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1 Introduction

When George Andrews matriculated in the Ph.D. program dbtiieersity of Pennsylvania
in the fall of 1961, his intention was to specialize in geamecatumber theory. He had been
attracted to Penn’s graduate program in part because thke-1962 academic year had
been designated a special year in number theory there. Hueimic year culminated in a
celebration of the seventieth birthday of Professor HardeReacher.

Rademacher taught Andrews in his analytic number theorysdaat year, and there
Andrews was introduced to the theory of partitions. A pamitA of an integen is a weakly
decreasing finite sequence of positive integés Az, . .., As) whose sum is\. EachA; is
called a ‘part’ of the partitiord . The theory of integer partitions began with Euler [22], who
introduced generating functions to stugn), the number of partitions af, and found that
the generating function fgo(n) was representable as an elegant infinite product:

ip(n)x"— |_| ﬁ (1.1)

m=1

The “circle method” was created by Hardy and Ramanujan dadilaproved by Rademacher,
in connection with the study of the functiga{n), the number of partitions of the integer
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The circle method has proved to be one of the most useful todlse history of analytic
number theory. Expositions of the circle method may be faarid, 9,53, 54, 56].
Rademacher’s formula fgu(n) is given by
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wherew(h, k) is a 24th root of unity that frequently occurs in the study of modudtarms
and is given by
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(8) is the Legendre-Jacobi symbol, aHds any solution of the congruence
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hH=-1 (modk).
Andrews reports [66] that the formula fp(n)

.. was a revolutionary and surprising achievement. Tha fafrthis formula is even
more stunning. It involves transcendental numbers andessns that seem to be
totally unrelated that might be appropriate, say, in a a@ars engineering or the-
oretical physics, but for actually counting how many ways gan add up sums to
get a particular number, they seem absolutely incredibléadt, | wasstunned the
first time | saw this formula. | could ndielieve it, and the experience of seeing it
explained and understanding how it took shape really, kitionvinced me that this
was the area of mathematics that | wanted to pursue.

Many practitioners, including a number of Ph.D. studentsgwstdocs who worked un-
der Rademacher, have used the circle method to study vassetricted partition functions,
often associated with sets of partitions enumerated in f@ntbeorems. These practition-
ers included Grosswald [24,25], Haberzetle [26], Hagis-B5], Hua [39], Iseki [40-42],
Lehner [43], Livingood [44], Niven [52], and Subramanydsd85].

Let us consider several examples.

Theorem 1 (Euler, 1748)Let g(n) denote the number of partitions of ninto odd parts. Let
r(n) denote the number of partitions of ninto distinct parts. Then q(n) =r(n) for all integers
n.

Theorem 2 (Hagis, 1963)
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v@:= 3 TFvrr+D
isthe Bessdl function of purely imaginary argument.



Theorem 3 (Schur, 1926) et s(n) denote the number of partitions of ninto parts congruent
to =1 (mod 6). Let t(n) denote the number of partitions A of n where A; — Ai;1 = 3 and
Ai — Aix1 > 3if 3| Ai. Then s(n) = t(n) for all n.

Theorem 4 (Niven, 1940)
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Recently, the author found [61]
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wherepod(n) denotes the number of partitionsmivhere no odd part is repeated, goh)
denotes the number of overpartitionsofAn overpartition of nis a finite weakly decreasing
sequence of positive integers where the last occurrencegivea part may or may not be
overlined. Thus the eight overpartitions of 3 8, (3), (2,1), (2,1), (2,1), (2,1),(1,1,1),
(1,1,1). Overpartitions were introduced by S. Corteel and J. Lov@)d19] and have been
studied extensively by them and others including Bringma@tmen, Fu, Goh, Hirschhorn,
Hitczenko, Lascoux, Mahlburg, Robbins, Rgdseth, Seldss, and Zho [11,16-21,23,37,
38,45-51,57,58].

Recently, Bringmann and Ono [12] have given exact formutagtfe coefficients of all
harmonic Maass forms of weight % All of the generating functions considered herein are
weakly holomorphic modular forms of weight either 09%, and thus they are harmonic
Maass forms of weight£ % Accordingly, all of the exacxt formulas for restricted par
tion and overpartition functions presented here could bived from the general theorem
in [12].

In this article, we will present several anecdotes from tradgssional life of George
Andrews, and present some new Rademacher type formulasdétathe events described.



2 ldentities in the Lost Notebook

Certainly one of the most exciting incidents of George Amdreprofessional life was his
unearthing of Ramanujan’s lost notebook at the Wren Libaarrinity College, Cambridge
University in 1976 (see [4, pp. 5-61.5] and [6, p. 1 ff] for a full account). As is now well
known, the lost notebook contains many identities of thedR®dramanujan type. Many of
the infinite products appearing in these identities ardyeiasintified as generating functions
for certain restricted classes of partitions or overpartg. The methods of Rademacher may
be applied to find explicit formulas for the coefficients agpeg in the series expansions of
these generating functions.

Below is a list of some of the Rogers-Ramanujan type idestitvhich appear in the
lost notebook. Some of these identities also appear inrgB&¢ Specifically, Eq. (2.1) is
Slater’s (6); Eq. (2.3) is Slater’s (12); Eq. (2.5) is Sl&€R2); Eq. (2.6) is Slater’s (25);
Eq. (2.7) is Slater’s (28); Eq. (2.8) is Slater’s (29); and £q11) is Slater’s (50).

The standard abbreviations
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will be used. Note thata;b)g = 1. Here and throughout, we assuime< 1 to guarantee
convergence.
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Let us denote the coefficient &f in the power series expansion of equatighdbove
by R;j(n). The following combinatorial interpretations are then igdiate:

— Rz1(n) = Ry2(n) = the number of overpartitions ofinto nonmultiples of 3.

— Rz3(n) = Ry.4(n) = the number of overpartitions afwith only odd parts.

— Rz5(n) = the number of overpartitions af where nonoverlined parts are congruent to
+2,3 (mod 6).

— Rz.7(n) = the number of partitions of into parts not congruent tq @3 (mod 12.

— Ro9(n) = the number of overpartitions af where the nonoverlined parts are odd or

congruent to 4mod 8
R2.11(n) = the number of partitions af into parts not congruent ta &2 (mod 12.

The circle method yields the following formulas, which aediéved to be new to the
literature. It could be argued that a number of them capturehnof the elegance of the
formula for p(n). They were found with the aid dflathematica program written by the au-
thor. For a discussion of the automation of certain key stéfise circle method, along with
additional examples of Rademacher type formulas for ettipartition and overpartition
functions, please see [62]. As noted earlier, they could bésderived using the results of
Bringmann and Ono [12].
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3 Capparelli's Conjecture

The year 1992 marked the one hundredth anniversary of ttie dfifRademacher, and on
July 21-25 of that year a conference honoring the memory déRacher was held at Penn
State, and George Andrews was of course one of the confeoegarizers. On the first day
of the conference, James Lepowsky of Rutgers gave a talk iohwie mentioned that his
student Stefano Capparelli had conjectured the followiagitoon identity [13] as a result

of his studies of the standard level 3 modules associatdtithétLie algebra(\<22):

Theorem 5 (Capparelli)

— Let C(n) denote the number of partitions of ninto parts=+2,+3 (mod 12.
— Let D(n) denote the number of partitions A = (A1, Az,...) of n such that

- Aj—Aj1 22,

— Aj—Ajx1=2onlyifA; =1 (mod 3), and

— Aj—Ajx1=3onlyif A; isamultiple of 3.
— ThenC(n) = D(n) for all n.

This identity is clearly similar in the spirit of those in tbassical literature such as Schur’s
identity (our Theorem 3), yet was new. Needless to say, Amsliand others at the confer-
ence were quite intrigued by the conjecture. Andrews woikeghtly for the next several
evenings, and was able to find a proof [5] of the identity inetita present it as his talk on
the last day of the conference. Of this proof, Andrews wratep[ 505], “In my proof of
Capparelli’'s conjecture, | was completely guided by thef\B@ilberger method, even if |
didn’t use Doron’s program explicitly. | couldn’t have promkd my proof without knowing
the principle behind ‘Wz. " Although Andrews’ WZ-inspireproof (see [64,67—70]) was
the first proof of the Capparelli conjecture, Lie theoretiogis were later found by Tamba
and Xie [63] and Capparelli himself [14].

The generating function for the partitions enumerated kCim) in Capparelli's iden-
tity is

® . 1
nZoC(n)X = nl;ll (1— xI2n—10y(1 — xI2n-9Y(] — x12n-3) (1 xl2n-2)’

and indeed the Rademacher method may be applied to find aoiefginula forC(n).
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4 The Bailey Chain

Of course, Andrews has contributed a large number of impbead useful discoveries to
the body of mathematical knowledge. One of this author'sifitges is theBailey chain, i.e.
the realization that the Bailey lemma is self-replicating ¢herefore any Bailey pair implies
infinitely many others. In particular, every Rogers-Ranjantype identity is automatically
part of an infinite family (see [3,4]).

The Bailey chain provides an explanation and a context fanyniafinite family g-series
identities and their combinatorial counterparts. For giapDavid Bressoud’s identity [10,
p. 15, Eq. (3.4) witkk =r]

XN12+N22+---+N,271 0 (1_X2rmfr)(l_xrm)

npno G120 (K)ng (X)ng -+ (O, ()0, rrl;ll 1-—xm

) (4.1)

whereN; :=nj+nj11+---+n,_1 andr 2 2, follows from inserting the Bailey pair

(—D)"™%" (1-a) (2% 3)n
(1—a)(x%;x?)n ’ (X%, %)

into a certain limiting case of the Bailey chain [4, p. 30, ®tean 3.5], settinga= 1, and
then applying Jacobi’s triple product identity [4, p. 63,.Ed.1)]. Although Bressoud’s
combinatorial counterpart to [10, p. 15, Eq. (3.4)] exchidlee special case with=r
(our (4.1) above), the author provided a combinatorialrpregation [60, p. 315, Theorem
6.9], which we recall here:

an(aa X) =

Bn(a,x) =

Theorem 6 For r 2 2, let B, (n) denote the number of partitions A = (A1,Ay,...) of nsuch
that

— 1 appearsasa part lessthan r times,
- )\j _)‘Hrfl 2 2, and
— ifAj = Ajr—2 S 1, then 313 Ajn = (r—1) (mod 2.
For r = 3, let A (n) denote the number of partitions of n such that

— nopartisamultipleof r,
— for any nonnegative integer j, either rj+1or r(j+ 1) — 1, but not both, may appear as
parts,

and let Ax(n) denote the number of partitions of ninto distinct odd parts. Then A (n) =B, (n)
for all integersn.

Remark 1 The combinatorial interpretation of thg (n) was facilitated by ideas advanced
by Andrews and Lewis [8].

We conclude with a Rademacher-type formula forAh&):
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where

(P) = 1if Pis true, and
XP) =1 oif Pis false.
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