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1 Introduction

When George Andrews matriculated in the Ph.D. program at theUniversity of Pennsylvania
in the fall of 1961, his intention was to specialize in geometric number theory. He had been
attracted to Penn’s graduate program in part because the 1961–1962 academic year had
been designated a special year in number theory there. The academic year culminated in a
celebration of the seventieth birthday of Professor Hans Rademacher.

Rademacher taught Andrews in his analytic number theory class that year, and there
Andrews was introduced to the theory of partitions. A partition λ of an integern is a weakly
decreasing finite sequence of positive integers(λ1,λ2, . . . ,λs) whose sum isn. Eachλi is
called a ‘part’ of the partitionλ . The theory of integer partitions began with Euler [22], who
introduced generating functions to studyp(n), the number of partitions ofn, and found that
the generating function forp(n) was representable as an elegant infinite product:

∞

∑
n=0

p(n)xn = ∏
m≧1

1
1− xm . (1.1)

The “circle method” was created by Hardy and Ramanujan and later improved by Rademacher,
in connection with the study of the functionp(n), the number of partitions of the integern.
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The circle method has proved to be one of the most useful toolsin the history of analytic
number theory. Expositions of the circle method may be foundin [2,9,53,54,56].

Rademacher’s formula forp(n) is given by

p(n) =
1

π
√

2

∞

∑
k=1

√
k ∑

0≦h<k
(h,k)=1

ω(h,k)e−2π inh/k d
dn









sinh

(

π
k

√

2
3

(

n− 1
24

)

)

√

n− 1
24









, (1.2)

whereω(h,k) is a 24kth root of unity that frequently occurs in the study of modular forms
and is given by

ω(h,k) =

{(−k
h

)

exp
(

−πi
{

1
4(2−hk−h)+ 1

12(k− 1
k )(2h−H +h2H)

})

, if 2 ∤ h,
(−h

k

)

exp
(

−πi
{ 1

4(k−1)+ 1
12(k− 1

k )(2h−H +h2H)
})

, if 2 ∤ k,

( a
b ) is the Legendre-Jacobi symbol, andH is any solution of the congruence

hH ≡−1 (mod k).

Andrews reports [66] that the formula forp(n)

. . . was a revolutionary and surprising achievement. The form of this formula is even
more stunning. It involves transcendental numbers and expressions that seem to be
totally unrelated that might be appropriate, say, in a course on engineering or the-
oretical physics, but for actually counting how many ways you can add up sums to
get a particular number, they seem absolutely incredible. In fact, I wasstunned the
first time I saw this formula. I could notbelieve it, and the experience of seeing it
explained and understanding how it took shape really, I think, convinced me that this
was the area of mathematics that I wanted to pursue.

Many practitioners, including a number of Ph.D. students and postdocs who worked un-
der Rademacher, have used the circle method to study variousrestricted partition functions,
often associated with sets of partitions enumerated in famous theorems. These practition-
ers included Grosswald [24,25], Haberzetle [26], Hagis [27–35], Hua [39], Iseki [40–42],
Lehner [43], Livingood [44], Niven [52], and Subramanyasastri [65].

Let us consider several examples.

Theorem 1 (Euler, 1748)Let q(n) denote the number of partitions of n into odd parts. Let
r(n) denote the number of partitions of n into distinct parts. Then q(n) = r(n) for all integers
n.

Theorem 2 (Hagis, 1963)

q(n) =
π√

24n+1 ∑
k≧1
2∤k

1
k ∑

0≦h<k
(h,k)=1

e−2πnh/k ω(h,k)
ω(2h,k)

I1

(

π
√

24n+1

6
√

2k

)

, (1.3)

where

Iν(z) :=
∞

∑
r=0

(

1
2z
)ν+2r

r!Γ (ν + r +1)
(1.4)

is the Bessel function of purely imaginary argument.
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Theorem 3 (Schur, 1926)Let s(n) denote the number of partitions of n into parts congruent
to ±1 (mod 6). Let t(n) denote the number of partitions λ of n where λi −λi+1 ≧ 3 and
λi −λi+1 > 3 if 3 | λi. Then s(n) = t(n) for all n.

Theorem 4 (Niven, 1940)

s(n) =
π√

36n−3 ∑
d|6

√

(d−2)(d−3) ∑
k≧1

(k,6)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2πnh/k ω(h,k)ω(6h/d,k/d)

ω( 2h
(d,2) ,

k
(d,2) )ω( 3h

(d,3) ,
k

(d,3) )
I1

(

π
√

d (12n−1)

3
√

6k

)

. (1.5)

Recently, the author found [61]

p̄(n) =
1

2π ∑
k≧1
2∤k

√
k ∑

0≦h<k
(h,k)=1

ω(h,k)2

ω(2h,k)
e−2π inh/k d

dn





sinh
(

π
√

n
k

)

√
n



 (1.6)

and

pod(n) =
2

π
√

6
∑
d|4

√

(d−2)(5d −17) ∑
k≧1

(k,4)=d

√
k

× ∑
0≦h<k
(h,k)=1

ω(h,k) ω (4h/d,k/d)

ω
(

2h
(d,2) ,

k
(d,2)

) e−2π inh/k d
dn









sinh

(

π
√

d(8n−1)

4k

)

√
8n−1









, (1.7)

wherepod(n) denotes the number of partitions ofn where no odd part is repeated, and ¯p(n)
denotes the number of overpartitions ofn. An overpartition of n is a finite weakly decreasing
sequence of positive integers where the last occurrence of agiven part may or may not be
overlined. Thus the eight overpartitions of 3 are(3), (3̄), (2,1), (2̄,1), (2, 1̄), (2̄, 1̄), (1,1,1),
(1,1, 1̄). Overpartitions were introduced by S. Corteel and J. Lovejoy in [19] and have been
studied extensively by them and others including Bringmann, Chen, Fu, Goh, Hirschhorn,
Hitczenko, Lascoux, Mahlburg, Robbins, Rødseth, Sellers,Yee, and Zho [11,16–21,23,37,
38,45–51,57,58].

Recently, Bringmann and Ono [12] have given exact formulas for the coefficients of all
harmonic Maass forms of weight≦ 1

2 . All of the generating functions considered herein are
weakly holomorphic modular forms of weight either 0 or−1

2, and thus they are harmonic
Maass forms of weight≦ 1

2. Accordingly, all of the exacxt formulas for restricted parti-
tion and overpartition functions presented here could be derived from the general theorem
in [12].

In this article, we will present several anecdotes from the professional life of George
Andrews, and present some new Rademacher type formulas related to the events described.
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2 Identities in the Lost Notebook

Certainly one of the most exciting incidents of George Andrews’ professional life was his
unearthing of Ramanujan’s lost notebook at the Wren Libraryat Trinity College, Cambridge
University in 1976 (see [4, pp. 5–6,§1.5] and [6, p. 1 ff] for a full account). As is now well
known, the lost notebook contains many identities of the Rogers-Ramanujan type. Many of
the infinite products appearing in these identities are easily identified as generating functions
for certain restricted classes of partitions or overpartitions. The methods of Rademacher may
be applied to find explicit formulas for the coefficients appearing in the series expansions of
these generating functions.

Below is a list of some of the Rogers-Ramanujan type identities which appear in the
lost notebook. Some of these identities also appear in Slater [59]. Specifically, Eq. (2.1) is
Slater’s (6); Eq. (2.3) is Slater’s (12); Eq. (2.5) is Slater’s (22); Eq. (2.6) is Slater’s (25);
Eq. (2.7) is Slater’s (28); Eq. (2.8) is Slater’s (29); and Eq. (2.11) is Slater’s (50).

The standard abbreviations

(a;b) j =
j−1

∏
i=0

(1−abi), (a) j := (a;x) j

will be used. Note that(a;b)0 = 1. Here and throughout, we assume|x| < 1 to guarantee
convergence.

∞

∑
n=0

xn2
(−1)n

(x)n(x;x2)n
=

∞

∏
m=1

(1+ x3m−2)(1+ x3m−1)

(1− x3m−2)(1− x3m−1)
[7, Ent 4.2.8] (2.1)

∞

∑
n=0

xn2
(−x)n

(x)n(x;x2)n+1
=

∞

∏
m=1

(1+ x3m−2)(1+ x3m−1)

(1− x3m−2)(1− x3m−1)
[7, Ent 4.2.9] (2.2)

∞

∑
n=0

xn(n+1)/2(−1)n

(x)n
=

∞

∏
m=1

1+ x2m−1

1− x2m−1 [7, Ent 1.7.14] (2.3)

∞

∑
n=0

xn2
(−x2;x2)n

(x)2n+1
=

∞

∏
m=1

1+ x2m−1

1− x2m−1 [7, Ent 1.7.13] (2.4)

∞

∑
n=0

xn(n+1)(−x)n

(x;x2)n+1(x)n
=

∞

∏
m=1

(1− x6m)(1− x6m−1)(1− x6m−5)

(1− xm)(1− x2m−1)
[7, Ent 4.2.12] (2.5)

∞

∑
n=0

xn2
(−x;x2)n

(x4;x4)n
=

∞

∏
m=1

(1− x3m)(1− x12m)

(1− x6m−5)(1− x6m−1)(1− x4m)
[7, Ent 4.2.7] (2.6)

∞

∑
n=0

xn(n+1)(−x2;x2)n

(x)2n+1
=

∞

∏
m=1

(1− x12m)(1− x12m−9)(1− x12m−3)

1− xm [7, Ent 4.3.12] (2.7)
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∞

∑
n=0

xn2
(−x;q2)n

(x)2n
=

∞

∏
m=1

(1− x6m)(1− x12m−6)

1− xm [7, Ent. 5.2.3] (2.8)

∞

∑
n=0

xn(n+1)/2(−x2;x2)n

(x)n(x;x2)n+1
=

∞

∏
m=1

1+ xm

(1− x2m−1)(1− x8m−4)
[7, Ent. 1.7.5] (2.9)

∞

∑
n=0

xn(n+1)/2(−1;x2)n

(x)n(x;x2)n
=

∞

∏
m=1

(1− x4m)(1− x8m−4)(1+ xm)

1− xm [7, Ent. 1.7.4]

(2.10)
∞

∑
n=0

xn(n+2)(−x;x2)n

(x)2n+1
=

∞

∏
m=1

(1− x12m)(1− x12m−10)(1− x12m−9)

1− xm [7, Ent. 3.4.4]

(2.11)

Let us denote the cöefficient ofxn in the power series expansion of equation (j) above
by R j(n). The following combinatorial interpretations are then immediate:

– R2.1(n) = R2.2(n) = the number of overpartitions ofn into nonmultiples of 3.
– R2.3(n) = R2.4(n) = the number of overpartitions ofn with only odd parts.
– R2.5(n) = the number of overpartitions ofn where nonoverlined parts are congruent to
±2,3 (mod 6).

– R2.7(n) = the number of partitions ofn into parts not congruent to 0,±3 (mod 12).
– R2.9(n) = the number of overpartitions ofn where the nonoverlined parts are odd or

congruent to 4(mod 8)
– R2.11(n) = the number of partitions ofn into parts not congruent to 0,±2 (mod 12).

The circle method yields the following formulas, which are believed to be new to the
literature. It could be argued that a number of them capture much of the elegance of the
formula for p(n). They were found with the aid ofMathematica program written by the au-
thor. For a discussion of the automation of certain key stepsof the circle method, along with
additional examples of Rademacher type formulas for restricted partition and overpartition
functions, please see [62]. As noted earlier, they could also be derived using the results of
Bringmann and Ono [12].

R2.1(n) =
π

3
√

2n
∑
k≧1

2∤k,3∤k

1
k ∑

0≦h<k
(h,k)=1

e−2π inh/k ω(h,k)2ω(6h,k)
ω(2h,k)ω(3h,k)2 I1

(

π
√

2n

k
√

3

)

(2.12)

R2.3(n) =
π

4
√

n ∑
k≧1
2∤k

1
k ∑

0≦h<k
(h,k)=1

e−2π inh/k ω(h,k)2ω(4h,k)
ω(2h,k)3 I1

(

π
√

n

k
√

2

)

. (2.13)

R2.5(n) =
π

2
√

18n+6 ∑
k≧1
2∤k

√

(k,6)

k ∑
0≦h<k
(h,k)=1

e−2π inh/k
ω(h,k)ω( 3h

(k,3) ,
k

(k,3) )

ω( 6h
(k,6) ,

k
(k,6) )

I1

(

π
√

6n+2
3k

)

(2.14)
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R2.6(n) =
π

3
√

264n−33 ∑
d∈{1,4,12}

√

d2 +83d +48 ∑
k≧1

(k,12)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2π inh/k
ω(h,k)ω

(

4h
(d,4) ,

k
(d,4)

)

ω
(

6h
(d,6) ,

k
(d,6)

)

ω
(

3h
(d,3) ,

k
(d,3)

)2
ω
(

2h
(d,2) ,

k
(d,2)

)

× I1

(

π
√

(16d−d2−12)(8n−1)

12k

)

(2.15)

R2.7(n) =
π

4
√

90n+30∑
d|6

√

(d−3)(9d2−52d +28) ∑
k≧1

(k,12)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2π ihn/k
ω(h,k)ω

(

6h
(d,6) ,

k
(d,6)

)

ω
(

3h
(d,3) ,

k
(d,3)

)

ω
(

12h
(d,12) ,

k
(d,12)

) I1

(

π
√

(8+8d −d2)(3n+1)

3k
√

10

)

(2.16)

R2.8(n) =
π

3
√

264n−11 ∑
d∈{1,4,12}

√

2d2 +d +96 ∑
k≧1

(k,12)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2π ihn/k ω(h,k)ω
(

12h
d , k

d

)

ω
(

6h
(d,6) ,

k
(d,6)

)2 I1

(

π
√

(84+16d −d2)(24n−1)

12k
√

33

)

(2.17)

R2.9(n) =
π
√

3

4
√

8n+2 ∑
k≧1
2∤k

1
k ∑

0≦h<k
(h,k)=1

e−2π ihn/k ω(h,k)2ω(4h,k)
ω(2h,k)2ω(8h,k)

I1

(

π
√

12n+3
4k

)

(2.18)

R2.10(n) =
π
√

3
8
√

n ∑
k≧1
2∤k

1
k ∑

0≦h<k
(h,k)=1

e−2π ihn/k ω(h,k)2ω(8h,k)
ω(4h,k)2ω(2h,k)

I1

(

π
√

3n
2k

)

(2.19)

R2.11(n) =
π

6
√

24n+15

4

∑
d=1

√

(2−d)(7d2−46d +48) ∑
k≧1

(k,12)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2π ihn/k
ω(h,k)ω

(

4h
(d,4) ,

k
(d,4)

)

ω
(

6h
(d,6) ,

k
(d,6)

)

ω
(

2h
(d,2) ,

k
(d,2)

)

ω
(

12h
d , k

d

)2
I1

(

π
√

(8n+5)(d2−4d +12)
12k

)

(2.20)
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3 Capparelli’s Conjecture

The year 1992 marked the one hundredth anniversary of the birth of Rademacher, and on
July 21–25 of that year a conference honoring the memory of Rademacher was held at Penn
State, and George Andrews was of course one of the conferenceorganizers. On the first day
of the conference, James Lepowsky of Rutgers gave a talk in which he mentioned that his
student Stefano Capparelli had conjectured the following partition identity [13] as a result

of his studies of the standard level 3 modules associated with the Lie algebraA(2)
2 :

Theorem 5 (Capparelli)

– Let C(n) denote the number of partitions of n into parts ≡±2,±3 (mod 12).
– Let D(n) denote the number of partitions λ = (λ1,λ2, . . .) of n such that

– λ j −λ j+1 ≧ 2,
– λ j −λ j+1 = 2 only if λ j ≡ 1 (mod 3), and
– λ j −λ j+1 = 3 only if λ j is a multiple of 3.

– Then C(n) = D(n) for all n.

This identity is clearly similar in the spirit of those in theclassical literature such as Schur’s
identity (our Theorem 3), yet was new. Needless to say, Andrews and others at the confer-
ence were quite intrigued by the conjecture. Andrews workedintently for the next several
evenings, and was able to find a proof [5] of the identity in time to present it as his talk on
the last day of the conference. Of this proof, Andrews wrote [1, p. 505], “In my proof of
Capparelli’s conjecture, I was completely guided by the Wilf-Zeilberger method, even if I
didn’t use Doron’s program explicitly. I couldn’t have produced my proof without knowing
the principle behind ‘WZ.’ ” Although Andrews’ WZ-inspiredproof (see [64,67–70]) was
the first proof of the Capparelli conjecture, Lie theoretic proofs were later found by Tamba
and Xie [63] and Capparelli himself [14].

The generating function for the partitions enumerated by theC(n) in Capparelli’s iden-
tity is

∞

∑
n=0

C(n)xn = ∏
m≧1

1
(1− x12m−10)(1− x12m−9)(1− x12m−3)(1− x12m−2)

,

and indeed the Rademacher method may be applied to find an explicit formula forC(n).

C(n) =
π√

24n−1 ∑
d∈{1,2,3,12}

√

12+308d +12d2−2d3 ∑
k≧1

(k,12)=d

1
k

× ∑
0≦h<k
(h,k)=1

e−2πnh/k
ω( 12h

d , k
d )ω( 3h

(d,3) ,
k

(d,3) )ω( 2h
(d,2) ,

k
(d,2) )

ω( 6h
(d,6) ,

k
(d,6) )

2ω( 4h
(d,4) ,

k
(d,4) )

× I1

(

π
√

(24n−1)(201−231d +91d2−6d3)

6
√

165k

)

. (3.1)
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4 The Bailey Chain

Of course, Andrews has contributed a large number of important and useful discoveries to
the body of mathematical knowledge. One of this author’s favorites is theBailey chain, i.e.
the realization that the Bailey lemma is self-replicating and therefore any Bailey pair implies
infinitely many others. In particular, every Rogers-Ramanujan type identity is automatically
part of an infinite family (see [3,4]).

The Bailey chain provides an explanation and a context for many infinite familyq-series
identities and their combinatorial counterparts. For example, David Bressoud’s identity [10,
p. 15, Eq. (3.4) withk = r]

∑
n1,n2,...,nr−1≧0

xN2
1+N2

2+···+N2
r−1

(x)n1(x)n2 · · ·(x)nr−2(x
2;x2)nr−1

=
∞

∏
m=1

(1− x2rm−r)(1− xrm)

1− xm , (4.1)

whereN j := n j +n j+1 + · · ·+nr−1 andr ≧ 2, follows from inserting the Bailey pair

αn(a,x) =
(−1)nxn2

(1−ax2n)(a2;x2)n

(1−a)(x2;x2)n
, βn(a,x) =

1
(x2;x2)n

into a certain limiting case of the Bailey chain [4, p. 30, Theorem 3.5], settinga = 1, and
then applying Jacobi’s triple product identity [4, p. 63, Eq. (7.1)]. Although Bressoud’s
combinatorial counterpart to [10, p. 15, Eq. (3.4)] excludes the special case withk = r
(our (4.1) above), the author provided a combinatorial interpretation [60, p. 315, Theorem
6.9], which we recall here:

Theorem 6 For r ≧ 2, let Br(n) denote the number of partitions λ = (λ1,λ2, . . .) of n such
that

– 1 appears as a part less than r times,
– λ j −λ j+r−1 ≧ 2, and
– if λ j −λ j+r−2 ≦ 1, then ∑r−2

h=0 λ j+h ≡ (r−1) (mod 2).

For r ≧ 3, let Ar(n) denote the number of partitions of n such that

– no part is a multiple of r,
– for any nonnegative integer j, either r j +1 or r( j +1)−1, but not both, may appear as

parts,

and let A2(n) denote the number of partitions of n into distinct odd parts. Then Ar(n) = Br(n)
for all integers n.

Remark 1 The combinatorial interpretation of theAr(n) was facilitated by ideas advanced
by Andrews and Lewis [8].

We conclude with a Rademacher-type formula for theAr(n):

Ar(n) =
2π

√
2√

24n−1 ∑
d|r

(d,r)√
dr

χ
(

2r +d2 > 4(d,r)2) ∑
k≧1

(h,k)=d

k−1

× ∑
0≦h<k
(h,k)=1

e−2π inh/k ω(h,k)ω(2rh/d,k/d)

ω
(

rh
(d,r) ,

k
(d,r)

) I1





π
6k

√

(24n−1)
(

2r +d2−4(d,r)2
)

2r



 , (4.2)
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where

χ(P) =

{

1 if P is true, and
0 if P is false.
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