki(n).
Remark. The casel = 1is Gordon’s partition theorem [15].

As we shall see, special cases of Theorem 1.1 provide new combinatorial interpretations
for various identities in Slater’s list [26], as well as for the new analytic identities presented
here.

For example, consider the Rogers mod 14 identities, which appear in Slater [26] as
identities (59), (60), and (61) (see (29)—(31)). We shall see that these may be interpreted
combinatorially as thd = 2, k = 3 case of Theorem 1.1:

Corollary 1.2 Fori = 1,2, 3, the number of partitions of into parts wherein
e 2 appears as a part at most- 1 times,
¢ the total number of appearances of any two consecutive even numbers is af amukst
e odd numbers may appear as parts without restriction,

equals the number of partitions afinto parts not congruent t6, -2 (mod 14).

Similarly, the combinatorial interpretation of (6) is
Corollary 1.3 The number of partitions of into parts wherein
e 2 appears as a part at mosttimes,
¢ the total number of appearances of any two consecutive even numbers is at amabt
e odd numbers may appear as parts without restriction,

equals the number of partitions afinto parts not congruent t6, +8 (mod 18).

1.2. Background

The part of Bailey's results necessary for this current discussion may be briefly summarized
as follows:

Definition 1. A pair of sequenceséw,,(a, q), Bn(a, q)) is called aBailey pair if for
n =0,

n

B, (a’ q) _ Z ar(av q) 7)

r=0 (q; q)ﬂ*?‘(aq; Q)nJrr ’
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In [8] and [9], Bailey proved the fundamental result now known as “Bailey’s Lemma”
(see also [6, Chapter 3]):

Bailey's Lemma If (o, (a, q), B;(a, ¢)) form a Bailey pair, then

1 (13 @) (p2; @) (51073 Dn—j
(2 9)n(%2; ) 2 <p1p> Psleq)

n S (@ Dn—j
N\ (P13 @)r (P23 @) ( ag )T
—0 (ﬂl vQ) ( Z;Q)T(Q;q)n—r(a(I;Q)n—i—r P1pP2 ar(a7Q)- (8)

An immediate consequence of Bailey’s Lemma is the following important corollary:

Corollary 1.4 If (au(a, ), Bj(a, ¢)) form a Bailey pair, then

. -2
Y '’ Bi(a,q) = Z a"q"™ am(a, q), ©)
>0 aq, m=0
(—ag; 6o o= @™ (= 4;6%)m 2
J m(a,q”), (10
Za ﬁ](a q ) (a5 ¢%) oo Z (—aq; )m am(a,q”) (10)
3§20 m=0
and
m, m(m-+1)/2 .

o aq7 )oo a™q 1 4)m
Zajqj(]+1)/2(_l§Q)jﬁj(avcﬂ aq Z —aq, Q§ ) on(@9)
320 ’ ’

(11)

Proof: First, letn, p; — oo in (8). Then, to obtain (9), let. — oo; to obtain (11), set
p2 = —1; and finally to obtain (10), set. = —,/q, and then replace by ¢? throughout.
(|

Thus the substitution of any Bailey pdit,, (a, q), 8. (a, q)) into (9), (10), or (11) yields
an a-RRT identity. Bailey did exactly this in [8] and [9]. Setting = 1 ora = ¢,
one obtains traditional Rogers-Ramanujan type identities in the vaiadody. Bailey’s
student L.J. Slater [26] obtained a list of 130 Rogers-Ramanujan type identitigorfiy)
in precisely this way. 1182, we study a general Bailey pair for which several special cases
were considered by Bailey himself in [9]. Next, 8, we deriveg-difference equations
for various sets 0fi-RRT identities, and consider their partition theoretic implications in
84. The narrative is concluded with some observations and open questighsHmally,
an appendix containing 26 new double sum—product Rogers-Ramanujan type identities is
included.



ON IDENTITIES OF THE ROGERS-RAMANUJAN TYPE 5

2. A Parametrized Bailey Pair

In [8] and [9], Bailey considered several Bailey pairs which are special cases of a more
general Bailey pair involving additional parametérand:

Theorem 2.1 LetA = —3d* + dk + 3d, h = |2}|, andt = d + h + 2. Let

— T —d? 4 Tzfi’!“
(_1)ra(k d) q(dk d=+$) S (aq2d;q2d)r(a;qd)r

O‘d,k,m(a, q) = (a; q2d)7‘(qd; qd)r ’
if m = dr, and
0, otherwise,
and
i EWel@s v, vn s pas g Tt
70 (q,aq;q)n
if A =0,
Ba,kem(a, q) ==
k—d _nd
. t+1Wt(a;617"’76h7M17"'7/'Ld;qd;%
lim T
T—0 (¢,0q;q)n
if A <0,

A/h .
wherev; = ©—, ji; = ¢?=97", §; = rag? ",

1 1

3 3
alaqala_qa17a‘47"'7as+l
stiWslasas, as, ... as415¢,2) = s410s T . v, DE|
e e R
and
o .
A1,02, ... ,0s41 - (ar,a2,. .., a5415q)r
s+1¢s bi.b b 74, 2| = b1 b b.: Z .
1,Y2y...,Us (Q1 1 27"'7saq)r

r=0
Then(ag k.m(a, q), Ba,kn(a, q)) form a Bailey pair.

Remark. The notation above is quite dense, and so a few words of clarification are per-
haps in order.\ represents the éfficient of 2 in the exponent of which arises when
aq.k.m(a, q) isinserted into the RHS of (7} is the number of rising-factorials necessary
to write q”z as a limit asr — 0 of a power ofr times the rising; factorials in basg®.
For example, to writg*"” using base?, we findh = 4 since

¢ = lim " (/7 %),

T—0

t is the total number of denominator entries in the resulting very-well poised basic hyper-
geometric series.
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Proof of Theorem 2.1:

Bakn(a,q)

= Z ( ! ad,k,’ln(G’)q)

q; Q)n—r(aq; q)n+r

m=0
1 zn: (D)™™ EF (¢ @) (@.q)
- Qaqd k, a,q
(¢ 9)n(ag; @)n <= (ag"™;q)m "
d 2
_ 1 an/:J (_l)drqndr-&-%r—%r? (™ Q)ar cunanaq)
(@:9)nlaq; @) = (ag"*1; q)ar e

Y ()@ Drgdir gt endr (g gd, (ag2d; 24, (g7 g)ay

= (¢; @)nlagq; @)n(q% q)r(a; 6> (ag™ 5 q)ar

If A = 0, this last expression

L li {(a,qdf, —q*/a;q) (™" /7y gt
= — 0 11IIm
(@ @)nlag; @)n =0 | (¢4, Va, —va; q%),(rag?= /"5 q4))

d—1— d—2—1 —n. d
(q n; q "o q TL7 q )TTILT'a(k—d)andr}

(ag™tl agnt2,. .. aq"td;qd),

while if A < 0, we instead place—””z in the denominator:

-y { (a,4"va, —q¢*Va; %), (rag" " )2
(@ @)n(ag; g)n 70 = (¢4, va, —v/a; q4) (¢ 75 q0)h
(qdilin’ qd727n7 ERE) qin; qd)T Thra(kfd)r ndr
(ag™™, g2, ... aq"?; q%), T

O

The goal is to find Bailey pairs which will give rise to attractive identities. Bailey himself
considered the special cases. .. (a,q) for (d,k) = (1,2),(2,2),(2,3), and(3,4) [9,
p. 5-6, eqns. (i), (iv) withf = 0, (iv) with f — oo, and (v) respectively]. Each of
these four(d, k) sets is particularly nice, as the resulting expressiomfgr - (a, ¢), when
substituted into (7), is a finite product times;B5 on baseg?, which is summable by
Jackson's theorem [14, p. 238, eqn. (11.20)]. Thais, »(a, ¢) reduces to a finite product,
and upon substituting it into (9), the left hand side of the resulifRRT identity will be a
single-fold sum.

In this way, upon lettingr — 1, we may derive the first Rogers-Ramanujan identity (1)
from (d, k) = (1,2), a Rogers’ mod0 identity (25) from(d, k) = (2,2), a Rogers mod
14 identity (31) from(d, k) = (2,3), and a Bailey-Dyson mod7 identity (35) from
(d, k) = (3,4). Itwas not mentioned by Bailey, but Euler’'s pentagonal number theorem [2,
p. 11, Cor. 1.7] arises from the caie& k) = (1, 1). Similarly, by substituting the Bailey
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pairs into (10) and (11), and then letting— 1, other identities from Slater’s list may be
derived. One case that both Bailey and Slater seem to have missed is the substitution of
(d, k) = (2,3) into (11), which immediately yields (3) and then (5) wheke- 1.

Note that, in factd = 1 corresponds to the “unit Bailey chain” [5]. Substituting the
Bailey pairs corresponding to the= 1 cases into (9) yields cases of Andrews’ analytic
generalization of the Rogers-Ramanujan identities for odd moduli [3]; see (36).

Thus to search for new identities, we need to consifler 1. Also, in order to find
Ba,k.n's With relatively simple formsgd + h should be kept as small as possible sipge
is a finite product times g ,+3W4+n+2, and the higher one looks in the hypergeometric
hierarchy, the more complicated things become. It appears that Bailey considered all cases
whered + h = 3, and thus all of the summablgVs’s. The next best situation is where
d + h = 5, which corresponds to gV, that can be transformed by Watsop*snalog of
Whipple's Theorem [14, p. 242, eqn. (11.17)]:

Consider the casgl, k) = (2,4):

B2,4,n(a, q)
Ln/2] ro2r 3724 2nr(, . 2 4. 4\ (o —n.
_ 1 3 (=1)"a™"q (a;¢°)r(ag*; ¢%)r (a1 q)2r
(¢ D)nlaq; On = (%) (a; ¢*)r (ag" 5 q)2r

(4 @)n(ag; q)n
a,¢*va,—q* a,;,; ;aq g EIPE el
f —\/a,taq, Taq, Taq, ag"t1, aqnt?’

1 _ (ag®, Tag" 1ag", 4”1 ¢*) o

(¢ @)nlaq; q)n 70 (agT,aq™*2, aq", T7ag®; ¢?)
2 q -n
T Qa, =
" [ 4 g g ]

q2 o 3054 (by [14, p. 242, eqgn. (111.17)])

Taq,Taq,
2n+1.

(aq27 aq 7+q1 )OO Z (q 271; Z)QT arq2nr+r
(4,04;9)n(ag"* 5 @)oo = (4% 6°)r

B 1 Z ar 2r (12)
(ag; ¢*)n 2 (4% 6*)r (@ Dn2r

Analogous calculations allow us to find

(g) _1\r,,—r,r?=2nr
g (=D"a""q
52,1,n(a, Q) = (aq;qQ)n Z (qz; qz)T(q; q)n_2r (13)
, B 1 (-1 qzr (a ¢*)n—
63’3’”‘(&7(]) o (a;q)zn g (q 54 )T(%Q)n—:}r (14)
1 a" ¢ (a;¢%)n—r
Bssmla:q) = (a;q)2n % (0% 6%)r (¢ Dnsr e
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Onced > 3, even ifd + h = 5, Watson’sqg-Whipple transformation [14, p. 242, eqn.
(111.17)] is not applicable as the resultings does not terminate. In this case, we must use
the more general transformation [14, p. 246, egn. (l1.36)]. Let us now consider such a
situation:

Ba6.n(a,q)
1 : @ in 3n —n o-n. 4.2 2 an
= ———— limsWr|a; 5,¢ 7", ¢7 "¢ ", q¢7 "¢ m7a%q
(¢ aq; q)n 70 T
(aq2, ag"tr, ag® L, —ag?ntl, T%aqn—&-l’ _T%aqnﬂ)oo

=0 (q,aq; q)n(at,aq"™t, aq" 2, —aq" 2, Tag*", —7aq*"; ¢*) o

n ;.1 oyn L ooim q1_pn g 4 % 1+n 1 14n
% ¢ —aq-,wazq 2,—wazq 2,4 7;7_;aa2q , —az2q .2 a n—1
89T L1 om L lom o onil ;e i1 11 54,0
taz2qz,—1a2q2,—aq , —Taq ,Taq , —qaz,qaz

(by [14, p. 70, eqn. (3.5.10)])

2 2 —1 2 1 2 1 1 1. .2
(ag®, m2aq™ ', ag® 1, —ag® ! Tag" ! — Taq" " ¢%) oo

=0 (q,aq; @)n (720, ag™ 1, aq"*t2, —aq" 2, Tag®", —1aq*"; ¢?) oo

X { (_aqn+27 q—n7 _qna% ) qna% ; q2)oo

1 1 1.
(—qa?,qa?, —ag®™*1, 25 ¢%) s

n+1 1—n
q
g, qQ]

1
—a2q"", —Taq™, 7aq"; ¢*) o

1 1
T?aq",a2q", —azq
X4(253

_Taqn—&-l, _Taqn—i-l

1
(—aq"*? T%aq", azq" ",

+ 1 1
(_Taqn+1a Taqn+17 —qaz,qaz, _aq2n+17 aq2n+1’ 7—2aqn—1’ q; q2)oo

1 1
¢ ", —q"az,q"a2, T*ag""t 4, ,
X i g,
403 l raqh. Tagh,q q°,q

(by [14, p. 246, eqn. (111.36)])

1
T (@ 9)n(ag; ¢2)n(ag?; q4) oo (4 ¢2) oo
_ (ag® "¢, (¢ " ¢2)rg® !
x4 —(a7"¢%) o (ag®"; ¢*)
> OOZ(:) (Q;Q)2r+1
- (ag®":q")r (g "1 ¢%)r g™
+ ql n;q2 aq2n+2;q4

( Joo! e 2 (:9)2r

r>0

Notice that the first term vanishes fereven and the second ferodd. Thus we conclude

(_1)m+rqr2—m2+r—2mr (a; q4)m+r

(a5 @) am (¢ @)2r (425 ¢*)m—r

Basam(a,q) = (16)

r=0
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and

2—7712+r—2m—2mr(

—1ymtrgr .4 i
( ) q . a,2q ) + +1. 17)
(a5 @) am+2(q; @) 2r+1(4% ¢ m—r

Bae2m+1(a, q) = Z

r20

3. g-difference equations

For each of the Bailey pairs derived §&, we are able to obtain oreRRT identity from
each of (9), (10), and (11). However, in general there are a éatiehtities associated with
a given(d, k). We will useqg-difference equations to establish complete sefsidéntities
for various(d, k) considered ir§2, as well as thos&l, k) considered by Bailey [9].

3.1. Expressions for the right hand sides and tledifference equations
Definition 2.  Fork = 1,andl < < k,

Qaki(a) == Qar,i(a,q)

1 (_1)naknq(dk—k%)nz—q—(k—i—k%)dn(1 _ aiq(2n+1)di)(aqd; qd)n
T (0 0)w = (4% q%)n - 18)
Theorem 3.1 The followingg-difference equations are valid:
1
Qd,k,l(a) = de,k,k(aqd) (19)
and for2 < ¢ < k,
aiflq(ifl)d 4
Qaki(a) = Qari-1(a) + WQd,k,k—i—i—l(aq )- (20)

Before proving Theorem 3.1, we need the following lemma:

Lemma 3.2

L g~ (e i — g (aig),

Qakk(a) = (g 0)m = (L —a)(g%q%)n
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Proof:
(—1)"aF g+ =57(1 — ag?¥)(a; V)
(1—a)(q%q%)n

n=0
(l)naknq(dknLg)nQgn(a;qd)n{ 4 4 4
— qnl_aqn+1_qn}
Z (1—a)(q%q?), ( )+ ( )
(=) ek g DI (0 )

(1 —a)(g%q%)n

n>0
(=1)"akng O 5 (g gY)n
+T§1 (¢4 q%)n—1
(—1)"akrg kB e n (ag i g7)
N = (g% 9%)n
2 ) Z (_1)nakn+kq(dk+g)n2+(2dk+%)n+dk(aqd;qd)n
= (4% q%)n
(—1)"aFrqllk+ D" +(5)n (qgd; g), (1 — aFq®r+D k)
N T; (4% q%)n

= (aq; 9) s Qa,k.k(a).

(|
Proof: Proof of (19)
1 d
— - A
(agig)ay O
_ 1
(aq; 9)a—1(ag; @)oo
y Z (_1)naknq(dk+%)n2+(dk7%)n(1 _ aq(2n+1)d)(aqd; qd)n
= (1 —aq?)(q%q%)n
(by Lemma 3.2)
_ 1 Z (_1)naknq(dk+%)n2+(dk7%)n(l _ aq(2n+1)d)(aqd; qd)n
(ag;q)o0 = (¢%q%)n
= Qd,k,l(a)~
(|

Proof: Proof of (20)
Qak,i(a) — Qari-1(a)
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1 i (_1)nak7zq(k+%)dn2+(k+%)dn(aqd;qd)n
- (4 9)e o
% (q—idn(l _ aiq(2n+1)di) _ qdn(l—i)(l _ ai—lq(2n+1)d(i—1)))
1 00 (_l)naknq(k+%)dn2+(k+%)dn(aqd; qd)n

d. 4d
o (4% q%)n

X
/N
Q
L
U
3
—~
[a—
Q
Y
3
~
+
Q
T.
—
Q
2
3
+
=
—
—~
T.
—
—
—~
[y
Q
(S
U
=
3
+
o)
~—
N~—

1 i (_l)naknq(k—&-%)dn2+(k—i+%)dn(aqd; qd)n
(a9 \ = (4% q%)n—1
(_1)nakn+i—1q(k+%)dn2+(k+%)dn+d(n+l)(i—1)(aqd; qd)n+1>

d. 4d
— (4% q%)n

B Z (-1)"a q(k+%)dn2+(3kfi+%)dn+d(2k7i+1)(aqd;qd)n_H
~ (ag; (g% q%)n
o (71)nakn+iflq(k+%)dn2+(k+i7%)dn+d(i71)(aqd;qd)n_H
= (g% 9%)n
_ aiflqd(ifl)(l _ aqd) i (_1)naknq(k+%)dn2+(k+if%)dn(aq2d;qd)n
(ag; 9)a(aq™™™; q)oo (g% q%)n
i (_l)nakn-i-k—i-‘rlq(k+%)dn2+(3k—i+%)dn-i—?d(lc—i-i—l)(and; qd)n
= (¢%;q%)n
_ ai71qd(z’71) i (71)naknq(k+%)dn2+(k+i—%)dn(aq2d; qd)n
(ag; @)a—1(aq™™; @)oo = (% q%)n
(1 — ak7i+1q2d(n+1)(k7i+1))

n=0

aiflqd(ifl)
= WQd,k,k—i+1(&qd)-

O

Remark. Note that forl < ¢ < k, Qq,:(0,9) = 1 which, together with (19) and
(20) uniquely determin€), 1 ;(a, ¢) as a power series imandgq. In §3.2, we will show

that certain functiong’;  ;(a, ¢) satisfy the same recurrence and initial conditions as the
Qa,x.i(a,q) for various values ofl andk, thus yielding collections of-RRT identities.
Then, in§4, we will see that generating functions for certain classes of partitions satisfy
those same recurrences and initial conditions, thus providing partition identities.

Rogers-Ramanujan type identities {innly) are perhaps more aesthetically pleasing than
theira-RRT counterparts because their right hand sides are expressible as infinite products.
Accordingly, we prove the following proposition for later use.
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Proposition 3.3

(g7, q(2k—i+Dd g(2ht1)d, o (2k+1)d)

Qaki(l) = e (21)

Proof:

(43 9) 00 Qu i (1)
dyp? —i+5)dn n i
— Z(il)nq(korz) +(k—i+3)d (17(1(2 +1)d)
n=0

_ Z(_l)nq(dk+g)n2+(dk—di+g)n _ (_1)nq(dk+g)n2+(dk+di+g)n+d¢

n=0
oo
_ Z(_1)nq(dk+g)n2—(di—dk—g)n+Z(_1)nq(dk+g)n2+(di—dk—g)n
n=0 n=1
oo
_ Z (71)nq(dk+%)n27(dk7di+%)n
n=—oo
_ (qdi, qukﬂiide7 q2dk+d; q2dk+d)oo

(by Jacobi’s triple product identity [2, p. 21, Theorem 2.8])

3.2. Expressions for the left hand sides and tledifference equations

We now work out they-difference equations associated with the left hand sides of various
a-RRT identities.

3.2.1. Thecaséd, k) =(2,2)

Definition 3.

3,243
n 2n+2n

[eS) aq
F212,1(@) = F272,1(a7q) = Z (aq;4*)n+1(q; @) .
n=0 ’ " v

in

= angiv s
Fy99(a) :=Fs22(a,q) := Z W
5 n 9 n

anq%anr%n

n=0

Fz*,z,z(a) = F2*,2,2(an) =

n=

« (ag; ¢*)n+1(0; Dn

Lemma 3.4 Fy22(a) = F5 5 5(a).
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Proof:
Fyo2(a) — F345(a)

s

o0 3,2_1
_ Z (lngzn M ((1 _ aq2n+1) _ qn>
= (aq; )1 (@3 Dn
oo 3p2_1
S I e (1= ag®*h)(1 = g") ~ ag™*")
— (aq; ¢*)n+1(43 Dn
anq%nzf%n 0 anJrlq%anr%nJrl

I
NE

< (0q; (@ Dn1 = (ag:¢*)n11(¢; D)

=0
Ul
Lemma 3.5 TheF; 3 ;(a, q) satisfy the following-difference equations:
Fr91(a) = T asz,Q,Q(GQQ) (22)
aq2 2
Fy52(a) = Fa21(a) + Fy21(aq”) (23)

1—aq
which, together withFs 5 ;(0) = 1 for ¢ = 1,2, uniquely determiné; , ;(a) as a double
power series i andgq.

Proof: By inspection, we see

1 *
1— asz’Q’Q(an) =

F. H=F
1—aq 2,2,2(% ) 2,2,1(0)7

and so (22) is established. Next,

o0

F2*’2’2(a) —Iyo1(a) = Z

n=1

anqgnz-‘r%n(l _ qn)
(aq; ¢*)n+1(q; On
Z an+1q%n2+%n+2
= (aq; P )n+2(03 @)n
2
aq
= 1_ asz,z,l(aq2)7

which verifies (23). a

Thus, by combining Lemma 3.5 with Theorem 3.1, we have established the following
theorem:

Theorem 3.6 Fori =1, 2,
Fs0i(a) = Q2,2,(a).

Settinga = 1 and employing Proposition 3.3, we obtain two identities of Rogers [20],
which appear as (44) and (46) on Slater’s list [26]:
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Corollary 3.7

3,243
¢ (4%

“ (¢56%)n+1(4: On (45 q)oo

(24)

i Zn n i q%nz—&-%n (@*, 4%, ¢"% 1) e (25)
= ( q)n 2 (@) (GO (43 0)os
3.2.2. Thecasél, k) = (2,3)
Definition 4.
ot n n’+2n
aq
F>31(a) == Fr31(a,q) =
nZ% (ag; 4*)n+1(q; On
S n, n’+n
aq
Fasale) = Fasalm,) = Z < (aq; ¢*)n+1(a:9)
0 n n>
a"q
Fss3(a) = Fy33(a,q):= —_—
233(0) = Faa(a,0) n;) (aq; 4*)n(q; O)n
Lemma 3.8 TheF; 3 ;(a, q) satisfy the following-difference equations:
F231(a) = ! F233(aq2) (26)
19y 1_ aq g
aq2 2
Fy32(a) = Fa31(a) + 11— aqFQ’S’Q(aq ) (27)
a2q4 2
Fy33(a) = Fa3.2(a) + T sz,s,l(aq ), (28)

which, together witl#, 3 ;(0) = 1 fori = 1, 2, 3, uniquely determiné’, 5 ;(a) as a double
power series i andgq.

Proof:
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is clear, so (26) is immediate. Next,

anqn2+n

Fr39(a) — Fy31(a) = Z

n=0
> anqn2+n
a nz::l (ag; ¢®)ns1(¢; @)n—1

o0
an+1

:Z(

n=0

(ag; ) n+1(q: O)n (1=a")

q(n+1)2+(n+1)

aq; ¢*)n12(q; On

_ aq2 i anqn2 +3n
1—aq (

= (aq% ¢*)n41(q; O)n

aq2

= F 2
1= aq 2.3.2(aq7),

so (27) is established. Establishing (28) is a bit trickier, and requires us to define a “catalyst”

function
s an+1qn2+3n+1

$la) =Y

n=0

(aq; *)n1 (@ On

C9py ga(ad®) + 6(0)
a a
1—aq 2,3,1(04
B a2q4 ot anqn2+4n St an+1qn2+3n+1
- Z 3.2 . Jrz .2 R
1—aq 7= (a¢* ¢*)n1 (G On 7= (0G5 ¢*)nt1 (G @)
B i an+2q(n+2)2 N e an+1qn2+3n+l
= (aq;¢*)nr2(G D = (aq36%)nt1(¢5 @)n
an+1q(TL+1)2 oo a'rL+1qn2+3n+1

I
M8

< (ag; ¢*)nt1 (¢ @)1 (aq; ¢*)n+1(4 On

n= n=0

o an+1qn2+2n+1 . oo an+1qn2+3n+1
= Z ( .2 . (1 -9 )Jr Z .2 .

= (aq; )1 (@3 Dn = (aq; P )n+1(@3 Dn

i an+1qn2+2n+1 el an+1qn2+3n+1 o0 an+1qn2+3n+1
= — +

= (aq;¢?)n1(@ D = (0q;¢%)ns1(G0)n = (0 ¢)nr1(43 D

an+1qn2+2n+1

I
M8

* (aq; ¢*)n+1(43 Dn

3
I

anqn2
(aq; ¢*)n(q; @)n—1

I
WK

n=0
_ i a”q" (1 - ag> 1) (1 - ¢")
(aq; ¢*)n+1(¢; On

n=0
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- Z anqn (1 _ aq2n+1 _ qn + aq3n+1)

= (aq; ¢®)n+1(4; Dn
e n . n> s n+1 n 213n+1
a
=Y e (- o)+ 2
= (aq; ¢*)n (@ On 1—aq = (aq; )41 (03 Dn
= Fy33(a) — Fa32(a) + ¢(a),
and thus (28) is established. a

Thus, combining Lemma 3.8 with Theorem 3.1, we have established the following theo-
rem:

Theorem 3.9 Fori =1,2,3,
Fy3i(a) = Q2,3,(a).

By settinga = 1 and employing Proposition 3.3, we obtain three identities of Rogers
([20] and [21]), which appear as (59), (60), and (61) respectively on Slater’s list [26]:

Corollary 3.10

> n?+2n 2 12 _14. 14

yo 4 Y Y ) (29)

(G 0P n+1(6 D (4 9)o

i ¢t (04 ¢ a5 e (30)

= 0(Q7q2)n+1(Qa Dn (¢ 9)o0

Z _ (% ¢ ae) (31)
(¢56°)n(@: O)n (¢ 9)o0

3.2.3. Thecaséd, k) = (2,4)

Definition 5.
n+r n +2n+2r +2r

Fs41(a) == Fra1(a,q): ZZ 1

=05 (00 41 (G Dn—2r (4% ¢%)r

Fy40(a) = Fy42(a,q): ZZ

n+r n +2n+2r +27‘(1 + aq2r+2)

aq7 n+1(q7 q)n72r(q 5 q )r

n=07r=0
n+r n +2r +2r
Fra3(a) == Fauas(a,q) : ZZ 53
S50 (0060 (@ Dn—2r (g% 4%)r
n+r n +2T2

)n (s Q)n 2r (4% ¢%)r
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Lemma 3.11 TheF; 4 ;(a, ¢) satisfy the following-difference equations:

Fyq1(a) =

1
F 2
1—aq 5,4,4(aq”)

Fs40(a) = Fr41(a) +

2

aq
Fy43(aq?)
aq

1-—
2.4

a’q
Faas(a) = Fraz2(a) + 1 qF2,4,2(aq2)

a q
F 4 41([
a 2, 1( )

Fsa4(a) = Fya3(a)+ =

which, together withFs 4;(0) = 1 for ¢ = 1,2,3,4, uniquely determind 4 ;(a) as a
double power series ia andgq.

If the reader has been following along carefully, the details of the calculations should by
now be routine, so | choose to omit the proof of this and subsequent lemmas establishing
the ¢-difference equations satisfied by the varidus, ;(a).

Thus, combining Lemma 3.11 with Theorem 3.1, we have established the following
theorem:
Theorem 3.12 For: =1,2, 3,4,

Fr4i(a) = Q24,i(a)

By settinga = 1 and employing Proposition 3.3, we obtain four new Rogers-Ramanujan
type identities related to the modullg, listed as (A.4)—(A.7) in the appendix.

3.2.4. Thecasél, k) = (3,3)

Definition 6.

2 .
—1)ra™g™ +3n+3r(r—1)/2 a 3; 3 -
F373 1((1,) = E E ( ) q ( q q )

(aq; @) on+2(a Q)n—3r (4% ¢3)r

—1)" a1 n24+3r(r—3)/2 a; 3 nr(l+a 3r _ 3r
Fy.3.5(a) ::ZZ( ) 4 (454 )n—r( q ")

(@;@)2n (45 Q)n—3r(43; %)

a™ n +3r(7‘—1)/2(a.q3)

n—r

Fs33(a ZZ

n>07r=0 a q 2n— 1((] Q)n 3r(q3,q3)r
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Lemma 3.13 TheFj; 3 ;(a, ¢) satisfy the following-difference equations:

1

F. = F. 3
ol = T ag) 1 —ag) 200
aq® 5
Fs32(a) = F33,1(a) + 0= ag)(1= aqg)FB,B,Z(aq )
a2

F333(a) = F332(a) +

(1 —agq)(1 - aq2)FS’3’1(aq3)7

which, together witl#; 3 ;(0) = 1 fori = 1, 2, 3, uniquely determinés 5 ;(a) as a double
power series i andg.

Thus, combining Lemma 3.13 with Theorem 3.1, we have established the following
theorem:

Theorem 3.14 Fori = 1,2, 3,

F33,(a) = Q33,(a).

As an immediate corollary, by letting — 1, we obtain three new Rogers-Ramanujan
type identities related to the modul®s, listed as (A.8)—(A.10) in the appendix.

3.25. Thecasél, k) = (3,4)

Definition 7.

R U G
= (a3 Q)2n+2(0 On
00 anqn(n+2)(aq3;q3)n

= (aq; Q2n+2(0 Dn

> n, n(n+l) 3..3

a'q (aq’;¢°)n

F343(a) == F343(a,q) ==

3(e) 3(a,0) =2, (aq; @)2n+1(¢ On

n=0

F342(a):=F342(a,q) =

& n n’ 3
a"q" (a;¢*)n
Fsaa(a) = Fyaa(a,q) =) :M

n=0
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Lemma 3.15 TheF; 4 ;(a, ¢) satisfy the following-difference equations:

1

Fs41(a) = 0= ag)(d = aq2)F3’4’4(aq3)
ag® 3
Fs42(a) = F34,1(a) + (1= ag)(1— an)F37473(aq )
Fs43(a) = F34.2(a) + a4 F34(aq”)
- o (1 —ag)(l —ag?) ™
a>q°

F344(a) = F343(a) +

3
a1 —ag?) 4190

which, together withF; 4 ;(0) = 1 for i = 1,2,3,4, uniquely determind’ 4 ;(a) as a
double power series ia andgq.

Theorem 3.16 For: = 1,2, 3,4,
F34(a) = Q3.4,(a)

Upon lettinga — 1 and employing Proposition 3.3, we obtain the Bailey-Dyson mod 27
identities [8, p. 434, equations (B1)—(B4)], which appear as (90)—(93) on Slater’s list [26].

Corollary 3.17

i "), (@6 ) 32)
n—0 (q )2n+2( Q)n (Q;Q)oo
i qn n+2)( 3)71 (q67 q187 q27; q27)oo (33)
= (@ )2n+2(q ODn (45 9) 0
s rL(n+1) 3 9. .9
Z q ) _ (¢%0")oo (34)
(a;q 2n+1( Dn (D
_ (@"%,4%,¢° %)
1+ = 35
Z @)2n—1(g; q) (45 @)oo (35)

nl

3.2.6. Thecaséd, k) = (3,5)
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Definition 8.

n+r n?+3r? +371+3r(aq3.q3)n ,
3 _

q)2n+2(¢; Q)71—3r(q33 QS)T

Fs51(a ZZ

n>0r=0
n+r n +3r2 +3n+3r

q (aq®; ¢*)n—r(1 +agq
F35(
Z Z (aq; q)2n+2 (q7 q)nffir(q?); q3)r

3T+3)

n207r=0
2 2
F3 ; 3 Z Z n+7"71qn +3r 73(a;q3)n_r(q3r + aq6r+3 _ 1)
0120 (a; Q)20 (@ Dn—3r (¢35 ¢°)r
n+r n +3T2+3r(a_ 3
¢ )n—
Fasals ZZ 20(¢5 @)n—3r (g% q)
n>0 r>0 @4 n=or
n+r n?+3r2 (a.q3)
F355(
7;);) 2n q Q)n 3r(q q )

Lemma 3.18 TheF; 5 ;(a, ¢) satisfy the following-difference equations:
1

F. F. 3
3,5,1(a) = 1 —aq)(1 — ag?) 3,5,5(aq”)
Fysa(a) = Fpaa) + ———0 ——Fyo (o)
35,2(a) = Fz51(a 0= ag) (1 —agd) 554 aq
Fys(@) = Fysa(@) + —— 0 Fy s (ag?)
353(a) = F359 (1= ag)(1 —ag?) 259 q
Fys4(a) = Fy5.3(a) + @’q" Fy50(aq’)
3,5,4 = I'35,3 (1 — aq)(l — aq2) 3,5,2(aq
aiql? ,
F355(a) = F35.4(a) + F351(aq”)

(1 —aq)(1 —aq?)

which, together withFs 5 ;(0) = 1 for i = 1,2, 3,4, 5, uniquely determind’ 5 ;(a) as a
double power series ia andg.

Theorem 3.19 Fori =1,2,3,4,5,
F35.i(a) = Q35.i(a)

Upon lettinga — 1 and employing Proposition 3.3, we obtain five mod 33 identities
listed in the appendix as (A.16) through (A.20).

4. Partition Theorems

In 1961, Basil Gordon [15] published an infinite family of partition identities which gener-
alized the combinatorial version of the Rogers-Ramanujan identities:
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Gordon'’s Partition Theorem Let By ; ;(n) denote the number of partitions efwherein
1 appears as a part at most— 1 times, and the total number of appearances of any two
consecutive integefsandj+1isatmosk—1. LetA; j ;(n) denote the number of partitions
of n into parts not congruent t6 or i (mod 2k + 1). ThenA;  ;(n) = Bi x:(n) for
allnandl <7 < k.

Later, George Andrews [3] found an analytic counterpart to Gordon’s partition theorem:

Andrews’ Analytic Counterpart to Gordon’s Theorem For1 < < kandk = 2,

g=imt NI+EIZI N > 1
n1,n2,..np—120 G Ui\ Dnz - -\ Dnp—y n=1 e
sT25.- Mk —1= nZ0,+1 (mod 2k+1)

whereN; = Z,’f;; n,.
Motivated by the analytic results earlier in this paper, we consider Theorem 1.1, restated
here for convenience.

Theorem 4.1 Let Ay ;(n) denote the number of partitions ef into parts# 0, +di
(mod 2dk + d). Let B, ;(n) denote the number of partitions efwherein

e d appears as a part at most- 1 times,

o the total number of appearancesd)fanddj + d (i.e. any two consecutive multiples
of d) together is at most — 1, and

e nonmultiples ofl may appear as parts without restriction.
Then forl é 7 § k‘, Ad’kﬂ-(n) = BdJm-(n).

Remark. Clearly, the casé = 1 is Gordon’s partition theorem.

Proof:
[ele] jo%s) 1 )
noo__ . nd
> Bari(n)d" = Hl — > Bikildn)g
n=0 Jj=1 n=0
dtj
= H ;X H S E—y
=1 1 qJ i 1 q 1)
dfj j#0,4i (mod (2k+1))
_ ﬁ 1
j=1 1-¢
j#0,4di (mod (2k+1)d)

O

Definition9.  Letb, x ;(m, n) denote the number of partitionsobf the kind enumerated
by By «.:(n) with the further restriction that the partition contains exaatlyarts.
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Definition 10.

Bak,i(a) == Baki(a,q) = Y bagi(m,n)a™q".

m,n=0

Theorem 4.2 TheBg i ;(a) satisfy the following system gfdifference equations:

1

B a) = —B aq? 37
d,k,l( ) (aq;q)dq d,k,k( q ) (37)
ai=1gli=1d J
Biri(a) = Brai-1(a)+ ng,k,kfzﬁrl(aq )s (38)

for2 < < k.

Proof: To obtain partitions of the type enumeratedhy; 1 (m, n) from those enumerated
by ba x.x(m,n), one simply needs to increase each part in the latter clagsabyl adjoin
as manyl’s, 2's, ..., and(d — 1)’s as desired. Thus, (37) holds.

Now let us segregate the partitions generateli;hy; (m, n) into two classes: those where
d appears as a part at mest 2 times and those whetkappears exactly— 1 times. Those
inthe former class are the entire set of partitions enumeratégby  (m,n). Thoseinthe
latter class may be obtained by starting with the set of partitions enumerabgd hy i1,
increasing each part hj; and affixing exactly — 1 copies of the pard, and as many'’s,
2's,...,and(d — 1)’s as desired. Thus, (38) holds. d

SinceB, ,:(0) for 1 < ¢ < k, by uniqueness of power series, we immediately obtain
Corollary 4.3
Bagi(a) = Qax,i(a) (39)

forall d, all k,and1 < ¢ < k, and
Bairi(a) =Qaki(a) =Fyri(a) (40)

for (d, k) = (2,2),(2,3),(2,4),(3,3),(3,4),(3,5), wherel < i < k.

As a corollary of Corollary 4.3, by setting = 1, and in light of (3.3), we obtain
combinatorial interpretations of a variety of identities in Slater’s list, as well as some of the
new identities presented in the appendix. For example, the statement

Bas3,i(1) = Q2,3,(1)

provides the partition theoretic interpretation of the Rogers mbdlentities (29)—(31),
which was stated in the introduction as Corollary 1.2. Of course, similar partition theoretic
statements can be made for all other valuesaridk, and can be seen as the combinatorial
counterparts to the = 1 case of the variousy 1 ;(a) = Qq k. (a) identities presented in

63.
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5. Conclusion

This paper was motivated by taking a careful second look at the methods employed by
Bailey ([8],[9]) and seeing if they could be pushed a bit farther. Notice that only classical
techniques (Bailey's Lemma, transformations basic hypergeometric seriesdéfetence
equations) were used. One of the goals of this paper is to illustrate that even after all these
years, many stones remain unturned along the Rogers-Ramanujan path, even when only
classical methods are used.

Presumably the methods of this paper could be used to obtain additional identities for
other values off andk. For instance ifi + k = 7, the expression fa,, (a, ¢) will involve
a 10Wy, which could be transformed into a double sum expression (see [4]), ultimately
yielding a triple sum—product identity.

Also, considering the sets ofidentities produced when instances of the parametrized Bailey
pair in Theorem 2 are inserted into (10), it seems reasonable that the associated identities
could be related to ad-extended” version of Andrews’ combinatorial generalization of the
Golinitz-Gordon partition theorem [1], analogous to Theorem 1.1. Likewise, itis plausible
that the identities arising in connection with (11) could be explained combinatorially using
the overpartitions studied recently by Corteel and Lovejoy ([13], [16]).

Furthermore, the technique of obtaining parametrized Bailey pairs could presumably be
applied to othen’s such as the one from which the Rogers-Selberg identities [9, p. 5, (ii)]
or Bailey’'s mod 9 identities [9, p. 5, (iii)] are derived, yielding other families of results.

Additionally, finite analogs of Rogers-Ramanujan type identities have, in recent years,
been of greatinterestin physics (e.g. [7], [10], [11], [12],[22], [27], [28], [29]) and symbolic
computation (e.g. [18],[19], [30], [31]). Inarecent paper [24], | presented finite analogs for
all of the identities in Slater’s list. The conjecture and proof of these polynomial identities
relied heavily on the use of computer algebra [25]. It is therefore natural to ask whether the
techniques successfully employed for finitizing the single sum-product identities of Slater’s
list can be extended to the double sum identities presented here, and more generally to
arbitrary multisum—product identities.

6. Acknowledgement

| thank the referee for a thorough, careful reading of the manuscript, and for the many
helpful comments.

Appendix
A List of Double Sum Identities of the Rogers-Ramanujan Type

The following are immediate consequences of the more general results presented earlier in
the paper.
For(d, k) = (2,1), insert (13) into (11):

ZZ

n20r >0

r 371(n 1)/24r2—2nr (qQ q4 qﬁ.qﬁ)oc

(@G Dn-2 (G0

= (-4 9) (A1)
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For(d, k) = (3,3), insert (14) into (11):

7" 7L(n+1)/2+37"(r 1)/2
= -

n>1r=0

L0)n(¢% ¢%)n—r—1
Q)Qn—l(q yq )T(QQ Q)n—Br

_ (6°.4% 00 oo (=0 Do A2)
(¢ 0)oo
For(d,k) = (2,4), insert (12) into (11):

2
"I 1g), (47,47, 0" M) e (<45 @)

- (A.3)
= (46%)n (0% 6)r (@ n2r (¢;9) o0
..into (9):
2 2
qn +2n+42r°42r (q2’ q167 q18; q18)
22(2) (0 (:9) = (¢:9) = (A.4)
n0720 q;9% )n+1\9°54°)r\4q; 9 )n—2r q;4)
2 2
qn +2n+42r +27‘(1 + q2T+2) B (q4’ q147 q18; qls)oo A 5
5 32 (. = - (A.5)
= (462 n41(6%6%) (¢ @) n2r (4:9)o0
2 2
g tE _ (6%4%,¢% ¢ (A6)
(45 6*)n (4% 6*)r (¢ Q) n—2r (45 9)oo
n>07r=0
2 2
qn +2r B (q8’ qu7 q18; qls)oo A 7
> : = . (A7)
S5 (@ 0% 6%)r (@ Onzr (4 @)oo

For(d, k) = (3,3), insert (14) into (9):

Z (_1)7‘qn2+3n+37‘(r71)/2(q3; q3)n_r (q3’ ql87 q21; q21)OO (A 8)

S (69)2n42(0% ) r (4 Onsr (¢54)oc
2
- Z (_1)rqn +37‘(7‘—3)/2(q3; q3)n7r71 B (6167q157 q21; qzl)oo (A 9)
(@ D2n-1(0% A)r (G ODr—sr (¢;9) o0 '
n>1r>0

2, - 2 1
1) g™ +3r(r—1)/2(,3. 3 S 9 12 21; 21

n>1r>0 (3 D2n-1(4%¢)r (¢ ODn—3r (¢;9) 0
..into (10):
: ZZ ¢ (g4 (0% ¢ _ (0% P o (067
+ 2 (.6)(2.2) = (2_2)
n>1r>0 n—14"549" )r\4°; 4% )n—3r 72:¢2) oo

(A.11)
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1+ZZ ) g (g3 62 (0% 6% nr1 _ (654" 0% 0% oo (— 03 6P

4®)2n—1(45%:¢%)r (4% ®)n—3r (4%:4%)

n>1r=0
(A.12)
For(d, k) = (3,5), insert (15) into (11):

Q.2
n(n+1)/243r (*]—E(])n(q?ﬁ 3

12 12 24, 24 .
1YY Lig Chn—r-1 _ (%07 ¢ ") oo (=0 @)oo
S (@0)2n0-1(0%6)r (@ Dnsr (¢ 0)oo
(A.13)
For(d, k) = (2,4), insert (12) into (10)
33 gt _ 0060 ) 1y
== (6%)n(a" 4Y)r (6% 6% n2r (% ¢*)o
2 2
3 ¢t I S G O Gl WP
, (4:0%)nla*;4")r (65 4 n—2r (4% 4%) oo
n=0r=0
For(d, k) = (3,5), insert (15) into (9):
n 243n+3r+3r (3. 3 3 ,30 .33. .33
ZZ (@5 _ (20,0, 07¢7) (A16)
S0 5o (@ D2nr2(0% 6%)r (@ Dnsr (¢ 9)o
2 Q.2 < . P
Z qn +3n+3r +3T(q3; qs)n—r<]~ + q3r+3) B (q6’ q27’q33; q33)oo (A17)

(@ @)2n+2(%; ) (€ Q) n—sr B (4:9)oo

n?+4+3r2—-3/,.3. 3 3r 6r+3 9 24 .33, 33
) n—r— + -1 ) ’ ) [e%e}
1+qu (%54 )n—r-1("" +¢ ) (¢.¢*,9%54%) (A18)

S5 (@:@)20-1(4%6%)r (@ @)n—3r a (4:9)o0
) N Z Z n 243p2 +37’(q3. qg)n—r—l _ (q127 q21’ q33; q33)oo (A 19)
S5 (@ D20-1(% 6 (@ Onsr (¢ 0)o0
1+ ZZ g+ (q -1 _ (4°,¢%,6%1¢%) (A.20)
@)2n—1(4%¢*)r (¢ @) n—3r (RS

n>1 >0
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For(d, k) = (4,6), insert (16) and (17) into (11):

1+ZZ

m—i—r m +m+r +r— 2mT(q4;q4)m+r71(_1§q)2m

(@ Q) am—1(a:0)2r (4% ¢®) m—r

m21r20
N Z Z m—i—'r m 2 rm4r?4r— 2m7+1(q4;q4)m+r(_1.q)2m+1
e (¢ @) am+1( @)2r+1(4% ¢ m—r
18 18 36. .36 .
_ (a%q ,q(q,z) )oo (=€ @)oo (A21)
bl o0

For(d, k) = (3,5), insert (15) into (10):

2 2
1+ " (=g 0*)n (0% 60 n—r—1 (6™ + 0 - 1)
(4% ¢*)2n-1(9% ¢°)r (4% ¢*)n—3r

n>1r=0
_ (0%.0%, 0" 0o (016
= a (A.22)
(4% ¢%)so
- ZZ q" ot +6’“( 00 (0% %) n—r—1 _ (@*°,6%,4"%1¢")o0(-0¢*)x
S5 2n-1(4% ¢°)r (0% ¢*)n—3r (0% ¢%) o
(A.23)

2 2
ny ¢ (41 6*)n (0% %) -1 _ (607 0*0") o (456
(4% ¢%)2n-1(¢% ¢%)r (g%

n>1r>0 ¢*)n—3r (4% ¢%)oc
- (A.24)
For(d, k) = (4,6), insert (16) and (17) into (9):
1+ Z Z m—i—r 3m> +r +r— 2mr(q4;q4)m+7‘71
=120 Q7 4m I(Q7 Q)2r(q2; q2)m—r
N Z Z m+r 3m24+-2m—4r24r— 2mr+1(q4;q4)m+r
S0 @ am+1(4 O 2r+1(9% 62 )m—r
24 28 _52. 52
_ (g ,q(qjg) 147 )oo (A.25)
..into (10):
2 2 —4dmr . .
) N Z Z (_l)m-‘rTq?m +2r°42r—4 (q87q8)m+r71(_q,q2)2m
== (%5 4%)am—1(a% %)2r (0% 4*)m—r

2 2 .
(_1)m+rq2m +2r +2r—4m7+1(q8; qs)m+r(_Q§ q2)2m+1

(42%¢®)am+1(¢% ®)2r+1 (0% ¢*)m—r
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32 40 72,72 2
_ (@*.4%q 2412)00( % q")oo (A.26)
(4% ¢*) o0
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