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1 Introduction

1.1 Notation

For n a nonnegative integer, we define the following symbols:

a := 〈a1, a2, . . . , an〉, (n-vector of symbolic nonnegative integers)

x := 〈x1, x2, . . . , xn〉, (n-vector of indeterminants)

0 := 〈0, 0, . . . , 0〉, (n-dimensional zero vector)

ek := 〈0, 0, . . . , 0, 1, 0, 0, . . . , 0〉,
(the n-vector with 1 in the kth position and 0 elsewhere)

σn(a) := a1 + a2 + · · ·+ an,
(first elementary symmetric polynomial in n indeterminants)

(A; q)n :=
n−1∏
i=0

(1− Aqi), (rising q-factorial)

Fn(x; a) :=
∏

15i<j5n

(
1− xi

xj

)aj (
1− xj

xi

)ai
(Dyson product)

Fn(x; a; q) :=
∏

15i<j5n

(
xiq

xj
; q

)
aj

(
xj
xi

; q
)
ai

, (q-Dyson product)

and let [Y ]Z denote the coefficient of Y in the expression Z, thus e.g.

[x3y2](3 + 5x3y2 − 6xy) = 5,

[1](3 + 5x3y2 − 6xy) = [x0y0](3 + 5x3y2 − 6xy) = 3,

[xy2](3 + 5x3y2 − 6xy) = 0.

1.2 Background

F. J. Dyson [5, p. 152, Conjecture C] conjectured that the constant term

in the Laurent polynomial
∏

15i<j5n

(
1− xi

xj

)aj (
1− xj

xi

)ai
is the multinomial

coefficient; i.e.

Dyson’s conjecture For n ∈ Z+,

[1]Fn(x; a) =
σn(a)!

a1!a2! · · · an!
. (1.1)

Dyson’s conjecture (1.1) was first proved independently by J. Gunson [9] and
K. Wilson [17]. Later I. J. Good [8] supplied the most compact and elegant
proof.
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G. E. Andrews [1, p. 216] extended (1.1) to a q-analog:

Andrews’ q-Dyson conjecture For n ∈ Z+,

[1]Fn(x; a; q) =
(q; q)σn(a)

(q; q)a1(q; q)a2 · · · (q; q)an
. (1.2)

The first proof of (1.2) was given by D. Zeilberger and D. M. Bressoud [20].
Recently, another proof was given by I. M. Gessel and G. Xin [7].

In [14], together with Zeilberger, I showed that with the aid of our Maple/Mathematica
packages GoodDyson, the computer can, subject only to limitations of time and
memory capacity, conjecture a closed form expression for

[xb11 x
b2
2 · · ·xbnn ]Fn(x; a),

and automatically supply a proof for any fixed positive integer n and fixed
vector b = 〈b1, b2, . . . , bn〉.

1.3 Theorems and Conjectures

The results of [14] are extended here to generic n for certain vectors b, and a
corresponding q-analog is conjectured for each. I made heavy use of Maple in
forming these conjectures. I will prove

Theorem 1.1 Let r and s be fixed integers with 1 5 r 6= s 5 n and n = 2.
Then

[xr/xs]Fn(x; a) = −
(

as
1 + σn(a)− as

)
σn(a)!

a1!a2! · · · an!
. (1.3)

and provide a conjecture for its q-analog:

Conjecture 1.2 (q-analog of Theorem 1.1) Let r and s be fixed integers
with 1 5 r 6= s 5 n and n = 2. Then

[xr/xs]Fn(x; a; q) = −qL(r,s)

(
1− qas

1− q1+σn(a)−as

)
(q; q)σn(a)

(q; q)a1(q; q)a2 · · · (q; q)an
,

where

L(r, s) =

 1 + σn(a)−∑s
k=r ak, if r < s∑r−1

k=s+1 ak, if r > s.
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Remark 1.3 Notice that the right hand side of Eq. (1.3) is independent of r,
the subscript of the variable which appears to a positive power. In other words,
[xk/xs]Fn(x; a) is the same for all k 6= s. This can be explained by the fact that
the only factors contributing to the xk/xs term in the expansion of Fn(x; a)
are

n∏
i=1
i6=k

(
1− xi

xs

)as
,

which is clearly invariant under any permutation of the subscripts of the xi.
The analogous phenomenon occurs in Theorems 1.4 and 1.6 as well.

Next, we have

Theorem 1.4 Let r, s, and t be distinct fixed integers with 1 5 r, s, t 5 n
and n = 3. Then

[
x2
r

xsxt

]
Fn(x; a) =

 asat

(
(1 + σn(a)) + (1 + σn(a)− as − at)

)
(1 + σn(a)− as − at)(1 + σn(a)− as)(1 + σn(a)− at)

 σn(a)!

a1!a2! · · · an!
,

and the following conjecture for its q-analog:

Conjecture 1.5 (q-analog of Theorem 1.4) Let r, s, and t be distinct fixed
integers with 1 5 r, s, t 5 n and n = 3. Without loss of generality we may
assume that s < t. Then

[
x2
r

xsxt

]
Fn(x; a; q) = qL(r,s,t)

(1− qas)(1− qat)
(

(1− q1+σn(a)) + qM(r,s,t)(1− q1+σn(a)−as−at)
)

(1− q1+σn(a)−as−at)(1− q1+σn(a)−as)(1− q1+σn(a)−at)


×

(q; q)σn(a)

(q; q)a1(q; q)a2 · · · (q; q)an
,

where

L(r, s, t) =


2 + 2σn(a)− 2

∑t
k=r ak +

∑t−1
k=s+1 ak, if r < s < t,

1 + σn(a)−∑t
k=s ak + 2

∑r−1
k=s+1 ak, if s < r < t,

2
∑r−1
k=t+1 ak +

∑t−1
k=s+1 ak, if s < t < r,

and

M(r, s, t) =

 at, if r < s < t or s < t < r,

as, if s < r < t.

Finally, we have
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Theorem 1.6 Let r, s, t, and u be distinct fixed integers with 1 5 r, s, t, u 5 n
and n = 4. Then

[
xrxs
xtxu

]
Fn(x; a) =

 atau

(
(1 + σn(a)) + (1 + σn(a)− at − au)

)
(1 + σn(a)− at − au)(1 + σn(a)− at)(1 + σn(a)− au)

 σn(a)!

a1!a2! · · · an!
.

Conjecture 1.7 (q-analog of Theorem 1.6) Let r, s, t and u be distinct
fixed integers with 1 5 r, s, t, u 5 n and n = 4. Without loss of generality we
may assume that r < s and t < u. Then

[
xrxs
xtxu

]
Fn(x; a; q) = qL(r,s,t,u)

(1− qat)(1− qau)
(

(1− q1+σn(a)) + qM(r,s,t,u)(1− q1+σn(a)−at−au)
)

(1− q1+σn(a)−at−au)(1− q1+σn(a)−at)(1− q1+σn(a)−au)


×

(q; q)σn(a)

(q; q)a1(q; q)a2 · · · (q; q)an
,

where

L(r, s, t, u) =



2 + 2σn(a)− 2
∑u
k=r ak +

∑s−1
k=r ak +

∑u−1
k=t+1 ak, if r < s < t < u,

1 + σn(a)−∑u
k=r ak +

∑s−1
k=t+1 ak, if r < t < s < u,

1 + σn(a)−∑s−1
k=r ak + 2

∑r−1
k=t+1 ak +

∑u−1
k=t+1 ak + 2

∑s−1
k=u+1 ak, if r < t < u < s,

1 + σn(a)−∑u
k=t ak +

∑s−1
k=r ak + 2

∑r−1
k=t+1 ak, if t < r < s < u,∑r−1

k=t+1 ak +
∑s−1
k=u+1 ak, if t < r < u < s,∑s−1

k=r ak +
∑u−1
k=t+1 ak + 2

∑r−1
k=u+1 ak, if t < u < r < s,

and

M(r, s, t, u) =


au, if r < s < t < u or r < t < u < s or t < u < r < s,

1 + σn(a) if r < t < s < u or t < r < u < s,

at, if t < r < s < u.

Remark 1.8 Certain special cases of Conjectures 1.2, 1.5, and 1.7 have been
proved by John Stembridge [15, p. 347, Cor. 7.4]. Stembridge proved that in
the case where a = 〈a, a, . . . , a〉, and bρ+1 = bρ+2 = · · · = bρ+τ = −1, for ρ
and τ satisfying 0 5 ρ 5 n and 1 5 τ 5 n− ρ,

[xb11 x
b2
2 · · ·xbnn ]Fn(x; a; q) = (−1)τqb1+b2+···+bρ+am (q; q)an(qa; qa)τ (q; q

a)ρ+σ

(q; q)na(q; qa)n
,

(1.4)
where m = στ +

∑ρ
i=1(i−1)bi−

∑n−ρ−τ
i=1 i bn−i+1. Conjectures 1.2, 1.5, and 1.7

do indeed agree with (1.4) where they overlap, which, of course, provides some
evidence in favor of the conjectures.
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The theorems will be proved in §2. Special cases of the conjectured q-analogs
will be discussed in some detail in §3, followed by some concluding remarks in
§4.

2 Generalized Good Proofs

2.1 Good’s proof of Dyson’s conjecture

It will be instructive to review the proof of (1.1) due to Good [8] presented in a
way that will make it easy to see how it naturally generalizes to the variations
of Dyson’s conjecture under consideration here. The proof divides neatly into
three parts: recurrence, initial condition, and boundary conditions. Let

cbn(a) := [xb11 x
b2
2 · · ·xbnn ]Fn(x; a).

Thus Dyson’s conjecture is the assertion that

c0n(a) =
σn(a)!

a1!a2! · · · an!
.

2.1.1 Recurrence

For a1, a2, . . . , an > 0, we have, by Lagrange interpolation,

Fn(x; a) =
n∑
k=1

Fn(x; a− ek). (2.1)

Thus the same recurrence must hold term by term when (2.1) is expanded,
and in particular the recurrence must hold for the constant term, so we have

c0n(a) =
n∑
k=1

c0n(a− ek). (R)

2.1.2 Initial Condition

It is easily verified that

c0n(0) = 1. (I)
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2.1.3 Boundary Conditions

For k fixed and 1 5 k 5 n,

Fn(x; 〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

= Fn−1(〈x1, x2, . . . , xk−1, xk+1, . . . , xn〉; 〈a1, . . . , ak−1, ak+1, . . . an〉)


n∏
i=1
i6=k

(xi − xk)ai
xaii


(2.2)

Notice that we have segregated the factors involving xk (those in braces) from

those which are independent of xk. Find the Taylor expansion of
∏n
i=1
i6=k

(xi−xk)ai

x
ai
i

about xk = 0. Extract the coefficient of x0
k from both sides of (2.2) to obtain

[x0
k]Fn(x; 〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

= P 0
k × Fn−1(〈x1, x2, . . . , xk−1, xk+1, . . . , xn〉; 〈a1, . . . , ak−1, ak+1, . . . an〉),

(2.3)

where

Pb
k = [xbkk ]

n∏
i=1
i6=k

(xi − xk)ai
xaii

. (2.4)

In the case of Dyson’s original conjecture, we have P 0
k = 1 for all k and n.

Apply the constant term operator to both sides of (2.3) to obtain

c0n(〈a1, a2, . . . , ak−1, 0, ak+1, . . . , an〉) = c0n−1(〈a1, a2, . . . , ak−1, ak+1, . . . an〉)
(B)

for k = 1, 2, . . . , n.

Finally, since (R), (I), and (B) uniquely determine c0n(a), and the multino-
mial coefficient σn(a)!/a1! · · · an! also satisfies (R), (I), and (B), the result
follows. 2

2.2 Proof of Theorem 1.1

Theorem 1.1 asserts that if b = er − es,

cbn(a) = −
(

as
1 + σn(a)− as

)
σn(a)!

a1!a2! · · · an!
. (2.5)
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2.2.1 Recurrence

It was already noted that by Lagrange interpolation, for a1, a2, . . . , an > 0, we
have

Fn(x; a) =
n∑
k=1

Fn(x; a− ek). (2.6)

Thus the same recurrence must hold term by term when (2.6) is expanded,
and in particular the recurrence must hold for the xr/xs term, and so

cer−es
n (a) =

n∑
k=1

cer−es
n (a− ek). (R′)

2.2.2 Initial Condition

cer−es
n (0) = 0. (I ′)

2.2.3 Boundary Conditions

For k fixed and 1 5 k 5 n,

Fn(x; 〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

= Fn−1(〈x1, x2, . . . , xk−1, xk+1, . . . , xn〉; 〈a1, . . . , ak−1, ak+1, . . . an〉)


n∏
i=1
i6=k

(xi − xk)ai
xaii


(2.7)

Once again, we have segregated the factors involving xk (those in braces)
from those which are independent of xk. Next, find the Taylor expansion of∏n
i=1
i6=k

(xi−xk)ai

x
ai
i

about xk = 0. Extract the coefficient of xbkk from both sides

of (2.7) to obtain

[xbkk ]Fn(x; 〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)
= Pb

k × Fn−1(〈x1, x2, . . . , xk−1, xk+1, . . . , xn〉; 〈a1, . . . , ak−1, ak+1, . . . an〉)
(2.8)

where

Pb
k =



−∑n
i=1
i6=k

ai
xi
, if k = r,

0, if k = s,

1, otherwise,
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and thus by extracting the coefficient of xrx
−1
s xbkk from both sides of (2.8), we

obtain

cer−es
n (〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

=



−∑n
i=1
i6=k

aic
e

(k)
i −e

(k)
s

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉), if k = r,

0, if k = s,

ce
(k)
r −e

(k)
s

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉), otherwise,

(B′)

where

e
(k)
j = 〈δ1,j, δ2,j, . . . , δk−1,j, δk+1,j, . . . , δn,j〉,

with δi,j denoting the Kronecker delta function.

2.2.4 The RHS of (2.5) also satisfies (R), (I), and (B)

Since (R′), (I ′), and (B′) uniquely determine cer−es
n (a), once we establish that

der−es
n (a) := −

(
as

1+σn(a)−as

) (
σn(a)!

a1!a2!···an!

)
also satisfies (R′), (I ′), and (B′), the

result will follow. While this fact may not be obious a priori, we shall soon
see that nothing beyond elementary algebra is required to establish its truth.

Without loss of generality, we may assume that r = 1 and s = n, for if not,
the indeterminants in Fn(x; a) may be relabeled accordingly. We note that

de1−en
n (a) = −

(
an

1 + a1 + a2 + · · ·+ an−1

)(
σn(a)!

a1!a2! · · · an!

)
.
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n∑
k=1

de1−en
n (a− ek) = − (an − 1)(a1 + · · ·+ an − 1)!

(1 + a1 + · · · an−1)a1! · · · an−1!(an − 1)!

−
n−1∑
k=1

akan(a1 + · · ·+ an − 1)!

(a1 + · · ·+ an−1)a1! · · · an!

=
−an(a1 + · · ·+ an − 1)!

(1 + a1 + · · ·+ an−1)a1! · · · an!(a1 + · · ·+ an−1)

×
{

(an − 1)(a1 + · · ·+ an−1) +
n−1∑
k=1

ak(1 + a1 + · · ·+ an−1)
}

=
−an(a1 + · · ·+ an − 1)!

(1 + a1 + · · ·+ an−1)a1! · · · an!(a1 + · · ·+ an−1)

×
{

(a1 + · · ·+ an−1)(an − 1 + 1 + a1 + · · · an−1)
}

=
−an(a1 + · · · an)!

(1 + a1 + · · ·+ an−1)a1! · · · an!

= de1−en
n (a),

and thus (R′) is satisfied.

Clearly,

de1−en
n (0) = 0,

so (I ′) is satisfied.

Also,

−
n∑
i=2

aid
e

(1)
i −e

(1)
n

n−1 (〈a2, . . . , an〉)

= −and0
n−1(〈a2, . . . , an〉)−

n−1∑
i=2

aid
e

(1)
i −e

(1)
n (〈a2, . . . , an〉)

=
(a2 + · · · an)!

a2! · · · an!

(
a2an

1 + a2 + · · · an−1

+ · · ·+ an−1an
1 + a2 + · · ·+ an−1

− an
)

=
(a2 + · · · an)!an

a2! · · · an!(1 + a2 + · · ·+ an−1

(
a2 + · · ·+ an−1 − (1 + a2 + · · ·+ an−1)

)
= − (a2 + · · ·+ an)!an

a2! · · · an!(1 + a2 + · · ·+ an−1)

= de
(1)
1 −e

(1)
n

n (〈0, a2, . . . , an〉),

and thus der−es
n (a) satisfies (B′) when ar = 0.

Clearly,

de
(n)
1 −e

(n)
n

n (〈a1, . . . , an−1, 0〉) = 0,

and so der−es
n (a) satisfies (B′) when as = 0.
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Finally, for 1 < k < n, we have

= de
(k)
1 −e

(k)
n

n (〈a1, . . . , ak−1, 0, ak+1, . . . , an〉)

=
−an

1 + a1 + · · ·+ ak−1 + ak+1 + · · · an
(a1 + · · ·+ ak−1 + ak+1 + · · ·+ an)!

a1! · · · ak−1!ak+1! · · · an!

= d
e

(k)
1 −e

(k)
n

n−1 (〈a1, . . . , ak−1, ak+1, . . . , an〉),

where d0
n(a) = σn(a)!/a1! · · · an! by (1.1), and thus der−es

n (a) satisfies (B′)
when k is different from both r and s. 2

Remark 2.1 Clearly, the only nontrivial difference between the proof of (1.1)
and that of Theorem 1.1 lies in the observation that Pb

k (see (2.4)) varies with
b. Once P b

k is known for a given b, the boundary condition ( (B) and (B′) in
the two previous cases) follows immediately.

2.3 Proof of Theorem 1.4

In light of Remark 2.1, we need only supply Pb
k , for b = 2er − es − et.

P 2er−es−et
k =



∑n
i=1
i6=k

ai(ai−1)
2x2
i

+
∑

15i<j5n
i6=k

aiaj
xixj

 , if k = r,

0, if k = s or k = t,

1, otherwise,

which implies

c2er−es−et
n (〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

=



∑n
i=1
i6=k

ai(ai−1)
2

c
2e

(k)
i i−e

(k)
s −e

(k)
t

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉)

+
∑

15i<j5n
i6=k

aiajc
e

(k)
i +e

(k)
j −e

(k)
s −e

(k)
t

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉), if k = r,

0, if k = s or k = t,

c
2e

(k)
r −e

(k)
s −e

(k)
t

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉), otherwise.
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2.4 Proof of Theorem 1.6

Similarly,

P er+es−et−eu
k =



(
−∑n

i=1
i6=k

ai
xi

)
, if k = r or k = s,

0, if k = t or k = u,

1, otherwise,

which implies

cer+es−et−eu
n (〈a1, a2, . . . , ak−1, 0, ak+1, . . . an〉)

=



−∑n
i=1

i6=k
aic

e
(k)
s +e

(k)
i −e

(k)
t −e

(k)
u

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉) if k = r,

−∑n
i=1

i6=k
aic

e
(k)
r +e

(k)
i −e

(k)
t −e

(k)
u

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉) if k = s,

0, if k = t or k = u,

c
e

(k)
r +e

(k)
s −e

(k)
t −e

(k)
u

n−1 (〈a1, a2, . . . , ak−1, ak+1, . . . an〉), otherwise.

3 Perturbed versions of q-Dixon

It is well known (see [1]) that the n = 3 case of the q-Dyson conjecture is equiv-
alent to a q-analog of a hypergeometric summation formula of A. C. Dixon [4].

This is because

F3(〈x, y, z〉; 〈a, b, c〉)
= (y/x; q)a(z/x; q)a(xq/y; q)b(z/y; q)b(xq/z; q)c(yq/z; q)c

=
(−1)b+2cq(

b
2)+2(c2)

x2ay2bz2c

a+b−1∏
i=0

(x− yqi−b)
a+c−1∏
i=0

(x− zqi−c)
b+c−1∏
i=0

(y − zqi−c)

=
∑

h,i,j=0

[
a+ b

h

]
q

[
a+ c

i

]
q

[
b+ c

j

]
q

(−1)b+2c+h+i+jq(
b−h

2 )+(c−i2 )+(c−j2 )xb+c−h−iy−b+c+h−iz−2c+i+j,

where the last equality follows from a triple application of a corollary of the
q-binomial theorem due to Rothe (see [3, p. 490, Cor. 10.2.2 (c)]), and

[
A

B

]
q

=


(q;q)A

(q;q)B(q;q)A−B
if 0 5 A 5 B

0 otherwise.
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It is then a straightforward exercise in linear algebra combined with the change
of variable k = j + c to obtain

[
xαyβ

zα+β

]
F3(〈x, y, z〉; 〈a, b, c〉; q)

=
∑
k∈Z

[
a+ b

k + b+ β

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a+ α + β

]
q

(−1)k+αq(
k+1

2 )+(k+1+β
2 )+(k+α+β

2 ).

For α = β = 0, combined with the n = 3 case of the q-Dyson theorem, we
obtain the q-Dixon sum of Andrews [1, p. 216, equation (5.6)], which he proved
using the q-Pfaff-Saalschütz summation (see [6, equation (II.12)].)

Similarly, the following six identities follow from the n = 3 case of Conjec-
ture 1.2:

∑
k∈Z

[
a+ b

k + b− 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a

]
q

(−1)kqk(3k−1)/2 =

[
a+ b+ c

a, b, c

]
q

(
1− qb

1− q1+a+c

)
q1+c

(3.1)∑
k∈Z

[
a+ b

k + b

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a+ 1

]
q

(−1)kq3k(k+1)/2−1 =

[
a+ b+ c

a, b, c

]
q

(
1− qc

1− q1+a+b

)
(3.2)∑

k∈Z

[
a+ b

k + b+ 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a

]
q

(−1)kq3k(k+1)/2+1 =

[
a+ b+ c

a, b, c

]
q

(
1− qa

1− q1+b+c

)
(3.3)∑

k∈Z

[
a+ b

k + b

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a− 1

]
q

(−1)kqk(3k−1)/2+1 =

[
a+ b+ c

a, b, c

]
q

(
1− qa

1− q1+b+c

)
qb

(3.4)∑
k∈Z

[
a+ b

k + b+ 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a+ 1

]
q

(−1)k+1qk(3k+5)/2 =

[
a+ b+ c

a, b, c

]
q

(
1− qc

1− q1+a+b

)
qa

(3.5)∑
k∈Z

[
a+ b

k + b− 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a− 1

]
q

(−1)k+1q3k(k−1)/2+1 =

[
a+ b+ c

a, b, c

]
q

(
1− qb

1− q1+a+c

)
,

(3.6)

where [
a+ b+ c

a, b, c

]
q

=
(q; q)a+b+c

(q; q)a(q; q)b(q; q)c
.
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The corresponding identities arising from the n = 3 case of Conjecture 1.5 are

∑
k∈Z

[
a+ b

k + b− 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a+ 1

]
q

(−1)kq3k(k−1)/2

=

[
a+ b+ c

a, b, c

]
q

(1− qb)(1− qc)
(1− q1+b)(1− q1+a+b)(1− q1+a+c)

(
(1− q1+a+b+c)− qc(1− qa)

)
(3.7)

∑
k∈Z

[
a+ b

k + b+ 2

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a+ 1

]
q

(−1)k+1qk(3k+7)/2+2

=

[
a+ b+ c

a, b, c

]
q

(1− qa)(1− qc)
(1− q1+b)(1− q1+a+b)(1− q1+b+c)

(
(1− q1+a+b+c)− qa(1− qb)

)
(3.8)

∑
k∈Z

[
a+ b

k + b− 1

]
q

[
b+ c

k + c

]
q

[
c+ a

k + a− 2

]
q

(−1)k+1qk(3k−5)/2+3

=

[
a+ b+ c

a, b, c

]
q

(1− qa)(1− qb)
(1− q1+c)(1− q1+a+c)(1− q1+b+c)

(
(1− q1+a+b+c)− qb(1− qc)

)
(3.9)

Remark 3.1 Each of the identities (3.1) through (3.9) is a 3φ2 summation
formula, and as such is automatically verifiable by the q-WZ algorithm of Wilf
and Zeilberger [16]. It is well known that Zeilberger’s algorithm and its q-
analog does not always find the minimal order recurrence satisfied by a given
summand (see, e.g. [2] or [12, p. 116 ff.]). In each case considered here, the q-
Zeilberger algorithm, as implemented in Maple by Zeilberger’s package qEKHAD

and in Mathematica by A. Riese’s package qZeil.m (see [11]), a recurrence
of order at least three was found for the sum side, even though there must be
a first order recurrence since the right hand side is a sum of a fixed number
of finite products. Even Paule’s creative symmetrization technique (see [11,
section 5.2]) does not improve the order of the recurrence in these examples.

Remark 3.2 The same technique could be used to produce q-hypergeometric
summation formulas corresponding to the case n = 4. Here the resulting sum
sides would be triple sums, and one could attempt to obain automated proofs of
these in Mathematica using Riese’sqMultiSum.m package of [13], or in Maple
using Zeilberger’s qMultiZeilberger package [19].

Due to computer memory and time limitations, it is highly doubtful that the
identities corresponding to n > 4 could be successfully handled on today’s
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computers.

4 Conclusion

The obvious next step is to try to find proofs for the conjectured q-analogs. A
combinatorial proof would be particularly nice, since would potentially explain
the role played by the factors qL and qM in the conjectures, a feature that
disappears in the ordinary q = 1 case.
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