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Abstract. A generalized Bailey pair, which contains several special cases considered by Bailey (Proc. London
Math. Soc. (2), 50 (1949), 421–435), is derived and used to find a number of new Rogers-Ramanujan type
identities. Consideration of associatedq-difference equations points to a connection with a mild extension of
Gordon’s combinatorial generalization of the Rogers-Ramanujan identities (Amer. J. Math., 83 (1961), 393–399).
This, in turn, allows the formulation of natural combinatorial interpretations of many of the identities in Slater’s
list (Proc. London Math. Soc. (2)54 (1952), 147–167), as well as the new identities presented here. A list of 26
new double sum–product Rogers-Ramanujan type identities are included as an appendix.
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1. Introduction

1.1. Overview

We begin by recalling the famous Rogers-Ramanujan identities:

The Rogers-Ramanujan Identities

∞∑
n=0

qn2

(q; q)n
=

(q2, q3, q5; q5)∞
(q; q)∞

, (1)

and
∞∑

n=0

qn2+n

(q; q)n
=

(q, q4, q5; q5)∞
(q; q)∞

, (2)

where

(a; q)m =
m−1∏
j=0

(1− aqj),

(a; q)∞ =
∞∏

j=0

(1− aqj),

and
(a1, a2, . . . , ar; q)s = (a1; q)s(a2; q)s . . . (ar; q)s,

and throughout this paper we assume|q| < 1 to ensure convergence.
The Rogers-Ramanujan identities are due to L. J. Rogers [20], and were rediscovered

independently by S. Ramanujan [17] and I. Schur [23]. In the 1940’s, W. N. Bailey undertook
a careful study of Rogers’ work, and greatly simplified it in a pair of papers ([8] and [9]).
In these papers, Bailey was able to prove what he termed “a-generalizations” (i.e. formulae
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with a second variablea in addition toq), of the Rogers-Ramanujan identities and a number
of additional identities of similar type (some of which were due to Rogers and others
of which were new at the time). Hereafter,a-generalizations of Rogers-Ramanujan type
identities will be referred to simply as “a-RRT identities.”

By considering a certain “parametrized Bailey pair,” we will be naturally led to a variety
of a-RRT identities, some of which were found by Bailey, and others of which appear to be
new. Some examples of newa-RRT identities include∑

n=0

anqn(n+1)/2(−1; q)n

(aq; q2)n(q; q)n

=
(−aq; q)∞
(aq; q)∞

∑
r=0

(−1)ra3rq5r2
(−1; q)2r(1− aq4r)(a; q2)r

(1− a)(q2; q2)r(−aq; q)2r
(3)

and ∑
n=0

∑
r=0

an+rqn2+2r2

(aq; q2)n(q2; q2)r(q; q)n−r

=
1

(aq; q)∞

∑
r=0

(−1)ra4rq9r2−r(1− aq4r)(a; q2)r

(1− a)(q2; q2)r
(4)

From thea-RRT identities, such as (3) and (4), we may easily deduce elegant Rogers-
Ramanujan type identities (inq only); in these instances we obtain:∑

n=0

qn(n+1)/2(−1; q)n

(q; q2)n(q; q)n
=

(q5, q5, q10; q10)∞(−q; q)∞
(q; q)∞

, (5)

which, surprisingly is not included in Slater’s list [26], and

∑
n=0

∑
r=0

qn2+2r2

(q; q2)n(q2; q2)r(q; q)n−2r
=

(q8, q10, q18; q18)∞
(q; q)∞

. (6)

Remark. The referee pointed out that (3) follows from thee, d →∞, c = −1 case of [14,
p. 68, (3.5.7)] and that Bailey actually had a generalization of (3), namely [9, p. 6 (6.3)],
which makes it all the more remarkable that (5) did not appear in Slater’s list. As we shall
see later, (3) and (5) follow from the(d, k) = (2, 3) case of the parametrized Bailey pair,
and (4) and (6) follow from the(d, k) = (2, 4) case.

Once we have ana-RRT identity in hand, we then study theq-difference equations related
to the associated set of of identities. Observing the patterns which emerge in theq-difference
equations associated with various sets of identities, one is led to consider the following mild
extension of Basil Gordon’s partition theorem:

Theorem 1.1 Let Ad,k,i(n) denote the number of partitions ofn into parts 6≡ 0,±di
(mod 2dk + d). LetBd,k,i(n) denote the number of partitions ofn wherein
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• The integerd appears as a part at mosti− 1 times,

• the total number of appearances ofdj anddj + d (i.e. any two consecutive multiples
of d) together is at mostk − 1, and

• nonmultiples ofd may appear as parts without restriction.

Then for1 5 i 5 k, Ad,k,i(n) = Bd,k,i(n).

Remark. The cased = 1 is Gordon’s partition theorem [15].

As we shall see, special cases of Theorem 1.1 provide new combinatorial interpretations
for various identities in Slater’s list [26], as well as for the new analytic identities presented
here.

For example, consider the Rogers mod 14 identities, which appear in Slater [26] as
identities (59), (60), and (61) (see (29)–(31)). We shall see that these may be interpreted
combinatorially as thed = 2, k = 3 case of Theorem 1.1:

Corollary 1.2 For i = 1, 2, 3, the number of partitions ofn into parts wherein

• 2 appears as a part at mosti− 1 times,

• the total number of appearances of any two consecutive even numbers is at most2, and

• odd numbers may appear as parts without restriction,

equals the number of partitions ofn into parts not congruent to0,±2i (mod 14).

Similarly, the combinatorial interpretation of (6) is

Corollary 1.3 The number of partitions ofn into parts wherein

• 2 appears as a part at most3 times,

• the total number of appearances of any two consecutive even numbers is at most3, and

• odd numbers may appear as parts without restriction,

equals the number of partitions ofn into parts not congruent to0,±8 (mod 18).

1.2. Background

The part of Bailey’s results necessary for this current discussion may be briefly summarized
as follows:

Definition 1. A pair of sequences(αn(a, q), βn(a, q)) is called aBailey pair if for
n = 0,

βn(a, q) =
n∑

r=0

αr(a, q)
(q; q)n−r(aq; q)n+r

. (7)
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In [8] and [9], Bailey proved the fundamental result now known as “Bailey’s Lemma”
(see also [6, Chapter 3]):

Bailey’s Lemma If (αr(a, q), βj(a, q)) form a Bailey pair, then

1
(aq

ρ1
; q)n(aq

ρ2
; q)n

∑
j=0

(ρ1; q)j(ρ2; q)j( aq
ρ1ρ2

; q)n−j

(q; q)n−j

(
aq

ρ1ρ2

)j

βj(a, q)

=
n∑

r=0

(ρ1; q)r(ρ2; q)r

(aq
ρ1

; q)r(aq
ρ2

; q)r(q; q)n−r(aq; q)n+r

(
aq

ρ1ρ2

)r

αr(a, q). (8)

An immediate consequence of Bailey’s Lemma is the following important corollary:

Corollary 1.4 If (αm(a, q), βj(a, q)) form a Bailey pair, then

∑
j=0

ajqj2
βj(a, q) =

1
(aq; q)∞

∞∑
m=0

amqm2
αm(a, q), (9)

∑
j=0

ajqj2
(−q; q2)jβj(a, q2) =

(−aq; q2)∞
(aq2; q2)∞

∞∑
m=0

amqm2
(−q; q2)m

(−aq; q2)m
αm(a, q2), (10)

and

∑
j=0

ajqj(j+1)/2(−1; q)jβj(a, q) =
(−aq; q)∞
(aq; q)∞

∞∑
m=0

amqm(m+1)/2(−1; q)m

(−aq; q)m
αm(a, q).

(11)

Proof: First, letn, ρ1 → ∞ in (8). Then, to obtain (9), letρ2 → ∞; to obtain (11), set
ρ2 = −1; and finally to obtain (10), setρ2 = −√q, and then replaceq by q2 throughout.

Thus the substitution of any Bailey pair(αn(a, q), βn(a, q)) into (9), (10), or (11) yields
an a-RRT identity. Bailey did exactly this in [8] and [9]. Settinga = 1 or a = q,
one obtains traditional Rogers-Ramanujan type identities in the variableq only. Bailey’s
student L.J. Slater [26] obtained a list of 130 Rogers-Ramanujan type identities (inq only)
in precisely this way. In§2, we study a general Bailey pair for which several special cases
were considered by Bailey himself in [9]. Next, in§3, we deriveq-difference equations
for various sets ofa-RRT identities, and consider their partition theoretic implications in
§4. The narrative is concluded with some observations and open questions in§5. Finally,
an appendix containing 26 new double sum–product Rogers-Ramanujan type identities is
included.
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2. A Parametrized Bailey Pair

In [8] and [9], Bailey considered several Bailey pairs which are special cases of a more
general Bailey pair involving additional parametersd andk:

Theorem 2.1 Letλ = − 3
2d2 + dk + 1

2d, h = | 2λ
d |, andt = d + h + 2. Let

αd,k,m(a, q) :=


(−1)ra(k−d)rq(dk−d2+ d

2 )r2− d
2 r(aq2d; q2d)r(a; qd)r

(a; q2d)r(qd; qd)r
,

if m = dr, and
0, otherwise,

and

βd,k,m(a, q) :=



lim
τ→0

t+1Wt(a; ν1, . . . , νh, µ1, . . . , µd; qd; τhak−dqnd)
(q, aq; q)n

if λ = 0,

lim
τ→0

t+1Wt(a; δ1, . . . , δh, µ1, . . . , µd; qd; ak−dqnd

τh )
(q, aq; q)n

if λ < 0,

whereνj = qλ/h

τ , µj = qd−j−n, δj = τaqd−λ/h,

s+1Ws(a1; a4, a5, . . . , as+1; q, z) = s+1φs

a1, qa
1
2
1 ,−qa

1
2
1 , a4, . . . , as+1

a
1
2
1 ,−a

1
2
1 , qa1

a4
, . . . , qa1

as+1

; q, z

 ,

and

s+1φs

[
a1, a2, . . . , as+1

b1, b2, . . . , bs
; q, z

]
=

∞∑
r=0

(a1, a2, . . . , as+1; q)r

(q, b1, b2, . . . , bs; q)r
zr.

Then(αd,k,m(a, q), βd,k,n(a, q)) form a Bailey pair.

Remark. The notation above is quite dense, and so a few words of clarification are per-
haps in order.λ represents the coëfficient of r2 in the exponent ofq which arises when
αd,k,m(a, q) is inserted into the RHS of (7).h is the number of risingq-factorials necessary
to write qλr2

as a limit asτ → 0 of a power ofτ times the risingq factorials in baseqd.
For example, to writeq4r2

using baseq2, we findh = 4 since

q4r2
= lim

τ→0
τ4r(q/τ ; q2)4r.

t is the total number of denominator entries in the resulting very-well poised basic hyper-
geometric series.
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Proof of Theorem 2.1:

βd,k,n(a, q)

=
n∑

m=0

1
(q; q)n−r(aq; q)n+r

αd,k,m(a, q)

=
1

(q; q)n(aq; q)n

n∑
m=0

(−1)mqnm+ m
2 −

m2
2 (q−n; q)m

(aqn+1; q)m
αd,k,m(a, q)

=
1

(q; q)n(aq; q)n

bn/dc∑
r=0

(−1)drqndr+ d
2 r− d2

2 r2
(q−n; q)dr

(aqn+1; q)dr
αd,k,dr(a, q)

=
bn/dc∑
r=0

(−1)(d+1)ra(k−d)rqλr2+ndr(a; qd)r(aq2d; q2d)r(q−n; q)dr

(q; q)n(aq; q)n(qd; qd)r(a; q2d)r(aqn+1; q)dr

If λ = 0, this last expression

=
1

(q; q)n(aq; q)n
lim
τ→0

∑
r=0

{
(a, qd

√
a,−qd

√
a; qd)r(qλ/h/τ ; qd)h

r

(qd,
√

a,−
√

a; qd)r(τaqd−λ/h; qd)h
r

× (qd−1−n, qd−2−n, . . . , q−n; qd)r

(aqn+1, aqn+2, . . . , aqn+d; qd)r
τhra(k−d)rqndr

}
,

while if λ < 0, we instead placeq−λr2
in the denominator:

=
1

(q; q)n(aq; q)n
lim
τ→0

∑
r=0

{
(a, qd

√
a,−qd

√
a; qd)r(τaqd−λ/h; qd)h

r

(qd,
√

a,−
√

a; qd)r(qλ/h/τ ; qd)h
r

× (qd−1−n, qd−2−n, . . . , q−n; qd)r

(aqn+1, aqn+2, . . . , aqn+d; qd)r
τhra(k−d)rqndr

}
.

The goal is to find Bailey pairs which will give rise to attractive identities. Bailey himself
considered the special casesαd,k,m(a, q) for (d, k) = (1, 2), (2, 2), (2, 3), and(3, 4) [9,
p. 5–6, eqns. (i), (iv) withf = 0, (iv) with f → ∞, and (v) respectively]. Each of
these four(d, k) sets is particularly nice, as the resulting expression forαd,k,r(a, q), when
substituted into (7), is a finite product times a6W5 on baseqd, which is summable by
Jackson’s theorem [14, p. 238, eqn. (II.20)]. Thus,βd,k,n(a, q) reduces to a finite product,
and upon substituting it into (9), the left hand side of the resultinga-RRT identity will be a
single-fold sum.

In this way, upon lettinga → 1, we may derive the first Rogers-Ramanujan identity (1)
from (d, k) = (1, 2), a Rogers’ mod10 identity (25) from(d, k) = (2, 2), a Rogers mod
14 identity (31) from (d, k) = (2, 3), and a Bailey-Dyson mod27 identity (35) from
(d, k) = (3, 4). It was not mentioned by Bailey, but Euler’s pentagonal number theorem [2,
p. 11, Cor. 1.7] arises from the case(d, k) = (1, 1). Similarly, by substituting the Bailey
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pairs into (10) and (11), and then lettinga → 1, other identities from Slater’s list may be
derived. One case that both Bailey and Slater seem to have missed is the substitution of
(d, k) = (2, 3) into (11), which immediately yields (3) and then (5) whena = 1.

Note that, in fact,d = 1 corresponds to the “unit Bailey chain” [5]. Substituting the
Bailey pairs corresponding to thed = 1 cases into (9) yields cases of Andrews’ analytic
generalization of the Rogers-Ramanujan identities for odd moduli [3]; see (36).

Thus to search for new identities, we need to considerd > 1. Also, in order to find
βd,k,n’s with relatively simple forms,d + h should be kept as small as possible sinceβn

is a finite product times ad+h+3Wd+h+2, and the higher one looks in the hypergeometric
hierarchy, the more complicated things become. It appears that Bailey considered all cases
whered + h = 3, and thus all of the summable6W5’s. The next best situation is where
d + h = 5, which corresponds to a8W7 that can be transformed by Watson’sq-analog of
Whipple’s Theorem [14, p. 242, eqn. (III.17)]:

Consider the case(d, k) = (2, 4):

β2,4,n(a, q)

=
1

(q; q)n(aq; q)n

bn/2c∑
r=0

(−1)ra2rq3r2+2nr(a; q2)r(aq4; q4)r(q−n; q)2r

(q2; q2)r(a; q4)r(aqn+1; q)2r

=
1

(q; q)n(aq; q)n

× lim
τ→0

8φ7

[
a, q2

√
a,−q2

√
a, q

τ , q
τ , q

τ , q1−n, q−n

√
a,−

√
a, τaq, τaq, τaq, aqn+1, aqn+2

; q2, τ3a2q2n

]
=

1
(q; q)n(aq; q)n

lim
τ→0

(aq2, τaqn+1, τaqn, aq2n+1; q2)∞
(aqτ, aqn+2, aqn+1, τaq2n; q2)∞

×4φ3

[
τ2a, q

τ , q−n, q1−n

τaq, τaq, q2−2n

aτ

; q2, q2

]
(by [14, p. 242, eqn. (III.17)])

=
(aq2, aq2n+1; q2)∞

(q, aq; q)n(aqn+1; q)∞

∑
r=0

(q−n; q)2r

(q2; q2)r
arq2nr+r

=
1

(aq; q2)n

∑
r=0

arq2r2

(q2; q2)r(q; q)n−2r
. (12)

Analogous calculations allow us to find

β2,1,n(a, q) =
q(

n
2)

(aq; q2)n

∑
r=0

(−1)ra−rqr2−2nr

(q2; q2)r(q; q)n−2r
(13)

β3,3,n(a, q) =
1

(a; q)2n

∑
r=0

(−1)rq
3
2 r2− 3

2 r(a; q3)n−r

(q3; q3)r(q; q)n−3r
(14)

β3,5,n(a, q) =
1

(a; q)2n

∑
r=0

arq3r2
(a; q3)n−r

(q3; q3)r(q; q)n−3r
. (15)



8 A. V. SILLS

Onced > 3, even ifd + h = 5, Watson’sq-Whipple transformation [14, p. 242, eqn.
(III.17)] is not applicable as the resulting4φ3 does not terminate. In this case, we must use
the more general transformation [14, p. 246, eqn. (III.36)]. Let us now consider such a
situation:

β4,6,n(a, q)

=
1

(q, aq; q)n
lim
τ→0

8W7

[
a;

q2

τ2
, q1−n, q3−n, q−n, q2−n; q4; τ2a2q4n

]
= lim

τ→0

(aq2, aqn−1τ, aq2n+1,−aq2n+1, τ
1
2 aqn+1,−τ

1
2 aqn+1)∞

(q, aq; q)n(aτ, aqn+1, aqn+2,−aqn+2, τaq2n,−τaq2n; q2)∞

×8φ7

[
−aqn, ia

1
2 q2+ n

2 ,−ia
1
2 q2+ n

2 , q1−n, q
τ ,− q

τ , a
1
2 q1+n,−a

1
2 q1+n

ia
1
2 q

n
2 ,−ia

1
2 q

n
2 ,−aq2n+1,−τaqn+1, τaqn+1,−qa

1
2 , qa

1
2

; q2, aqn−1

]
(by [14, p. 70, eqn. (3.5.10)])

= lim
τ→0

(aq2, τ2aqn−1, aq2n+1,−aq2n+1, τaqn+1 − τaqn+1; q2)∞
(q, aq; q)n(τ2a, aqn+1, aqn+2,−aqn+2, τaq2n,−τaq2n; q2)∞

×

{
(−aqn+2, q−n,−qna

1
2 , qna

1
2 ; q2)∞

(−qa
1
2 , qa

1
2 ,−aq2n+1, 1

q ; q2)∞

×4φ3

[
τ2aqn, a

1
2 qn+1,−a

1
2 qn+1, q1−n

−τaqn+1,−τaqn+1
; q2, q2

]

+
(−aqn+2, τ2aqn, a

1
2 qn+1,−a

1
2 qn+1,−τaqn, τaqn; q2)∞

(−τaqn+1, τaqn+1,−qa
1
2 , qa

1
2 ,−aq2n+1, aq2n+1, τ2aqn−1, q; q2)∞

×4φ3

[
q−n,−qna

1
2 , qna

1
2 , τ2aqn−1

−τaqn, τaqn, q
; q2, q2

]}
(by [14, p. 246, eqn. (III.36)])

=
1

(q; q)n(aq; q2)n(aq2; q4)∞(q; q2)∞

×

−(q−n; q2)∞(aq2n; q4)∞
∑
r=0

(aq2n+2; q4)r(q1−n; q2)rq
2r+1

(q; q)2r+1

+(q1−n; q2)∞(aq2n+2; q4)∞
∑
r=0

(aq2n; q4)r(q−n; q2)rq
2r

(q; q)2r


Notice that the first term vanishes forn even and the second forn odd. Thus we conclude

β4,6,2m(a, q) =
∑
r=0

(−1)m+rqr2−m2+r−2mr(a; q4)m+r

(a; q)4m(q; q)2r(q2; q2)m−r
(16)
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and

β4,6,2m+1(a, q) =
∑
r=0

(−1)m+rqr2−m2+r−2m−2mr(a; q4)m+r+1

(a; q)4m+2(q; q)2r+1(q2; q2)m−r
. (17)

3. q-difference equations

For each of the Bailey pairs derived in§2, we are able to obtain onea-RRT identity from
each of (9), (10), and (11). However, in general there are a set ofk identities associated with
a given(d, k). We will useq-difference equations to establish complete sets ofk identities
for various(d, k) considered in§2, as well as those(d, k) considered by Bailey [9].

3.1. Expressions for the right hand sides and theirq-difference equations

Definition 2. Fork = 1, and1 5 i 5 k,

Qd,k,i(a) := Qd,k,i(a, q)

:=
1

(aq; q)∞

∑
n=0

(−1)naknq(dk+ d
2 )n2+(k−i+ 1

2 )dn(1− aiq(2n+1)di)(aqd; qd)n

(qd; qd)n
. (18)

Theorem 3.1 The followingq-difference equations are valid:

Qd,k,1(a) =
1

(aq; q)d−1
Qd,k,k(aqd) (19)

and for2 5 i 5 k,

Qd,k,i(a) = Qd,k,i−1(a) +
ai−1q(i−1)d

(aq; q)d−1
Qd,k,k−i+1(aqd). (20)

Before proving Theorem 3.1, we need the following lemma:

Lemma 3.2

Qd,k,k(a) =
1

(aq; q)∞

∑
n=0

(−1)naknq(dk+ d
2 )n2− d

2 n(1− aq2dn)(a; qd)n

(1− a)(qd; qd)n



10 A. V. SILLS

Proof: ∑
n=0

(−1)naknq(dk+ d
2 )n2− d

2 n(1− aq2dn)(a; qd)n

(1− a)(qd; qd)n

=
∑
n=0

(−1)naknq(dk+ d
2 )n2− d

2 n(a; qd)n

(1− a)(qd; qd)n

{
qdn(1− aqdn) + (1− qdn)

}

=
∑
n=0

(−1)naknq(dk+ d
2 )n2+ d

2 n(a; qd)n+1

(1− a)(qd; qd)n

+
∑
n=1

(−1)naknq(dk+ d
2 )n2− d

2 n(aqd; qd)n−1

(qd; qd)n−1

=
∑
n=0

(−1)naknq(dk+ d
2 )n2+ d

2 n(aqd; qd)n

(qd; qd)n

−
∑
n=0

(−1)nakn+kq(dk+ d
2 )n2+(2dk+ d

2 )n+dk(aqd; qd)n

(qd; qd)n

=
∑
n=0

(−1)naknq(dk+ d
2 )n2+( d

2 )n(aqd; qd)n(1− akq(2n+1)dk)
(qd; qd)n

= (aq; q)∞Qd,k,k(a).

Proof: Proof of (19)

1
(aq; q)d−1

Qd,k,k(aqd)

=
1

(aq; q)d−1(aqd+1; q)∞

×
∑
n=0

(−1)naknq(dk+ d
2 )n2+(dk− d

2 )n(1− aq(2n+1)d)(aqd; qd)n

(1− aqd)(qd; qd)n

(by Lemma 3.2)

=
1

(aq; q)∞

∑
n=0

(−1)naknq(dk+ d
2 )n2+(dk− d

2 )n(1− aq(2n+1)d)(aqd; qd)n

(qd; qd)n

= Qd,k,1(a).

Proof: Proof of (20)

Qd,k,i(a)−Qd,k,i−1(a)
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=
1

(aq; q)∞

∞∑
n=0

(−1)naknq(k+ 1
2 )dn2+(k+ 1

2 )dn(aqd; qd)n

(qd; qd)n

×
(
q−idn(1− aiq(2n+1)di)− qdn(1−i)(1− ai−1q(2n+1)d(i−1))

)
=

1
(aq; q)∞

∞∑
n=0

(−1)naknq(k+ 1
2 )dn2+(k+ 1

2 )dn(aqd; qd)n

(qd; qd)n

×
(
q−idn(1− qdn) + ai−1qd(n+1)(i−1)(1− aqd(n+1))

)
=

1
(aq; q)∞

( ∞∑
n=1

(−1)naknq(k+ 1
2 )dn2+(k−i+ 1

2 )dn(aqd; qd)n

(qd; qd)n−1

+
∞∑

n=0

(−1)nakn+i−1q(k+ 1
2 )dn2+(k+ 1

2 )dn+d(n+1)(i−1)(aqd; qd)n+1

(qd; qd)n

)

=
1

(aq; q)∞

(
−

∞∑
n=0

(−1)nakn+kq(k+ 1
2 )dn2+(3k−i+ 3

2 )dn+d(2k−i+1)(aqd; qd)n+1

(qd; qd)n

+
∞∑

n=0

(−1)nakn+i−1q(k+ 1
2 )dn2+(k+i− 1

2 )dn+d(i−1)(aqd; qd)n+1

(qd; qd)n

)

=
ai−1qd(i−1)(1− aqd)
(aq; q)d(aqd+1; q)∞

( ∞∑
n=0

(−1)naknq(k+ 1
2 )dn2+(k+i− 1

2 )dn(aq2d; qd)n

(qd; qd)n

−
∞∑

n=0

(−1)nakn+k−i+1q(k+ 1
2 )dn2+(3k−i+ 3

2 )dn+2d(k−i+1)(aq2d; qd)n

(qd; qd)n

)

=
ai−1qd(i−1)

(aq; q)d−1(aqd+1; q)∞

∞∑
n=0

(−1)naknq(k+ 1
2 )dn2+(k+i− 1

2 )dn(aq2d; qd)n

(qd; qd)n

×(1− ak−i+1q2d(n+1)(k−i+1))

=
ai−1qd(i−1)

(aq; q)d−1
Qd,k,k−i+1(aqd).

Remark. Note that for1 5 i 5 k, Qd,k,i(0, q) = 1 which, together with (19) and
(20) uniquely determineQd,k,i(a, q) as a power series ina andq. In §3.2, we will show
that certain functionsFd,k,i(a, q) satisfy the same recurrence and initial conditions as the
Qd,k,i(a, q) for various values ofd andk, thus yielding collections ofa-RRT identities.
Then, in§4, we will see that generating functions for certain classes of partitions satisfy
those same recurrences and initial conditions, thus providing partition identities.

Rogers-Ramanujan type identities (inq only) are perhaps more aesthetically pleasing than
theira-RRT counterparts because their right hand sides are expressible as infinite products.
Accordingly, we prove the following proposition for later use.
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Proposition 3.3

Qd,k,i(1) =
(qid, q(2k−i+1)d, q(2k+1)d; q(2k+1)d)∞

(q; q)∞
(21)

Proof:

(q; q)∞Qd,k,i(1)

=
∑
n=0

(−1)nq(dk+ d
2 )n2+(k−i+ 1

2 )dn(1− q(2n+1)di)

=
∑
n=0

(−1)nq(dk+ d
2 )n2+(dk−di+ d

2 )n − (−1)nq(dk+ d
2 )n2+(dk+di+ d

2 )n+di

=
∑
n=0

(−1)nq(dk+ d
2 )n2−(di−dk− d

2 )n +
∞∑

n=1

(−1)nq(dk+ d
2 )n2+(di−dk− d

2 )n

=
∞∑

n=−∞
(−1)nq(dk+ d

2 )n2−(dk−di+ d
2 )n

= (qdi, q2dk−di+d, q2dk+d; q2dk+d)∞
(by Jacobi’s triple product identity [2, p. 21, Theorem 2.8])

3.2. Expressions for the left hand sides and theirq-difference equations

We now work out theq-difference equations associated with the left hand sides of various
a-RRT identities.

3.2.1. The case(d, k) = (2, 2)

Definition 3.

F2,2,1(a) := F2,2,1(a, q) :=
∞∑

n=0

anq
3
2 n2+ 3

2 n

(aq; q2)n+1(q; q)n
.

F2,2,2(a) := F2,2,2(a, q) :=
∞∑

n=0

anq
3
2 n2− 1

2 n

(aq; q2)n(q; q)n

F ∗2,2,2(a) := F ∗2,2,2(a, q) :=
∞∑

n=0

anq
3
2 n2+ 1

2 n

(aq; q2)n+1(q; q)n

Lemma 3.4 F2,2,2(a) = F ∗2,2,2(a).
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Proof:

F2,2,2(a)− F ∗2,2,2(a)

=
∞∑

n=0

anq
3
2 n2− 1

2 n

(aq; q2)n+1(q; q)n

(
(1− aq2n+1)− qn

)
=

∞∑
n=0

anq
3
2 n2− 1

2 n

(aq; q2)n+1(q; q)n

(
(1− aq2n+1)(1− qn)− aq3n+1

)
=

∞∑
n=1

anq
3
2 n2− 1

2 n

(aq; q2)n(q; q)n−1
−

∞∑
n=0

an+1q
3
2 n2+ 5

2 n+1

(aq; q2)n+1(q; q)n

= 0

Lemma 3.5 TheF2,2,i(a, q) satisfy the followingq-difference equations:

F2,2,1(a) =
1

1− aq
F2,2,2(aq2) (22)

F2,2,2(a) = F2,2,1(a) +
aq2

1− aq
F2,2,1(aq2) (23)

which, together withF2,2,i(0) = 1 for i = 1, 2, uniquely determineF2,2,i(a) as a double
power series ina andq.

Proof: By inspection, we see

1
1− aq

F ∗2,2,2(aq2) =
1

1− aq
F2,2,2(aq2) = F2,2,1(a),

and so (22) is established. Next,

F ∗2,2,2(a)− F2,2,1(a) =
∞∑

n=1

anq
3
2 n2+ 1

2 n(1− qn)
(aq; q2)n+1(q; q)n

=
∞∑

n=0

an+1q
3
2 n2+ 7

2 n+2

(aq; q2)n+2(q; q)n

=
aq2

1− aq
F2,2,1(aq2),

which verifies (23).

Thus, by combining Lemma 3.5 with Theorem 3.1, we have established the following
theorem:

Theorem 3.6 For i = 1, 2,
F2,2,i(a) = Q2,2,i(a).

Settinga = 1 and employing Proposition 3.3, we obtain two identities of Rogers [20],
which appear as (44) and (46) on Slater’s list [26]:



14 A. V. SILLS

Corollary 3.7

∞∑
n=0

q
3
2 n2+ 3

2 n

(q; q2)n+1(q; q)n
=

(q2, q8, q10; q10)∞
(q; q)∞

(24)

∞∑
n=0

q
3
2 n2− 1

2 n

(q; q2)n(q; q)n
=

∞∑
n=0

q
3
2 n2+ 1

2 n

(q; q2)n+1(q; q)n
=

(q4, q6, q10; q10)∞
(q; q)∞

. (25)

3.2.2. The case(d, k) = (2, 3)

Definition 4.

F2,3,1(a) := F2,3,1(a, q) :=
∞∑

n=0

anqn2+2n

(aq; q2)n+1(q; q)n

F2,3,2(a) := F2,3,2(a, q) :=
∞∑

n=0

anqn2+n

(aq; q2)n+1(q; q)n

F2,3,3(a) := F2,3,3(a, q) :=
∞∑

n=0

anqn2

(aq; q2)n(q; q)n

Lemma 3.8 TheF2,3,i(a, q) satisfy the followingq-difference equations:

F2,3,1(a) =
1

1− aq
F2,3,3(aq2) (26)

F2,3,2(a) = F2,3,1(a) +
aq2

1− aq
F2,3,2(aq2) (27)

F2,3,3(a) = F2,3,2(a) +
a2q4

1− aq
F2,3,1(aq2), (28)

which, together withF2,3,i(0) = 1 for i = 1, 2, 3, uniquely determineF2,3,i(a) as a double
power series ina andq.

Proof:

F2,3,1(a) =
1

1− aq
F2,3,3(aq2)
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is clear, so (26) is immediate. Next,

F2,3,2(a)− F2,3,1(a) =
∞∑

n=0

anqn2+n

(aq; q2)n+1(q; q)n
(1− qn)

=
∞∑

n=1

anqn2+n

(aq; q2)n+1(q; q)n−1

=
∞∑

n=0

an+1q(n+1)2+(n+1)

(aq; q2)n+2(q; q)n

=
aq2

1− aq

∞∑
n=0

anqn2+3n

(aq3; q2)n+1(q; q)n

=
aq2

1− aq
F2,3,2(aq2),

so (27) is established. Establishing (28) is a bit trickier, and requires us to define a “catalyst”
function

φ(a) :=
∞∑

n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n
.

a2q4

1− aq
F2,3,1(aq2) + φ(a)

=
a2q4

1− aq

∞∑
n=0

anqn2+4n

(aq3; q2)n+1(q; q)n
+

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=0

an+2q(n+2)2

(aq; q2)n+2(q; q)n
+

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=1

an+1q(n+1)2

(aq; q2)n+1(q; q)n−1
+

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=0

an+1qn2+2n+1

(aq; q2)n+1(q; q)n
(1− qn) +

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=0

an+1qn2+2n+1

(aq; q2)n+1(q; q)n
−

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n
+

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=0

an+1qn2+2n+1

(aq; q2)n+1(q; q)n

=
∞∑

n=0

anqn2

(aq; q2)n(q; q)n−1

=
∞∑

n=0

anqn2
(1− aq2n+1)(1− qn)

(aq; q2)n+1(q; q)n
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=
∞∑

n=0

anqn2
(1− aq2n+1 − qn + aq3n+1)

(aq; q2)n+1(q; q)n

=
∞∑

n=0

anqn2

(aq; q2)n(q; q)n

(
1− qn

1− aq2n+1

)
+

∞∑
n=0

an+1qn2+3n+1

(aq; q2)n+1(q; q)n

= F2,3,3(a)− F2,3,2(a) + φ(a),

and thus (28) is established.

Thus, combining Lemma 3.8 with Theorem 3.1, we have established the following theo-
rem:

Theorem 3.9 For i = 1, 2, 3,

F2,3,i(a) = Q2,3,i(a).

By settinga = 1 and employing Proposition 3.3, we obtain three identities of Rogers
( [20] and [21]), which appear as (59), (60), and (61) respectively on Slater’s list [26]:

Corollary 3.10
∞∑

n=0

qn2+2n

(q; q2)n+1(q; q)n
=

(q2, q12, q14; q14)
(q; q)∞

(29)

∞∑
n=0

qn2+n

(q; q2)n+1(q; q)n
=

(q4, q10, q14; q14)
(q; q)∞

(30)

∞∑
n=0

qn2

(q; q2)n(q; q)n
=

(q6, q8, q14; q14)
(q; q)∞

(31)

3.2.3. The case(d, k) = (2, 4)

Definition 5.

F2,4,1(a) := F2,4,1(a, q) :=
∑
n=0

∑
r=0

an+rqn2+2n+2r2+2r

(aq; q2)n+1(q; q)n−2r(q2; q2)r

F2,4,2(a) := F2,4,2(a, q) :=
∑
n=0

∑
r=0

an+rqn2+2n+2r2+2r(1 + aq2r+2)
(aq; q2)n+1(q; q)n−2r(q2; q2)r

F2,4,3(a) := F2,4,3(a, q) :=
∑
n=0

∑
r=0

an+rqn2+2r2+2r

(aq; q2)n(q; q)n−2r(q2; q2)r

F2,4,4(a) := F2,4,4(a, q) :=
∑
n=0

∑
r=0

an+rqn2+2r2

(aq; q2)n(q; q)n−2r(q2; q2)r



ON IDENTITIES OF THE ROGERS-RAMANUJAN TYPE 17

Lemma 3.11 TheF2,4,i(a, q) satisfy the followingq-difference equations:

F2,4,1(a) =
1

1− aq
F2,4,4(aq2)

F2,4,2(a) = F2,4,1(a) +
aq2

1− aq
F2,4,3(aq2)

F2,4,3(a) = F2,4,2(a) +
a2q4

1− aq
F2,4,2(aq2)

F2,4,4(a) = F2,4,3(a) +
a3q6

1− aq
F2,4,1(aq2),

which, together withF2,4,i(0) = 1 for i = 1, 2, 3, 4, uniquely determineF2,4,i(a) as a
double power series ina andq.

If the reader has been following along carefully, the details of the calculations should by
now be routine, so I choose to omit the proof of this and subsequent lemmas establishing
theq-difference equations satisfied by the variousFd,k,i(a).

Thus, combining Lemma 3.11 with Theorem 3.1, we have established the following
theorem:

Theorem 3.12 For i = 1, 2, 3, 4,

F2,4,i(a) = Q2,4,i(a)

By settinga = 1 and employing Proposition 3.3, we obtain four new Rogers-Ramanujan
type identities related to the modulus18, listed as (A.4)–(A.7) in the appendix.

3.2.4. The case(d, k) = (3, 3)

Definition 6.

F3,3,1(a) :=
∑
n=0

∑
r=0

(−1)ranqn2+3n+3r(r−1)/2(aq3; q3)n−r

(aq; q)2n+2(q; q)n−3r(q3; q3)r

F3,3,2(a) :=
∑
n=0

∑
r=0

(−1)ran−1qn2+3r(r−3)/2(a; q3)n−r(1 + aq3r − q3r)
(a; q)2n(q; q)n−3r(q3; q3)r

F3,3,3(a) :=
∑
n=0

∑
r=0

(−1)ranqn2+3r(r−1)/2(a; q3)n−r

(a; q)2n−1(q; q)n−3r(q3; q3)r
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Lemma 3.13 TheF3,3,i(a, q) satisfy the followingq-difference equations:

F3,3,1(a) =
1

(1− aq)(1− aq2)
F3,3,3(aq3)

F3,3,2(a) = F3,3,1(a) +
aq3

(1− aq)(1− aq2)
F3,3,2(aq3)

F3,3,3(a) = F3,3,2(a) +
a2q6

(1− aq)(1− aq2)
F3,3,1(aq3),

which, together withF3,3,i(0) = 1 for i = 1, 2, 3, uniquely determineF3,3,i(a) as a double
power series ina andq.

Thus, combining Lemma 3.13 with Theorem 3.1, we have established the following
theorem:

Theorem 3.14 For i = 1, 2, 3,

F3,3,i(a) = Q3,3,i(a).

As an immediate corollary, by lettinga → 1, we obtain three new Rogers-Ramanujan
type identities related to the modulus21, listed as (A.8)–(A.10) in the appendix.

3.2.5. The case(d, k) = (3, 4)

Definition 7.

F3,4,1(a) := F3,4,1(a, q) :=
∞∑

n=0

anqn(n+3)(aq3; q3)n

(aq; q)2n+2(q; q)n

F3,4,2(a) := F3,4,2(a, q) :=
∞∑

n=0

anqn(n+2)(aq3; q3)n

(aq; q)2n+2(q; q)n

F3,4,3(a) := F3,4,3(a, q) :=
∞∑

n=0

anqn(n+1)(aq3; q3)n

(aq; q)2n+1(q; q)n

F3,4,4(a) := F3,4,4(a, q) :=
∞∑

n=0

anqn2
(a; q3)n

(a; q)2n(q; q)n
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Lemma 3.15 TheF3,4,i(a, q) satisfy the followingq-difference equations:

F3,4,1(a) =
1

(1− aq)(1− aq2)
F3,4,4(aq3)

F3,4,2(a) = F3,4,1(a) +
aq3

(1− aq)(1− aq2)
F3,4,3(aq3)

F3,4,3(a) = F3,4,2(a) +
a2q6

(1− aq)(1− aq2)
F3,4,2(aq3)

F3,4,4(a) = F3,4,3(a) +
a3q9

(1− aq)(1− aq2)
F3,4,1(aq3),

which, together withF3,4,i(0) = 1 for i = 1, 2, 3, 4, uniquely determineF3,4,i(a) as a
double power series ina andq.

Theorem 3.16 For i = 1, 2, 3, 4,

F3,4,i(a) = Q3,4,i(a)

Upon lettinga → 1 and employing Proposition 3.3, we obtain the Bailey-Dyson mod 27
identities [8, p. 434, equations (B1)–(B4)], which appear as (90)–(93) on Slater’s list [26].

Corollary 3.17

∞∑
n=0

qn(n+3)(q3; q3)n

(q; q)2n+2(q; q)n
=

(q3, q24, q27; q27)∞
(q; q)∞

(32)

∞∑
n=0

qn(n+2)(q3; q3)n

(q; q)2n+2(q; q)n
=

(q6, q18, q27; q27)∞
(q; q)∞

(33)

∞∑
n=0

qn(n+1)(q3; q3)n

(q; q)2n+1(q; q)n
=

(q9; q9)∞
(q; q)∞

(34)

1 +
∞∑

n=1

qn2
(q3; q3)n−1

(q; q)2n−1(q; q)n
=

(q12, q15, q27; q27)∞
(q; q)∞

(35)

3.2.6. The case(d, k) = (3, 5)
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Definition 8.

F3,5,1(a) :=
∑
n=0

∑
r=0

an+rqn2+3r2+3n+3r(aq3; q3)n−r

(aq; q)2n+2(q; q)n−3r(q3; q3)r

F3,5,2(a) :=
∑
n=0

∑
r=0

an+rqn2+3r2+3n+3r(aq3; q3)n−r(1 + aq3r+3)
(aq; q)2n+2(q; q)n−3r(q3; q3)r

F3,5,3(a) :=
∑
n=0

∑
r=0

an+r−1qn2+3r2−3(a; q3)n−r(q3r + aq6r+3 − 1)
(a; q)2n(q; q)n−3r(q3; q3)r

F3,5,4(a) :=
∑
n=0

∑
r=0

an+rqn2+3r2+3r(a; q3)n−r

(a; q)2n(q; q)n−3r(q3; q3)r

F3,5,5(a) :=
∑
n=0

∑
r=0

an+rqn2+3r2
(a; q3)n−r

(a; q)2n(q; q)n−3r(q3; q3)r

Lemma 3.18 TheF3,5,i(a, q) satisfy the followingq-difference equations:

F3,5,1(a) =
1

(1− aq)(1− aq2)
F3,5,5(aq3)

F3,5,2(a) = F3,5,1(a) +
aq3

(1− aq)(1− aq2)
F3,5,4(aq3)

F3,5,3(a) = F3,5,2(a) +
a2q6

(1− aq)(1− aq2)
F3,5,3(aq3)

F3,5,4(a) = F3,5,3(a) +
a3q9

(1− aq)(1− aq2)
F3,5,2(aq3)

F3,5,5(a) = F3,5,4(a) +
a4q12

(1− aq)(1− aq2)
F3,5,1(aq3)

which, together withF3,5,i(0) = 1 for i = 1, 2, 3, 4, 5, uniquely determineF3,5,i(a) as a
double power series ina andq.

Theorem 3.19 For i = 1, 2, 3, 4, 5,

F3,5,i(a) = Q3,5,i(a)

Upon lettinga → 1 and employing Proposition 3.3, we obtain five mod 33 identities
listed in the appendix as (A.16) through (A.20).

4. Partition Theorems

In 1961, Basil Gordon [15] published an infinite family of partition identities which gener-
alized the combinatorial version of the Rogers-Ramanujan identities:
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Gordon’s Partition Theorem LetB1,k,i(n) denote the number of partitions ofn wherein
1 appears as a part at mosti − 1 times, and the total number of appearances of any two
consecutive integersj andj+1 is at mostk−1. LetA1,k,i(n)denote the number of partitions
of n into parts not congruent to0 or ±i (mod 2k + 1). ThenA1,k,i(n) = B1,k,i(n) for
all n and1 5 i 5 k.

Later, George Andrews [3] found an analytic counterpart to Gordon’s partition theorem:

Andrews’ Analytic Counterpart to Gordon’s Theorem For 1 5 i 5 k andk = 2,

∑
n1,n2,...,nk−1=0

q
∑k−1

j=1 N2
j +

∑k−1
j=i Nj

(q; q)n1(q; q)n2 . . . (q; q)nk−1

=
∞∏

n=1
n 6≡0,±i (mod 2k+1)

1
1− qn

, (36)

whereNj =
∑k−1

h=j nh.
Motivated by the analytic results earlier in this paper, we consider Theorem 1.1, restated

here for convenience.

Theorem 4.1 Let Ad,k,i(n) denote the number of partitions ofn into parts 6≡ 0,±di
(mod 2dk + d). LetBd,k,i(n) denote the number of partitions ofn wherein

• d appears as a part at mosti− 1 times,

• the total number of appearances ofdj anddj + d (i.e. any two consecutive multiples
of d) together is at mostk − 1, and

• nonmultiples ofd may appear as parts without restriction.

Then for1 5 i 5 k, Ad,k,i(n) = Bd,k,i(n).

Remark. Clearly, the cased = 1 is Gordon’s partition theorem.

Proof:
∞∑

n=0

Bd,k,i(n)qn =
∞∏

j=1

d-j

1
1− qj

∞∑
n=0

B1,k,i(dn)qnd

=
∞∏

j=1

d-j

1
1− qj

×
∞∏

j=1

j 6≡0,±i (mod (2k+1))

1
1− qdj

=
∞∏

j=1

j 6≡0,±di (mod (2k+1)d)

1
1− qj

Definition 9. Letbd,k,i(m,n)denote the number of partitions ofnof the kind enumerated
by Bd,k,i(n) with the further restriction that the partition contains exactlym parts.
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Definition 10.

Bd,k,i(a) := Bd,k,i(a, q) :=
∑

m,n=0

bd,k,i(m,n)amqn.

Theorem 4.2 TheBd,k,i(a) satisfy the following system ofq-difference equations:

Bd,k,1(a) =
1

(aq; q)d−1
Bd,k,k(aqd) (37)

Bd,k,i(a) = Bk,d,i−1(a) +
ai−1q(i−1)d

(aq; q)d−1
Bd,k,k−i+1(aqd), (38)

for 2 5 i 5 k.

Proof: To obtain partitions of the type enumerated bybd,k,1(m,n) from those enumerated
by bd,k,k(m,n), one simply needs to increase each part in the latter class byd and adjoin
as many1’s, 2’s, . . . , and(d− 1)’s as desired. Thus, (37) holds.

Now let us segregate the partitions generated bybd,k,i(m,n) into two classes: those where
d appears as a part at mosti−2 times and those whered appears exactlyi−1 times. Those
in the former class are the entire set of partitions enumerated bybd,k,i−1(m,n). Those in the
latter class may be obtained by starting with the set of partitions enumerated bybd,k,k−i+1,
increasing each part byd, and affixing exactlyi− 1 copies of the partd, and as many1’s,
2’s, . . . , and(d− 1)’s as desired. Thus, (38) holds.

SinceBd,k,i(0) for 1 5 i 5 k, by uniqueness of power series, we immediately obtain

Corollary 4.3
Bd,k,i(a) = Qd,k,i(a) (39)

for all d, all k, and1 5 i 5 k, and

Bd,k,i(a) = Qd,k,i(a) = Fd,k,i(a) (40)

for (d, k) = (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), where1 5 i 5 k.

As a corollary of Corollary 4.3, by settinga = 1, and in light of (3.3), we obtain
combinatorial interpretations of a variety of identities in Slater’s list, as well as some of the
new identities presented in the appendix. For example, the statement

B2,3,i(1) = Q2,3,i(1)

provides the partition theoretic interpretation of the Rogers mod14 identities (29)–(31),
which was stated in the introduction as Corollary 1.2. Of course, similar partition theoretic
statements can be made for all other values ofd andk, and can be seen as the combinatorial
counterparts to thea = 1 case of the variousFd,k,i(a) = Qd,k,i(a) identities presented in
§3.
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5. Conclusion

This paper was motivated by taking a careful second look at the methods employed by
Bailey ([8],[9]) and seeing if they could be pushed a bit farther. Notice that only classical
techniques (Bailey’s Lemma, transformations basic hypergeometric series, andq-difference
equations) were used. One of the goals of this paper is to illustrate that even after all these
years, many stones remain unturned along the Rogers-Ramanujan path, even when only
classical methods are used.

Presumably the methods of this paper could be used to obtain additional identities for
other values ofd andk. For instance ifd + k = 7, the expression forβm(a, q) will involve
a 10W9, which could be transformed into a double sum expression (see [4]), ultimately
yielding a triple sum–product identity.

Also, considering the sets of identities produced when instances of the parametrized Bailey
pair in Theorem 2 are inserted into (10), it seems reasonable that the associated identities
could be related to a “d-extended” version of Andrews’ combinatorial generalization of the
Göllnitz-Gordon partition theorem [1], analogous to Theorem 1.1. Likewise, it is plausible
that the identities arising in connection with (11) could be explained combinatorially using
the overpartitions studied recently by Corteel and Lovejoy ([13], [16]).

Furthermore, the technique of obtaining parametrized Bailey pairs could presumably be
applied to otherα’s such as the one from which the Rogers-Selberg identities [9, p. 5, (ii)]
or Bailey’s mod 9 identities [9, p. 5, (iii)] are derived, yielding other families of results.

Additionally, finite analogs of Rogers-Ramanujan type identities have, in recent years,
been of great interest in physics (e.g. [7], [10], [11], [12],[22], [27], [28], [29]) and symbolic
computation (e.g. [18], [19], [30], [31]). In a recent paper [24], I presented finite analogs for
all of the identities in Slater’s list. The conjecture and proof of these polynomial identities
relied heavily on the use of computer algebra [25]. It is therefore natural to ask whether the
techniques successfully employed for finitizing the single sum-product identities of Slater’s
list can be extended to the double sum identities presented here, and more generally to
arbitrary multisum–product identities.
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Appendix

A List of Double Sum Identities of the Rogers-Ramanujan Type

The following are immediate consequences of the more general results presented earlier in
the paper.

For (d, k) = (2, 1), insert (13) into (11):

∑
n=0

∑
r=0

(−1)rq3n(n−1)/2+r2−2nr

(q; q2)n(q2; q2)r(q; q)n−2r
=

(q2, q4, q6; q6)∞
(q; q)∞

= (−q; q)∞ (A.1)
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For (d, k) = (3, 3), insert (14) into (11):

1 +
∑
n=1

∑
r=0

(−1)rqn(n+1)/2+3r(r−1)/2(−1; q)n(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r

=
(q6, q6, q12; q12)∞(−q; q)∞

(q; q)∞
(A.2)

For (d, k) = (2, 4), insert (12) into (11):∑
n=0

∑
r=0

qn(n+1)/2+2r2
(−1; q)n

(q; q2)n(q2; q2)r(q; q)n−2r
=

(q7, q7, q14; q14)∞(−q; q)∞
(q; q)∞

(A.3)

. . . into (9):∑
n=0

∑
r=0

qn2+2n+2r2+2r

(q; q2)n+1(q2; q2)r(q; q)n−2r
=

(q2, q16, q18; q18)∞
(q; q)∞

(A.4)

∑
n=0

∑
r=0

qn2+2n+2r2+2r(1 + q2r+2)
(q; q2)n+1(q2; q2)r(q; q)n−2r

=
(q4, q14, q18; q18)∞

(q; q)∞
(A.5)

∑
n=0

∑
r=0

qn2+2r2+2r

(q; q2)n(q2; q2)r(q; q)n−2r
=

(q6, q12, q18; q18)∞
(q; q)∞

(A.6)

∑
n=0

∑
r=0

qn2+2r2

(q; q2)n(q2; q2)r(q; q)n−2r
=

(q8, q10, q18; q18)∞
(q; q)∞

(A.7)

For (d, k) = (3, 3), insert (14) into (9):∑
n=0

∑
r=0

(−1)rqn2+3n+3r(r−1)/2(q3; q3)n−r

(q; q)2n+2(q3; q3)r(q; q)n−3r
=

(q3, q18, q21; q21)∞
(q; q)∞

(A.8)

1 +
∑
n=1

∑
r=0

(−1)rqn2+3r(r−3)/2(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r
=

(q6, q15, q21; q21)∞
(q; q)∞

(A.9)

1 +
∑
n=1

∑
r=0

(−1)rqn2+3r(r−1)/2(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r
=

(q9, q12, q21; q21)∞
(q; q)∞

(A.10)

. . . into (10):

1 +
∑
n=1

∑
r=0

(−1)rqn2+3r(r−3)(−q; q2)n(q6; q6)n−r−1

(q2; q2)2n−1(q6; q6)r(q2; q2)n−3r
=

(q3, q21, q24; q24)∞(−q; q2)∞
(q2; q2)∞

(A.11)
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1 +
∑
n=1

∑
r=0

(−1)rqn2+3r(r−1)(−q; q2)n(q6; q6)n−r−1

(q2; q2)2n−1(q6; q6)r(q2; q2)n−3r
=

(q9, q15, q24; q24)∞(−q; q2)∞
(q2; q2)∞

(A.12)
For (d, k) = (3, 5), insert (15) into (11):

1 +
∑
n=1

∑
r=0

qn(n+1)/2+3r2
(−1; q)n(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r
=

(q12, q12, q24; q24)∞(−q; q)∞
(q; q)∞

(A.13)
For (d, k) = (2, 4), insert (12) into (10):

∑
n=0

∑
r=0

qn2+4r2+4r

(q; q2)n(q4; q4)r(q2; q2)n−2r
=

(q8, q20, q28; q28)∞(−q; q2)∞
(q2; q2)∞

(A.14)

∑
n=0

∑
r=0

qn2+4r2

(q; q2)n(q4; q4)r(q2; q2)n−2r
=

(q12, q16, q28; q28)∞(−q; q2)∞
(q2; q2)∞

(A.15)

For (d, k) = (3, 5), insert (15) into (9):

∑
n=0

∑
r=0

qn2+3n+3r2+3r(q3; q3)n−r

(q; q)2n+2(q3; q3)r(q; q)n−3r
=

(q3, q30, q33; q33)∞
(q; q)∞

(A.16)

∑
n=0

∑
r=0

qn2+3n+3r2+3r(q3; q3)n−r(1 + q3r+3)
(q; q)2n+2(q3; q3)r(q; q)n−3r

=
(q6, q27, q33; q33)∞

(q; q)∞
(A.17)

1 +
∑
n=1

∑
r=0

qn2+3r2−3(q3; q3)n−r−1(q3r + q6r+3 − 1)
(q; q)2n−1(q3; q3)r(q; q)n−3r

=
(q9, q24, q33; q33)∞

(q; q)∞
(A.18)

1 +
∑
n=1

∑
r=0

qn2+3r2+3r(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r
=

(q12, q21, q33; q33)∞
(q; q)∞

(A.19)

1 +
∑
n=1

∑
r=0

qn2+3r2
(q3; q3)n−r−1

(q; q)2n−1(q3; q3)r(q; q)n−3r
=

(q15, q18, q33; q33)∞
(q; q)∞

(A.20)
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For (d, k) = (4, 6), insert (16) and (17) into (11):

1 +
∑
m=1

∑
r=0

(−1)m+rqm2+m+r2+r−2mr(q4; q4)m+r−1(−1; q)2m

(q; q)4m−1(q; q)2r(q2; q2)m−r

+
∑
m=0

∑
r=0

(−1)m+rqm2+m+r2+r−2mr+1(q4; q4)m+r(−1; q)2m+1

(q; q)4m+1(q; q)2r+1(q2; q2)m−r

=
(q18, q18, q36; q36)∞(−q; q)∞

(q; q)∞
(A.21)

For (d, k) = (3, 5), insert (15) into (10):

1 +
∑
n=1

∑
r=0

qn2+6r2−6(−q; q2)n(q6; q6)n−r−1(q6r + q12r+6 − 1)
(q2; q2)2n−1(q6; q6)r(q2; q2)n−3r

=
(q9, q39, q48; q48)∞(−q; q2)∞

(q2; q2)∞
(A.22)

1 +
∑
n=1

∑
r=0

qn2+6r2+6r(−q; q2)n(q6; q6)n−r−1

(q2; q2)2n−1(q6; q6)r(q2; q2)n−3r
=

(q15, q33, q48; q48)∞(−q; q2)∞
(q2; q2)∞

(A.23)

1 +
∑
n=1

∑
r=0

qn2+6r2
(−q; q2)n(q6; q6)n−r−1

(q2; q2)2n−1(q6; q6)r(q2; q2)n−3r
=

(q21, q27, q48; q48)∞(−q; q2)∞
(q2; q2)∞

(A.24)
For (d, k) = (4, 6), insert (16) and (17) into (9):

1 +
∑
m=1

∑
r=0

(−1)m+rq3m2+r2+r−2mr(q4; q4)m+r−1

(q; q)4m−1(q; q)2r(q2; q2)m−r

+
∑
m=0

∑
r=0

(−1)m+rq3m2+2m+r2+r−2mr+1(q4; q4)m+r

(q; q)4m+1(q; q)2r+1(q2; q2)m−r

=
(q24, q28, q52; q52)∞

(q; q)∞
(A.25)

. . . into (10):

1 +
∑
m=1

∑
r=0

(−1)m+rq2m2+2r2+2r−4mr(q8; q8)m+r−1(−q; q2)2m

(q2; q2)4m−1(q2; q2)2r(q4; q4)m−r

+
∑
m=0

∑
r=0

(−1)m+rq2m2+2r2+2r−4mr+1(q8; q8)m+r(−q; q2)2m+1

(q2; q2)4m+1(q2; q2)2r+1(q4; q4)m−r
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=
(q32, q40, q72; q72)∞(−q; q2)∞

(q2; q2)∞
(A.26)
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