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Abstract

We use generalized lecture hall partitions to discover a new pair of q-series identities. These
identities are unusual in that they involve partitions into parts from asymmetric residue classes,
much like the little Göllnitz partition theorems. We derive a two-parameter generalization of
our identities that, surprisingly, gives new analytic counterparts of the little Göllnitz theorems.
Finally, we show that the little Göllnitz theorems also involve “lecture hall sequences”, that is,
sequences constrained by the ratio of consecutive parts.

Keywords: lecture hall partitions, q-series identities, q-Gauss summation, Göllnitz partition theo-
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1 Introduction

In this paper we illustrate the role that can be played by sequences constrained by the ratio of
consecutive parts in interpreting and discovering q-series identities.

Let (a; q)n =
∏n−1
i=0 (1− aqi) and (a; q)∞ =

∏∞
i=0(1− aqi). We derive the identities

∞∑
j=0

qj(3j−1)/2 (q2; q6)j
(q; q)3j

=
1

(q; q3)∞(q5; q6)∞
(1)
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and
∞∑
j=0

qj(3j+1)/2 (q4; q6)j
(q; q)3j+1

=
1

(q2; q3)∞(q; q6)∞
(2)

by showing that both sides of (1) count (by weight) the finite sequences of positive integers λ1, λ2, ...
satisfying

λ1

2
>
λ2

1
>
λ3

2
>
λ4

1
> · · · (3)

and both sides of (2) count the finite sequences of positive integers λ1, λ2, ... satisfying

λ1

1
>
λ2

2
>
λ3

1
>
λ4

2
> · · · . (4)

Contrast these with Euler’s odd-distinct partition identity
∞∑
j=0

qj(j+1)/2 1
(q; q)j

=
1

(q; q2)∞
, (5)

both sides of which count the finite sequences of positive integers satisfying

λ1

1
>
λ2

1
>
λ3

1
>
λ4

1
> · · · . (6)

Our methods combine results on lecture hall partitions from [3], on sequences constrained by the
ratio of successive parts from [5], and combinatorial reciprocity [13]. In Section 2, we use “lecture
hall” methods to show that the right-hand sides of (1) and (2) count solutions to (3) and (4),
respectively. In Section 3, we show that the left-hand sides of (1) and (2) also count solutions to (3)
and (4), using results from [5].

In Section 4, we refine the counting arguments in Sections 2 and 3 to derive a two-parameter
q-series identity, I(a, q), generalizing (1) and (2). We show in Section 5 that I(a, q) can be obtained
as a specialization of the q-Gauss summation [6].

Say that a set, R = {r1, r2, . . . , rk}, of residue classes modulo m, is symmetric if

R = {m− r1,m− r2, . . . ,m− rk}.

It is noteworthy that the infinite products appearing in (1) and (2) are generating functions for
partitions into parts from residue classes modulo 6 which are not symmetric.

Most well-known partition theorems involve symmetric residue classes, e.g. the Rogers-Ramanujan
identities and the Gordon and Bressoud generalizations thereof [8, 4], Schur’s 1926 partition theorem
related to the modulus 6 [11], and the Göllnitz-Gordon identities (Göllnitz [7, pp. 162–163, Satz 2.1
and 2.2], Gordon [9, p. 741, Thms. 2 and 3]). From a q-series perspective, this is a consequence of
the fact that the relevant generating functions are modular forms (up to multiplication by a trivial
factor).

Perhaps the best known partition identities involving asymmetric residue classes are a pair of
identities known as “Göllnitz’s little partition theorems” [7, pp. 166–167, Satz 2.3 and 2.4] and
the “big” Göllnitz partition theorem related to the modulus 12 ([7, p. 175, Satz 4.1]; cf. [1, p.
37, Thm. 1]). In Section 6, we show that an appropriate specialization of I(a, q) gives a different
view of the infinite products appearing in (the analytic forms of) Göllnitz’s little partition theorems.
Furthermore, we show that the little Göllnitz theorems can be alternately viewed as statements
about partitions constrained by the ratio of consecutive parts.

2



2 The “lecture hall” approach

The purpose of this section is to show that the right-hand sides of identities (1) and (2) count
solutions to the inequalities (3) and (4), respectively. We begin with a theorem of Bousquet-Mélou
and Eriksson [3] about (k, l) sequences.

Given two integers k and l greater than one, the (k, l)-sequence {a(k,l)
n } is defined in [3] for n ≥ 0

by the following recurrence:

a
(k,l)
2i = la

(k,l)
2i−1 − a

(k,l)
2i−2,

a
(k,l)
2i+1 = ka

(k,l)
2i − a(k,l)

2i−1,

for i ≥ 1, with initial conditions a(k,l)
0 = 0 and a

(k,l)
1 = 1.

Let L(k,l)
n be the set of nonnegative integer sequences λ of length n satisfying,

λ1

a
(k,l)
n

≥ λ2

a
(k,l)
n−1

≥ . . . ≥ λn

a
(k,l)
1

≥ 0.

The following was shown in [3].

Theorem 1 (The (k, l)-Lecture Hall Theorem) The generating function for L(k,l)
n is given by

G(k,l)
n (q) =

n∏
i=1

1

1− qa
(k,l)
i +a

(l,k)
i−1

if n is even

G(k,l)
n (q) =

n∏
i=1

1

1− qa
(l,k)
i +a

(k,l)
i−1

if n is odd

When k ≥ 2 and l ≥ 2, the sequence {a(k,l)
n } is strictly increasing. When k = 1 or l = 1, the sequence

{a(k,l)
n } is not monotone and, when kl < 4 some terms will be negative. Nevertheless, we make the

following observation, and prove it in Appendix 1.

Observation 1 The (k, l)-Lecture Hall Theorem remains true when k = 1 or l = 1, as long as
kl ≥ 4.

For our application, consider the sequences:

a(1,4) = 0, 1, 4, 3, 8, 5, 12, 7, . . . ;
a(4,1) = 0, 1, 1, 3, 2, 5, 3, 7, . . . .

Then

a
(1,4)
2i+1 = 2i+ 1; a

(1,4)
2i = 4i;

a
(4,1)
2i+1 = 2i+ 1; a

(4,1)
2i = i.

So, by definition of G(k,l)
n (q),

G
(1,4)
2k (q) =

k−1∏
i=0

1

(1− qa
(1,4)
2i+1+a

(4,1)
2i )(1− qa

(1,4)
2i+2+a

(4,1)
2i+1)

=
k−1∏
i=0

1
(1− q3i+1)(1− q6i+5)
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and

lim
k→∞

G
(1,4)
2k (q) =

1
(q; q3)∞(q5; q6)∞

, (7)

giving the right-hand side of (1). On the other hand, by Theorem 1, G(1,4)
2k (q) is the generating

function for L(1,4)
2k , the set of sequences satisfying

L
(1,4)
2k :

λ1

4k
≥ λ2

2k − 1
≥ λ3

4(k − 1)
≥ λ4

2k − 3
≥ . . . ≥ λ2k−1

4
≥ λ2k

1
≥ 0.

Note that

lim
k→∞

a
(1,4)
2k

a
(1,4)
2k−1

=
4k

2k − 1
= 2

and

lim
k→∞

a
(1,4)
2k+1

a
(1,4)
2k

=
2k + 1

4k
=

1
2

so limk→∞ L
(1,4)
2k is the set of sequences satisfying the constraints (3), whose generating function

must therefore be (7).

Similarly, by definition of G(k,l)
n (q),

G
(1,4)
2k+1(q) =

1
1− q

k∏
i=1

1

(1− qa
(4,1)
2i +a

(1,4)
2i−1)(1− qa

(4,1)
2i+1+a

(1,4)
2i )

=
1

1− q

k∏
i=1

1
(1− q3i−1)(1− q6i+1)

and

lim
k→∞

G
(1,4)
2k+1(q) =

1
(q2; q3)∞(q; q6)∞

, (8)

giving the right-hand side of (2).

On the other hand, by Theorem 1, G(1,4)
2k+1(q) is the generating function for L(1,4)

2k+1, the sequences
satisfying

L
(1,4)
2k+1 :

λ1

2k + 1
≥ λ2

4k
≥ λ3

2k − 1
≥ λ4

4(k − 1)
≥ . . . ≥ λ2k

4
≥ λ2k+1

1
≥ 0.

As k →∞, L(1,4)
2k+1 becomes the set of sequences satisfying the constraints (4) and thus their gener-

ating function is given by (8).

3 The “enumerative combinatorics” approach

In this section, we use results from [5] to show that the left-hand sides of identities (1) and (2) count
the integer solutions to the inequalities (3) and (4), respectively. Define [n]q by

[n]q := (1− qn)/(1− q).

The following is shown in [5] (we include a self-contained proof in Appendix 2).
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Theorem 2 Let s1, s2, . . . , sk be a sequence of positive integers satisfying the condition si = 1 or
si+1 = 1 for 1 ≤ i ≤ k − 1. Then the generating for the nonnegative integer sequences λ satisfying

λ1

s1
≥ λ2

s2
≥ · · · ≥ λk

sk
≥ 0

is

F (q) =
∑
λ

q|λ| =
∏k−1
i=2 (1 + qbi([si+1]q − 1))∏k

i=1(1− qbi)
,

where b1 = 1 and bi = s1 + . . .+ si for i > 1.

Note that if s1 = s2 = · · · = sk = 1, then F (q) is the generating function for ordinary partitions
with at most k parts.

We first apply Theorem 2 to the sequence s = (2, 1, 2, 1, ...). Note that b2j = 3j, b2j+1 = 3j + 2,
so

1 + qb2j ([s2j+1]q − 1) = 1 + q3j([2]q − 1)) = 1 + q3j+1

1 + qb2j+1([s2j+2]q − 1) = 1 + q3j+2([1]q − 1) = 1.

Thus, for s = (2, 1, 2, 1, ...), the generating function for the sequences satisfying

λ1

2
≥ λ2

1
≥ λ3

2
≥ λ4

1
≥ · · · ≥ λn

sn
≥ 0 (9)

is

fn(q) =
(−q4; q3)b(n−1)/2c

(1− q)(q3; q3)bn/2c(q5; q3)b(n+1)/2c

=
(1 + q)(−q4; q3)b(n−1)/2c

(q3; q3)bn/2c(q2; q3)b(n+1)/2c

=
(−q; q3)b(n+1)/2c

(q3; q3)bn/2c(q2; q3)b(n+1)/2c

=
(q2; q6)b(n+1)/2c

(q; q)b(3n+1)/2c

The constraints (9) define a simplicial cone, so Stanley’s reciprocity theorem [13] can be used to
compute, from fn(q), the generating function for those integer points interior to the cone. Specifi-
cally, the generating function for those integer sequences λ satisfying the strict constraints

λ1

2
>
λ2

1
>
λ3

2
>
λ4

1
> · · · > λn

sn
> 0

is given by

hn(q) = (−1)nfn(1/q) =

{
q(3n2+10n)/8fn(q) n even
q(3n2+4n+1)/8fn(q) n odd.

(10)
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Finally, the generating function for the integer sequences λ satisfying (3) can now be obtained by
summing hn(q) in (10) over all n ≥ 0:

∞∑
n=0

hn(q) = 1 +
∞∑
k=1

(h2k−1 + h2k)

= 1 +
∞∑
k=1

(
q(3(2k−1)2+4(2k−1)+1)/8(q2; q6)k

(q; q)3k−1
+
q(3(2k)2+10(2k))/8(q2; q6)k

(q; q)3k

)

= 1 +
∞∑
k=1

qk(3k−1)/2(q2; q6)k
(q; q)3k

,

which agrees with the left-hand side of equation (1).

We proceed similarly to find the generating function of the solutions of (4). In this case, we
apply Theorem 2 to the sequence s′ = (1, 2, 1, 2, ...). For this sequence, b2j = 3j, b2j+1 = 3j + 1, so

1 + qb2j ([s′2j+1]q − 1) = 1 + q3j([1]q − 1)) = 1

1 + qb2j+1([s′2j+2]q − 1) = 1 + q3j+1([2]q − 1) = 1 + q3j+2.

Thus, for s′ = (1, 2, 1, 2, ...), the generating function for the sequences satisfying

λ1

1
≥ λ2

2
≥ λ3

1
≥ λ4

2
≥ · · · ≥ λn

s′n
≥ 0 (11)

is

f ′n(q) =
(−q5; q3)b(n−2)/2c

(q; q3)b(n+1)/2c(q3; q3)b(n−1)/2c

=
(q10; q6)b(n−2)/2c

(q; q3)b(n+1)/2c(q3; q3)b(n−1)/2c(q5; q3)b(n−2)/2c

=
(q2; q6)bn/2c
(q; q)b3n/2c

Again, by the reciprocity theorem [13], the generating function for those integer sequences λ satisying
the strict constraints

λ1

1
>
λ2

2
>
λ3

1
>
λ4

2
> · · · > λn

s′n
> 0

is given by

h′n(q) = (−1)nf ′n(1/q) =

 qk(3k+1)/2f ′2k(q) n = 2k

q(k+2)(3k+1)/2f ′2k+1(q) n = 2k + 1 .
(12)
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Finally, the generating function for the integer sequences λ satisfying (4) can now be obtained by
summing h′n(q) in (12) over all n ≥ 0:

∞∑
n=0

h′n(q) =
∞∑
k=0

(h′2k + h′2k+1)

=
∞∑
k=0

(
qk(3k+1)/2(q4; q6)k

(q; q)3k
+
qk(3k+1)/2(q2; q6)k

(q; q)3k+1

)

=
∞∑
k=0

q(k+1)(3k+2)/2(q4; q6)k
(q; q)3k+1

which agrees with the left-hand side of eq. (2).

4 A refinement

Define the even and odd weight of a sequence λ = (λ1, λ2, ...) by

|λ|o = λ1 + λ3 + · · · ; |λ|e = λ2 + λ4 + · · · ;

and define
G(k,l)
n (x, y) =

∑
λ∈L(k,l)

n

x|λ|oy|λ|e .

As we indicate in Appendix 1, what Bousquet-Mélou and Eriksson proved in [3] was the following:
The generating function for L(k,l)

n is given by

G(k,l)
n (x, y) =

n∏
i=1

1

1− xa
(k,l)
i ya

(l,k)
i−1

if n is even

G(k,l)
n (x, y) =

n∏
i=1

1

1− xa
(l,k)
i ya

(k,l)
i−1

if n is odd

So

lim
k→∞

G
(1,4)
2k (x, y) =

1
(x;x2y)∞(x4y;x4y2)∞

=
(−x;x2y)∞
(x2;x2y)∞

. (13)

Similarly, the counting method of Section 3 also admits an x, y-refinement. From the bijective
proof Theorem 2 that appears in Appendix 2, it can be checked that the 2-variable version of the
generating function for the sequences λ satisfying (9) is

fn(x, y) =
∑
λ

x|λ|oy|λ|e =
(−x;x2y)b(n+1)/2c

(x2y;x2y)bn/2c(x2;x2y)b(n+1)/2c
.

Proceeding as in Section 3, using reciprocity,

hn(x, y) = (−1)nfn(1/x, 1/y),
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and summing over all n, gives another expression for the generating function of (3):

∞∑
n=0

hn(x, y) = 1 +
∞∑
k=1

(h2k−1(x, y) + h2k(x, y))

=
∞∑
j=0

xj
2
yj(j−1)/2(−x;x2y)j

(x2;x2y)j(x2y;x2y)j
(14)

Since both (13) and (14) count (3), we have the following.

Theorem 3
∞∑
j=0

xj
2
yj(j−1)/2(−x;x2y)j

(x2;x2y)j(x2y;x2y)j
=

∑
λ

xλ1+λ3+...yλ2+λ4+... =
(−x;x2y)∞
(x2;x2y)∞

where the second sum is over all positive integer sequences λ satisyfing

λ1

2
>
λ2

1
>
λ3

2
>
λ4

1
> · · · . (15)

Setting x = −a and y = q/a2 gives the following identity, which we refer to as I(a, q).

Corollary 1

I(a, q) :=
∞∑
n=0

(a; q)n(−a)nq(
n
2)

(a2; q)n(q; q)n
=

(a; q)∞
(a2; q)∞

. (16)

As an alternative to reciprocity, we could explain the sum side of (14) combinatorially.

5 Deriving the identities from the q-Gauss summation

Recall Heine’s q-Gauss summation [6, Eq. (II.8)]:

H(a, b, c; q) :=
∞∑
n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

( c
ab

)n
=

(c/a; q)∞(c/b; q)∞
(c; q)∞(c/(ab); q)∞

. (17)

Note that as b→∞, we have (b; q)n/bn → (−1)nq(
n
2) and (x/b; q)∞ → 1, so (17) becomes

H(a,∞, c; q) =
∞∑
n=0

(a; q)n(−c/a)nq(
n
2)

(c; q)n(q; q)n
=

(c/a; q)∞
(c; q)∞

. (18)

Thus

H(a,∞, a2; q) =
∞∑
n=0

(a; q)n(−a)nq(
n
2)

(a2; q)n(q; q)n
=

(a; q)∞
(a2; q)∞

,

which is (16). So

I(a, q) = H(a,∞, a2; q).
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Then,

I(−q, q3) =
∞∑
n=0

(−q; q3)n qn(3n−1)/2

(q2; q3)n(q3; q3)n
=

(−q; q3)∞
(q2; q3)∞

,

which is equivalent to (1).

On the other hand, identity (2) is equivalent to

I(−q2, q3)
1− q

=
∞∑
n=0

(−q2; q3)nqn(3n+1)/2

(q; q3)n+1(q3; q3)n
=

(−q2; q3)∞
(q; q3)∞

.

It is interesting to note that (5) follows in a similar way from (18):

H(∞,∞, q; q2) =
∞∑
n=0

qn(2n−1)

(q; q)2n
=

1
(q; q2)∞

. (19)

Equation (19) is in fact equivalent to an identity appearing in Slater’s compendium of Rogers-
Ramanujan type identities [12, p. 157, Eq. (52)].

Observe that

qn(2n−1)

(q; q)2n
=

q(2n−1)(2n)/2

(q; q)2n−1
+
q(2n)(2n+1)/2

(q; q)2n
,

so that each term of the sum in (19) is the sum of two successive terms of the sum in (5).

6 Lebesgue’s identity and a new view of Göllnitz’s “little”
partition theorems

The infinite products appearing in (1) and (2) enumerate partitions whose parts belong to the residue
classes {1, 4, 5} modulo 6 and {1, 2, 5} modulo 6, respectively. It is noteworthy that these residue
classes are not symmetric modulo 6, since most well-known partition theorems involve symmetric
residue classes.

Two of the best known partition identities involving asymmetric residue classes are known as
“Göllnitz’s little partition theorems” [7, pp. 166–167, Satz 2.3 and 2.4].

Theorem 4 (Göllnitz) The number of partitions of N into parts differing by at least 2 and no
consecutive odd parts equals the number of partitions of N into parts congruent to 1, 5 or 6 modulo
8.

Theorem 5 (Göllnitz) The number of partitions of N into parts differing by at least 2, no con-
secutive odd parts, and no ones equals the number of partitions of N into parts congruent to 2, 3 or
7 modulo 8.

It is well known that the analytic counterparts to Theorems 4 and 5 are special cases of an
identity due to V. A. Lebesgue ([10]; cf. [2, p. 21, Cor. 2.7]):

L(a, q) :=
∞∑
n=0

qn(n+1)/2(a; q)n
(q; q)n

=
(aq; q2)∞
(q; q2)∞

. (20)

9



The analytic counterpart to Theorem 4 is [7, Eq. (2.22)]

L(−q−1, q2) =
∞∑
n=0

qn
2+n(−q−1; q2)n

(q2; q2)n
=

1
(q; q4)∞(q6; q8)∞

, (21)

while that of Theorem 5 is [7, Eq. (2.24)]

L(−q, q2) =
∞∑
n=0

qn
2+n(−q; q2)n
(q2; q2)n

=
1

(q2; q8)∞(q3; q4)∞
. (22)

However, it may not have been observed previously that the infinite products in (21) and (22)
also arise as special cases of the q-Gauss sum (17), via I(a, q). By appropriate specialization, we
obtain

I(−q, q4) =
∞∑
n=0

q2n2−n(−q; q4)n
(q2; q2)2n

=
1

(q; q4)∞(q6; q8)∞
(23)

and

I(−q3, q4)
1− q2

=
∞∑
n=0

q2n2+n(−q3; q4)n
(q2; q2)2n+1

=
1

(q2; q8)∞(q3; q4)∞
. (24)

Finally, we observe that Göllnitz’s little partition theorems can be alternately viewed as theorems
about partitions constrained by the ratio of consecutive parts and give a combinatorial interpretation
of (23).

Observation 2 The set of partitions of N into parts differing by at least 2 and no consecutive odd
parts is the same as the set of finite sequences of positive integers λ1, λ2, . . . of weight N satisfying⌊λi

2

⌋
>

⌈λi+1

2

⌉
.

7 Suggestions for further study

Can we derive other series-product identities from the lecture hall approach, via Theorem 1 and
Observation 1? Although these tools produce a “product side” for any positive integers (k, j)
with kl ≥ 4, deriving a “sum side” from the ratio characterization is more difficult. As shown in
[3], the limiting form of Theorem 1 gives rise to the following ratios between consecutive parts:
(kl+

√
kl(kl − 1))/(2k) and (kl+

√
kl(kl − 1))/(2l). These ratios are rational only if either {k, l} =

{1, 4}, (the case considered in this paper) or k = l = 2 (giving ratio 1, the familiar case of distinct
parts).

Are there other classical partition theorems that can be re-interpreted as statements about
partitions constrained by the ratio of consecutive parts? For example, Gordon’s combinatorial
interpretation [9, p. 741, Thms. 2 and 3] of the the Göllnitz-Gordon identities involves partitions
into parts differing by at least 2 and no consecutive even parts. Such partitions can be alternatively
characterized as the set of finite sequences of positive integers λ1, λ2, . . . satisfying, for each i,⌊λi + 1

2

⌋
>

⌈λi+1 + 1
2

⌉
.

We expect to find other examples. What can be learned from these re-interpretations?
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8 Appendix 1: Proof of Observation 1

To verify that the (k, l)-Lecture Hall Theorem remains true for all positive k, l satisfying kl ≥ 4, we
first observe that these conditions are necessary and sufficient to guarantee that a(k,l)

n is positive for
all n ≥ 1. When kl ≥ 4, each of the sequences {a(k,l)

2i }i≥0, {a(k,l)
2i+1}i≥0 satisfies the recurrence

wi = (kl − 2)wi−1 − wi−2,

and, with their respective initial conditions, are strictly increasing. On the other hand, it can be
checked that negative elements appear in the sequence when (k, l) ∈ {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)}.

We then outline the clever combinatorial/algebraic approach of Bousquet-Mélou and Eriksson
in [3], to illustrate that in order for Theorem 1 to hold, it is not necessary that a(k,l)

1 , . . . , a
(k,l)
n be

weakly increasing, rather only that all terms are positive.

Define the even and odd weight of a sequence λ = (λ1, λ2, ...) by

|λ|o = λ1 + λ3 + · · · ; |λ|e = λ2 + λ4 + · · · ;

and define
G(k,l)
n (x, y) =

∑
λ∈L(k,l)

n

x|λ|oy|λ|e .

The strategy is to show that the following recurrence from [3] holds for all positive k, l satisfying
kl ≥ 4.

G(k,l)
n (x, y) =


G

(k,l)
n−1(xly, x−1)/(1− x) if n is even

G
(k,l)
n−1(xky, x−1)/(1− x) if n is odd,

(25)

with initial condition G(k,l)
0 (x, y) = 1. Using the recursive definition of a(k,l)

n and the fact that a(k,l)
2i+1=

a
(l,k)
2i+1, solving this recurrence gives Theorem 1.

To simplify notation in what follows, let an = a
(k,l)
n . To derive the recurrence (25), define a

function
Υn : L

(k,l)
n−1 × N → L(k,l)

n

by Υn(λ, s) = µ, where

µ1 ←
⌈
anλ1

an−1

⌉
+ s

µ2t ← λ2t−1, 1 ≤ t ≤ n/2;

µ2t+1 ←


⌈
an−2tλ2t+1
an−2t−1

⌉
+
⌊
an−2tλ2t−1
an−2t+1

⌋
− λ2t, 1 ≤ t < (n− 1)/2

⌊
an−2tλ2t−1
an−2t+1

⌋
− λ2t, t = (n− 1)/2.

The key is to use the properties of the (k, l)-sequence to prove that µ ∈ L
(k,l)
n , that Υn is a

bijection, and that

|µ|e = |λ|o; (26)

|µ|o =
{
l|λ|o − |λ|e + s if n is even
k|λ|o − |λ|e + s if n is odd. (27)

11



For then this implies that when n is even:

L(k,l)
n (x, y) ,

∑
µ∈L(k,l)

n

x|µ|oy|µ|e =
∑

λ∈L(k,l)
n−1

∞∑
s=0

xl|λ|o−|λ|e+sy|λ|o

=
1

1− x
∑

λ∈L(k,l)
n−1

(xly)|λ|o(1/x)|λ|e =
L

(k,l)
n−1(xly, x−1)

1− x
,

giving the even case of recurrence (25) and the case for odd n is similar.

It remains to prove that Υn is a bijection satisying (26) and (27). First observe that since a is a
(k, l)-sequence, for any m ≥ 0⌈

ai+1

ai
m

⌉
+
⌊
ai−1

ai
m

⌋
=
{
km if i even
lm if i odd.

Thus, when n is even,

|µ|o = µ1 + µ3 + . . . = s+ l(λ1 + λ3 + . . .)− (λ2 + λ4 + . . .) = l|λ|o − |λ|e + s,

and similarly, for n odd, proving (27). Condition (26) is easy to check.

To show that µ ∈ L(k,l)
n , note that consecutive parts λ2t−1, λ2t, λ2t+1 in λ, map to the consecutive

parts of µ:

µ2t = λ2t−1,

µ2t+1 =
⌈
an−2tλ2t+1

an−2t−1

⌉
+
⌊
an−2tλ2t−1

an−2t+1

⌋
− λ2t,

µ2t+2 = λ2t+1.

We need to show that
µ2t ≥

an−2t+1

an−2t
µ2t+1; µ2t+1 ≥

an−2t

an−2t−1
µ2t+2.

As λ ∈ L(k,l)
n−1 ,

λ2t−1 ≥
an−2t+1

an−2t
λ2t; λ2t ≥

an−2t

an−2t−1
λ2t+1,

so

µ2t+1 ≥
⌈
an−2tλ2t+1

an−2t−1

⌉
=
⌈
an−2tµ2t+2

an−2t−1

⌉
and

µ2t+1 ≤
⌊
an−2tλ2t−1

an−2t+1

⌋
=
⌊
an−2tµ2t

an−2t+1

⌋
.

Note that this did not require that the sequence {an} be nondecreasing.

Finally, (λ, s) can be recovered from µ by:

s ← µ1 −
⌈
anµ2

an−1

⌉
λ2t−1 ← µ2t, 1 ≤ t ≤ n/2;

λ2t ←


⌈
an−2tµ2t+2
an−2t−1

⌉
+
⌊
an−2tµ2t
an−2t+1

⌋
− µ2t+1, 1 ≤ t < (n− 1)/2

⌊
an−2tµ2t
an−2t+1

⌋
− µ2t+1, t = (n− 1)/2.
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9 Appendix 2: Bijective proof of Theorem 2

Let s1, s2, . . . , sk be a sequence of positive integers satisfying the condition si = 1 or si+1 = 1 for
1 ≤ i ≤ k − 1. Recall that b1 = 1 and bi = s1 + . . .+ si for i > 0.

In the numerator of F (q) in Theorem 2, write

1 + qbi([si+1]q − 1) = qbi+1 + qbi+2 + . . .+ qbi+si+1−1 = qbi+1 + qbi+2 + . . .+ qbi+1−1.

So, each positive integer in the set {b1}∪{b2, b2 +1, b2 +3, . . . , bk} occurs exactly once in F (q) as an
exponent of q, either in the numerator or the denominator. We can interpret F (q) as the generating
function for the set of partitions of an integer into parts from the set {1, b2, b2 + 1, . . . , bk} in which
parts in the set ∪k−1

i=2 {bi + 1, bi + 2, . . . , bi+1 − 1} can occur at most once.

To prove Theorem 2, we give a weight-preserving bijection from the set of sequences λ =
λ1, . . . , λk satisfying

λ1

s1
≥ λ2

s2
≥ · · · ≥ λk

sk
≥ 0

to the set of pairs of partitions (µ, ν), where µ is a partition into parts in {b1, . . . , bk}, and where ν
is a partition into distinct parts from ∪k−1

i=2 {bi + 1, bi + 2, . . . , bi+1 − 1}.

Given λ, construct (µ, ν) as follows:
For i from k down to 2 do

While λi/si ≥ 1 do
For j from 1 to i do

λj ← λj − sj
µ← µ ∪ bi

If λi > 0 then
For j from 1 to i− 1 do

λj ← λj − sj
ν ← ν ∪ (bi−1 + λi)

µ← µ ∪ bλ1
1

Inside the main loop, if λi ≥ si and

λ1

s1
≥ λ2

s2
≥ · · · ≥ λi

si
≥ 0

then
λ1 − s1

s1
≥ λ2 − s2

s2
≥ · · · ≥ λi − si

si
≥ 0

and another part s1 + . . . + si = bi is added to µ. If 0 < λi < si, then si ≥ 2. By definition of s,
then si−1 = 1, so λi−1 ≥ si−1 and

λ1 − s1

s1
≥ λ2 − s2

s2
≥ · · · ≥ λi − si−1

si−1
≥ 0

and, for the first and only time, part s1 + . . .+ si−1 + λi = bi−1 + λi < bi is added to ν.

The reverse is straightforward. 2
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