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Abstract

We provide a bijective map from the partitions enumerated by the series side of
the Rogers-Selberg mod 7 identities onto partitions associated with a special case
of Basil Gordon’s combinatorial generalization of the Rogers-Ramanujan identities.
The implications of applying the same map to a special case of David Bressoud’s
even modulus analog of Gordon’s theorem are also explored.
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1 Introduction

The celebrated Rogers-Ramanujan identities were first discovered by L.J.
Rogers in 1894 [15], but received little attention until they were rediscov-
ered independently by S. Ramanujan [13, Ch. III, pp. 33 ff.] and I. Schur [17]
some two decades later. They are as follows:

Theorem 1.1 (The Rogers-Ramanujan Identities)

∞∑
j=0

qj
2+j

(q; q)j
=

∏
j=1

j 6≡0,±1(mod 5)

1

1− qj
(1.1)
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and
∞∑
j=0

qj
2

(q; q)j
=

∏
j=1

j 6≡0,±2(mod 5)

1

1− qj
, (1.2)

where (a; q)j :=
∏j−1
h=0(1− aqh) for j a positive integer and (a; q)0 := 1.

The Rogers-Ramanujan identities and the other q-series identities mentioned
in this paper may be considered identities of analytic functions that are valid
if and only if |q| < 1. Since our interest here is combinatorial, convergence
conditions will not be mentioned again.

Rogers presented a large number of q-series identities which resemble (1.1) and
(1.2) in [15] and [16]. Among them were a set of three identities associated with
the modulus 7, which received little attention until they were independently
rediscovered by A. Selberg [18] and then re-proved by F.J. Dyson in [9].

Theorem 1.2 (The Rogers-Selberg Identities)

∞∑
j=0

q2j2+2j(−q2j+2; q)∞
(q2; q2)j

=
∏
j=1

j 6≡0,±1(mod 7)

1

1− qj
, (1.3)

∞∑
j=0

q2j2+2j(−q2j+1; q)∞
(q2; q2)j

=
∏
j=1

j 6≡0,±2(mod 7)

1

1− qj
, (1.4)

and
∞∑
j=0

q2j2(−q2j+1; q)∞
(q2; q2)j

=
∏
j=1

j 6≡0,±3(mod 7)

1

1− qj
, (1.5)

where (a; q)∞ =
∏∞
h=0(1− aqh).

Both MacMahon [13, Ch. III, pp. 33 ff.] and Schur [17] showed that (1.1) and
(1.2) could be interpreted as identities in the theory of integer partitions. (See
§2 for the definition of partition and related terms.)

Theorem 1.3 (The Rogers-Ramanujan Identities–Combinatorial Version)
For i = 1, 2, the number of partitions of n into parts which are nonconsecutive
integers greater than i− 1 and in which no part is repeated equals the number
of partitions of n into parts 6≡ 0,±i (mod 5).

In 1961, Basil Gordon [10] gave the following generalization of the combina-
torial generalization of the Rogers-Ramanujan identities:

Theorem 1.4 (Gordon’s theorem) Let Gk,i(n) denote the number of par-
titions of n into parts such that 1 appears as a part at most i − 1 times and

2



the total number of appearances of any two consecutive integers is at most
k − 1. Let Ck,i(n) denote the number of partitions of n into parts 6≡ 0,±i
(mod 2k + 1). Then Gk,i(n) = Ck,i(n) for 1 5 i 5 k and all integers n.

Indeed, it is an elementary exercise to see that (1.1) and (1.2) correspond to
the i = 1 and i = 2 cases, respectively, of the k = 2 case of Gordon’s theorem
(see, e.g., [11, p. 290 ff.]).

The right hand sides of (1.3), (1.4), and (1.5) are clearly the generating func-
tions for the partitions enumerated by C3,1(n), C3,2(n), and C3,3(n) respec-
tively. Nonetheless, relating the partitions enumerated by the G3,i(n) to the
left hand sides of (1.3), (1.4), and (1.5) is not a straightforward matter.

In a recent paper, George Andrews [5] provided the following partition theo-
retic interpretation of (1.4):

Theorem 1.5 (Andrews) Let A2(n) denote the number of partitions of n
such that if 2j is the largest repeated even part, then all positive even integers
less than 2j also appear at least twice, no odd part less than 2j appears, and
no part greater than 2j is repeated. Then A2(n) = C3,2(n) for all n.

PROOF. Note that

q2j2+2j(−q2j+1; q)∞
(q2; q2)

=
q2+2+4+4+···+2j+2j

(q2; q2)
× (−q2j+1; q)∞.

By the methods of Euler (cf. [3, p. 4 ff.]),

q2+2+4+4+···+2j+2j

(q2; q2)

is the generating function for partitions into 2’s, 4’s, 6’s, . . . , 2j’s with each
part appearing at least twice, and (−q2j+1; q)∞ is the generating function
for partitions into distinct parts with each part at least 2j + 1. Thus, by
summing over all nonnegative j, it follows that the left hand side of (1.4) is
the generating function for A2(n). Again by Euler’s method, it is immediate
that the right hand side of (1.4) is the generating function for C3,2(n).

The analogous partition theoretic interpretation of (1.3) is given next.

Theorem 1.6 Let A1(n) denote the number of partitions of n such that if 2j
is the largest repeated even part, then all positive even integers less than 2j
also appear at least twice, no odd part less than 2j + 2 appears, and no part
greater than 2j is repeated. Then A1(n) = C3,1(n) for all n.
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PROOF. The proof parallels that of Theorem 1.5, except that the role of
(−q2j+1; q)∞ in Theorem 1.5 is played by (−q2j+2; q)∞, which is the generating
function for partitions into distinct parts with each part at least 2j + 2, and
that the right hand side of (1.3) is the generating function for C3,1(n).

The purpose of this paper is provide an explicit bijection between the parti-
tions enumerated by Andrews’ A2(n) and those of Gordon’s G3,2(n). As we
shall see, the same map also provides a bijection between the partitions enu-
merated by G3,1(n) and those enumerated by A1(n), as well as a new partition
theorem related to a special case of David Bressoud’s even modulus analog of
Gordon’s theorem.

2 Definitions

2.1 Standard Definitions in Partition Theory

The definitions and symbols introduced in this subsection are all standard
(cf. [12]).

A partition π of an integer n is a nonincreasing sequence of nonnegative inte-
gers

π = {π1, π2, π3, . . . }
such that

∑∞
i=1 πi = n. Each nonzero term in {π1, π2, π3, . . . } is called a part of

the partition π. The number of parts in π is called the length `(π) of π. Since
the tail {π`(π)+1, π`(π)+2, . . . } of any partition π must be {0, 0, 0, 0, . . . }, it will
be convenient to suppress the infinite string of zeros when writing a specific
partition. The empty partition, ∅ = {0, 0, 0, 0, . . . } = {}, has length zero, i.e.
no parts.

For two partitions, π and λ, we may write π = λ if πi = λi for all i. The
multiplicity of the integer j in π, denoted mj(π), is the number of times j
appears in π.

At times it will be convenient to express π in the alternate notation

π = 〈1m1(π)2m2(π)3m3(π) · · · 〉

meaning that π contains m1(π) 1’s, m2(π) 2’s, etc. In this notation it is cus-
tomary to omit the term jmj(π) when mj(π) = 0.

The union of two partitions π and λ, denoted π∪λ, is the partition whose parts
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are those of π and λ together, arranged in nonincreasing order. For example,

{8, 3, 3, 2, 1} ∪ {9, 7, 5, 3, 1} = {9, 8, 7, 5, 3, 3, 3, 2, 1, 1}.

The sum of two partitions π and λ is

π + λ := {π1 + λ1, π2 + λ2, . . . }.

If π = λ, then the difference of π and λ is given by

π − λ := {π1 − λ1, π2 − λ2, . . . }.

2.2 Definitions of Special Symbols

In the standard notation, the ith largest part of the partition π is denoted
πi, where 1 5 i 5 `(π). Accordingly, the ith smallest part of π is π`(π)−i+1.

However, there will be occasions where a less cumbersome notation for the ith
smallest part will be useful, so let us define

π[i] := π`(π)−i+1 for i = 1, 2, . . . , `(π).

For two partitions π and λ, let us write π � λ if the smallest part of π is
greater than the largest part of λ, i.e.,

π[1] = π`(π) > λ1.

Let D(π) denote the number of different parts in π which appear at least
twice, i.e.

D(π) := Card{j ∈ π | mj(π) > 1},
thus D({21, 15, 15, 12, 11, 9, 9, 6, 5, 5, 2}) = 3 since three integers (15, 9, and
5) each appear more than once as parts.

Let Rk(π) denote the k-th largest repeated part in π, i.e.

R1(π) := max{j | mj(π) > 1},

Rk(π) := max{j | mj(π) > 1 and j < Rk−1(π)} for k = 2, 3, . . . , D(π),

RD(π)+1(π) = 0.

Let G1 denote the set of partitions enumerated by G3,1(n) in Gordon’s theorem,
i.e. partitions π such that

m1(π) = 0 (2.1)
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and

mj(π) +mj+1(π) 5 2 (2.2)

for all j = 1.

Let G2 denote the set of partitions enumerated by G3,2(n) in Gordon’s theorem,
i.e. partitions π such that

m1(π) 5 1 (2.3)

and

mj(π) +mj+1(π) 5 2 (2.4)

for all j = 1.

Let A1 denote the set of partitions enumerated by A1(n) in Theorem 1.6, i.e.
partitions π such that

mj(π) 5 1 if j is odd, (2.5)

mj(π) = 0 if j is odd and j < R1(π) + 2, and (2.6)

mj(π) = 2 if j is even and j < R1(π). (2.7)

Let A2 denote the set of partitions enumerated by A2(n) in Theorem 1.5, i.e.
partitions π such that

mj(π) 5 1 if j is odd, (2.8)

mj(π) = 0 if j is odd and j < R1(π), and (2.9)

mj(π) = 2 if j is even and j < R1(π). (2.10)

For any partition π ∈ G2, let π(0) denote the subpartition of π whose parts
are greater than R1(π), and π(k) denote the subpartition of π whose parts are
less than Rk(π) and greater than Rk+1(π), for 1 5 k 5 D(π). Notice that by
Condition (2.4), no part of π ∈ G2 may appear more than twice. Thus any
π ∈ G2 may be decomposed uniquely as

π = π(0) ∪ 〈R1(π)2〉 ∪ π(1) ∪ 〈R2(π)2〉 ∪ π(2) ∪ · · · ∪ 〈RD(π)(π)2〉 ∪ π(D(π)),

where each π(k) is a partition into distinct parts, and

π(0) � 〈R1(π)2〉 � π(1) � 〈R2(π)2〉 � π(2) � · · · � 〈RD(π)(π)2〉 � π(D(π)).

Of course, any of the π(k) may be empty.

Let P (π) denote the subpartition of π consisting of parts greater than R1(π),
and S(π) denote the subpartition of π consisting of parts less than R1(π).
Thus,

P ({21, 15, 15, 12, 11, 9, 9, 7, 5, 5, 2}) = {21}
and

S({21, 15, 15, 12, 11, 9, 9, 7, 5, 5, 2}) = {12, 11, 9, 9, 7, 5, 5, 2}.
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For any partition λ ∈ A2, λ can be decomposed uniquely into

λ = P (λ) ∪ L(λ),

where L(λ) is the subpartition of λ consisting of all parts of λ less than or
equal to R1(λ). Clearly, P (λ) is a partition with distinct parts, R1(λ) is a
partition into parts which are even and repeated, and

P (λ) � L(λ).

Remark 2.1 Note that P (λ) = λ(0). One reason for introducing the P no-
tation is to emphasize that for λ ∈ A2, the partition λ naturally decomposes
into just two subpartitions, P (λ) and L(λ), whereas for π ∈ G2, the partition π
naturally decomposes into 2D(π) + 1 subpartitions, of which all of the π(k) are
partitions with distinct parts. Also, when P is applied to a partition π ∈ G2, it
is used in conjunction with S, where P and S can be thought of as a “prefix”
and “suffix” respectively.

3 The Bijection

3.1 Mapping G1 onto A1.

Since G1 $ G2 and A1 $ A2, let us initially turn our attention to G1 and A1.

Definition 3.1 Define the map f on the set G1 by

f(π) :=
D(π)⋃
i=1

〈(2i)Ri(π)−Ri+1(π)−`(π(i))〉 ∪
D(π)⋃
i=0

(
π(i) + 〈(2i)`(π(i))〉

)
, (3.1)

for π ∈ G1. Equivalently, f may be defined recursively by

f(π) := P (π) ∪
[
〈2R1(π)〉+ f(S(π))

]
with initial condition

f(∅) = ∅.

Example 3.2 If

π = {40, 37, 36, 22, 22, 20, 19, 17, 17, 15, 13, 12, 10, 8, 8, 4, 4, 2},

then

f(π) = {40, 37, 36, 22, 21, 19, 17, 16, 14, 10} ∪ 〈23456483〉. (3.2)

7



In more detail, the mapping is

{40, 37, 36, 22, 22, 20, 19, 17, 17, 15, 13, 12, 10, 8, 8, 4, 4, 2}
= {40, 37, 36} ∪ {22, 22} ∪ {20, 19} ∪ {17, 17} ∪ {15, 13, 12, 10} ∪ {8, 8} ∪ {4, 4} ∪ {2}
f−→ 〈222−17−2〉 ∪ 〈417−8−4〉 ∪ 〈68−4−0〉 ∪ 〈84−0−1〉

∪ {40, 37, 36} ∪ {20 + 2, 19 + 2} ∪ {15 + 4, 13 + 4, 12 + 4, 10 + 4} ∪ ∅ ∪ {2 + 8}
= {40, 37, 36, 22, 21, 19, 17, 16, 14, 10} ∪ 〈23456483〉.

The following diagram helps to demonstrate how the the recursive formulation
of f works. In each iteration, the largest repeated part R is underlined, and
then converted to R 2’s in the next iteration. At the last step, the columns are
added to form the image of π under f .

40 37 36 22 22 20 19 17 17 15 13 12 10 8 8 4 4 2

↓

40 37 36 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

20 19 17 17 15 13 12 10 8 8 4 4 2

↓

40 37 36 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

20 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

15 13 12 10 8 8 4 4 2

↓

40 37 36 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

20 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

15 13 12 10 2 2 2 2 2 2 2 2

4 4 2

↓

40 37 36 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

+ 20 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

+ 15 13 12 10 2 2 2 2 2 2 2 2

+ 2 2 2 2

+ 2

40 37 36 22 21 19 17 16 14 10 8 8 8 6 6 6 6 4 4 4 4 4 2 2 2

(3.3)
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Thus the parts of both π and f(π) are encoded in the matrix

40 37 36 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 20 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0

0 0 0 0 0 15 13 12 10 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


. (3.4)

Display (3.4) may be the best way of simultaneously displaying π and f(π);
the distinct parts of π appear in the matrix as nonzero, nonrepeated entries
in a given row, parts Ri(π) which appear twice are represented as a sequence
of Ri(π) 2’s in the ith row, and the parts of f(π) are the sums of the columns.

Accordingly, (3.4) motivates the following definition. Let λ := f(π).

Definition 3.3 Let π ∈ G2. The S-diagram of the partitions π and λ is the
(D(π) + 1) ×

(
`(π(0)) +R1(π)

)
matrix (or, equivalently, the (1 +R(λ)/2) ×

`(λ) matrix) whose first row consists of the parts of π(0) in nonincreasing
order followed by R1(π) 2’s, and whose ith row consists of

∑i−1
k=0 `(π

(k)) 0’s
followed by the parts of π(i−1) in nonincreasing order followed by Ri(π) 2’s,
followed by 0’s, for 2 5 i 5 D(π) + 1. The parts of λ are then given by the
sums of the columns.

Clearly, there is a unique S-diagram for each partition π ∈ G2. Next, let us
examine how to determine the S-diagram given only a partition in A2.

Again, λ = f(π). Observe that

λj = πj, if 1 5 j 5 `(π(0)) ,

`(λ) = `(π(0)) +R1(π),

and

λ1 > λ2 > · · · > λ`(π(0))

since π(0) is a partition with distinct parts. Accordingly,

`(λ)− j + 1 < λj, if 1 5 j 5 `(π(0))

However,

λ`(π(0)) = 2 + π`(π(0))+3 5 2 + 2 +R1(π)

and so

`(λ)− (`(π(0) + 1)) + 1− λ`(π(0)+1) = `(π(0) + 1)
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which means that

R1(π) = `(λ)− (`(π(0) + 1)) + 1− λ`(π(0)+1) = max
15j5`(λ)

{
j
∣∣∣∣ j = λ[j]

}
. (3.5)

In order to clarify what is being asserted, let us examine the above statements
in terms of Example 3.2. The three largest parts of λ = f(π), namely 40,
37, and 36, are respectively the 25th, 24th, and 23th smallest parts. These
parts (40, 37, and 36), are all larger than the number of parts less than equal
to them (25, 24, and 23 respectively). However the fourth largest (i.e. 22nd
smallest) part of λ, λ4 = λ[22] = 22 is such that it has 22 parts less than or
equal to it, and since the part in question, 22, does not exceed the number of
parts less than or equal to it (i.e. 22), it must be that R1(π) = 22.

In other words, knowing the parts of λ (with no foreknowledge of the parts of
π), (3.5) allows us to recover the first row of the S-diagram.

Analogously, knowing the parts of λ only, we can recover the ith row of the
S-diagram via

Ri(π) = max
15j5`(λ)

{
j −

i−1∑
h=1

m2h(λ)
∣∣∣∣ j − i−1∑

h=1

m2h(λ) = λ[j] − 2(i− 1)

}
(3.6)

for i = 1, 2, . . . , 1 + R1(λ)
2
.

Theorem 3.4 The map f is a bijection of G1 onto A1.

PROOF. First, we need to show that for any π ∈ G1, f(π) ∈ A1. Let 1 5
k 5 D(π). Since Rk+1(π) appears twice in π, the smallest part in π(k) must be
at least two less than Rk+1(π) (by (2.4)), and thus the largest part in π(k+1)

must be at least two larger than Rk+1(π), (again by (2.4)). Thus, the smallest
part in π(k) must exceed the largest part in π(k+1) by at least four. Therefore,(

π(k) + 〈(2k)`(π
(k))〉

)
�
(
π(k+1) + 〈(2k + 2)`(π

(k+1))〉
)
,

and thus all parts of P (f(π)) are distinct. Furthermore,

P (f(π)) � L(f(π))

since

P (f(π))[1] = π[1] + 2D(π)

= π[1] + L(f(π))1

= 2 + L(f(π))1 (by (2.3))

> L(f(π))1.
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Also, by (3.1), L(f(π)) contains the numbers 2i for i = 1, 2, . . . , D(π) as parts.
The number of appearances of 2i in f(π) is Ri(π)− Ri+1(π)− `(π(i)). Notice
that Condition (2.2) forces Ri(π)−Ri+1(π)− `(π(i)) = 2, and so f(π) ∈ A1.

Next, we demonstrate the invertibility of f . Again, let λ = f(π). Notice that

L(λ)1 = R1(λ) = 2D(π) and that `(P (λ)) =
∑D(π)
k=0 `(π(k)). From the defini-

tion (3.1) of f(π),

m2j(λ) = Rj(π)−Rj+1(π)− `(π(j)) (3.7)

for j = 1, 2, . . . , D(π). Thus, once the Rj(π) and `(π(j)) are recovered from
λ using (3.6), this will be sufficient information to reconstruct π = f−1(λ)
from (3.1).

Once the Rj(π) are known, the rest of π can be easily constructed by subtract-
ing appropriate multiples of two from the parts of P (λ) with the aid of (3.1)
and (3.7).

Example 3.5 Let us now consider λ = {40, 37, 36, 22, 21, 19, 17, 16, 14, 10} ∪
〈23456483〉 ∈ A1 in order to show that it will map to the π from Example 3.2.

Since the initial repeated even parts in λ are 2, 4, 6, and 8, a total of 4 different
parts, π must contain 4 different repeated parts, R1(π) > R2(π) > R3(π) >
R4(π). Other important quantities which can be simply “read off” are `(λ) =
25, m2(λ) = 3, m4(λ) = 5, m6(λ) = 4, and m8(λ) = 3. Now consider the
computation of R1(π) using (3.6). The 25 parts of λ are labeled from smallest
to largest.

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

40 37 36 22 21 19 17 16 14 10 8 8 8 6 6 6 6 4 4 4 4 4 2 2 2

↑

Reading from the left, the first instance of a part not exceeding the number
of parts less than or equal to it is λ[22] = 22, thus, R1(π) = 22, and π(0) =
{40, 37, 36}. Therefore, the first row of the S-diagram must be 40, 37, 36,
followed by twenty-two 2’s.

Since λ has 25 parts, three of which are 2’s, the partition λ − 〈225〉 contains
25 − 3 = 22 parts. Furthermore, the three largest parts of λ have already
been determined in the previous step, so they can be removed from further
consideration. Labeling the 19 parts of {λ4, λ5, . . . , λ22} − 〈219〉 from smallest
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to largest,

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

20 19 17 15 14 12 8 6 6 6 4 4 4 4 2 2 2 2 2

↑

which lets us conclude that R2(π) = 17 and π(1) = {22− 2, 21− 2}. Therefore,
we now know that the second row of the S-diagram begins with `(π(0)) = 3
zeros, followed by 22−2, 21−2, followed by seventeen 2’s, followed by m2(λ) =
3 zeros.

To find the next row, number the parts of {λ6, λ7, . . . , λ17}−〈412〉 from smallest
to largest:

12 11 10 9 8 7 6 5 4 3 2 1

15 13 12 10 6 4 4 4 2 2 2 2

↑

Thus, R3(π) = 8 and π(2) = {19− 4, 17− 4, 16− 4, 14− 4}.

Next,

4 3 2 1

4 2 2 2

↑

and so R4(π) = 4 and π(3) = ∅.

Finally, all that remains is the single part 10− 8 = 2, so this 2 must be placed
in column 9 = 1 + `(π(0)) + `(π(1)) + `(π(2)) + `(π(3)) of the last row of the
S-diagram.

Thus, the full S-diagram is given by (3.4), and we conclude that

π = f−1(λ) = {40, 37, 36, 22, 22, 20, 19, 17, 17, 15, 13, 12, 10, 8, 8, 4, 4, 2}.

3.2 Extending the Map to G2 → A2

Theorem 3.6 The map f given in Definition 3.1 also provides a bijection
from G2 to A2.

PROOF. Notice that G1 $ G2 and A1 $ A2. The set G2 \ G1 consists of
precisely those partitions in G2 which contain a one. The set A2 \ A1 consists
of precisely those partitions λ in A2 for which the smallest part of P (λ) is
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exactly one more than the largest part in L(λ). Observe that any partition

π ∈ G2 \ G1 has an S-diagram whose
(
R(π) + 1,

∑D(π)
h=0 `(π

(h))
)

entry is a 1.

This condition is equivalent to the sum of the
(∑D(π)

h=0 `(π
(h))

)
th column being

exactly one more than the next column, i.e. the smallest part of P (λ) is exactly
one more than the largest part of L(λ).

3.3 The Other Rogers-Selberg Identity (1.5)

Obviously, it would be desirable to use the f map, or some generalization of it,
to produce a bijection from the set of partitions G3 enumerated by the G3,3(n)
of Gordon’s theorem onto a set of partitions enumerated by the left hand side
of (1.5), say A3. In particular, we would like to have A2 $ A3, just as we have
A1 $ A2.

Difficulties arise immediately, however. Firstly, the unaltered f -map will not
produce a bijection from the partitions enumerated by G3,3(n); observe that
f({3, 1, 1}) = f({3, 2}) = {3, 2}. Furthermore, finding a natural partition
theoretic interpretation of the left hand side of (1.5) analogous to that of
Theorem 1.5 is not as straightforward as one might first suppose. In (1.3)
and (1.4), the 2j2 + 2j = 2 + 2 + 4 + 4 + · · · + 2j + 2j in the exponent of q
over the expression (q2; q2)j allows the expression

q2j2+2j

(q2; q2)j

to be dealt with neatly as partitions into 2’s, 4’s, . . . , 2j’s with each part
appearing at least twice. In (1.5), we instead have q2j2 , but how shall the 2j2

be split up?

We will allow ourselves to be guided by a simple bijection of G3 onto G1.
Consider the map

g : G3 → G1

where g({π1, π2, . . . , π`(π)}) = {π1 + 1, π2 + 1, . . . , π`(π) + 1}. It is clear that
`(π) = `(g(π)) and that if π is a partition of n, then g(π) is a partition of
n + `(π). It is also clear that g is a bijection. By Theorem 3.4, f maps G1

bijectively onto A1. Thus, all that is needed is to map A1 bijectively onto A3

in as simple a manner as possible, so that a partition f(g(π)) of n + `(π) in
A1 maps to a partition of n in A3. Define h : A1 → A3 as follows. For λ ∈ A1,
subtract 1 from each part in P (λ) and subtract 1 from two 2’s, two 4’s, two
6’s, . . . , two (R1(λ))’s. Letting f̄ := h ◦ f ◦ g, we have a bijection

f̄ : G3 → A3.
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To view f̄ as a single operation, rather than a composition of three maps, let
us define the following modified S-diagram.

Definition 3.7 Let π ∈ G3 and λ = f̄(π). The S̄-diagram of the partitions π

and λ is the (D(π) + 1) ×
(
`(π(0)) +R1(π) + 1

)
matrix (or, equivalently, the

(1 +R(λ)/2) × `(λ) matrix) whose first row consists of the parts of π(0) in
nonincreasing order followed by R1(π)− 1 2’s, then two 1’s and whose ith row
consists of

∑i−1
k=0 `(π

(k)) 0’s, followed by the parts of π(i−1) in nonincreasing
order, followed by Ri(π) − 1 2’s, followed by two 1’s, and the rest 0’s, for
2 5 i 5 D(π) + 1. The parts of λ are then given by the sums of the columns.

Example 3.8 f̄({16, 14, 12, 12, 7, 5, 5, 3, 2, 1}) = {16, 14, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1}.
The corresponding S̄-diagram is

16 14 2 2 2 2 2 2 2 2 2 2 2 1 1

0 0 7 2 2 2 2 1 1 0 0 0 0 0 0

0 0 0 3 2 1 0 0 0 0 0 0 0 0 0

 .

The partition theorem analogous to Theorems 1.5 and 1.6 is therefore as fol-
lows:

Theorem 3.9 Let A3(n) denote the number of partitions of n such that if
2j − 1 is the largest repeated odd part, then all positive odd integers less than
2j appear exactly twice, and no part greater than 2j may be repeated. Then
A3(n) = C3,3(n) for all n.

PROOF. Note that

q2j2(−q2j+1; q)∞
(q2; q2)

=
q1+1+3+3+···+(2j−1)+(2j−1)

(q2; q2)
× (−q2j+1; q)∞.

By the methods of Euler (cf. [3, p. 4 ff.]), the expression

q1+1+3+3+···+(2j−1)+(2j−1)

(q2; q2)

is the generating function for partitions into exactly two 1’s, two 3’s, two
5’s, . . . , two (2j − 1)’s with 2’s, 4’s, . . . , 2j’s allowed to appear any number
of times (or not at all). The product (−q2j+1; q)∞ is the generating function
for partitions into distinct parts with each part at least 2j + 1. Thus, by
summing over all nonnegative j, it follows that the left hand side of (1.5) is
the generating function for A3(n). Again by Euler’s method, it is immediate
that the right hand side of (1.5) is the generating function for C3,3(n).
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Remark 3.10 It should be noted that Andrews gave a different partition-
theoretic interpretation of the Rogers-Selberg identities in [4]. This interpre-
tation was studied further by Bressoud [8].

4 The Modulus 6 Case of Bressoud’s Theorem

Bressoud [7] gave an analog of Gordon’s partition theorem for even moduli.

Theorem 4.1 (Bressoud) Let Bk,i(n) denote the number of partitions π of
n into parts such that

m1(π) 5 i− 1, (4.1)

mj(π) +mj+1(π) 5 k − 1 for j = 1, 2, 3, . . . , and (4.2)

if πj − πj+k−2 5 1, then
k−2∑
h=0

πj+h ≡ (i− 1) (mod 2). (4.3)

Let Dk,i(n) denote the number of partitions of n into parts 6≡ 0,±i (mod 2k).
Then Bk,i(n) = Dk,i(n) for 1 5 i < k and all integers n.

The k = 3, i = 1 case of Bressoud’s theorem first appeared in Andrews [1, p.
432, Thm. 1]. This will be the case of most interest to us. It may be stated as
follows.

Theorem 4.2 (Andrews) The number of partitions of n into parts greater
than 1, in which no consecutive integers appear, and in which no part ap-
pears more than twice equals the number of partitions of n into parts 6≡ 0,±1
(mod 6).

The “mod 6 analog” of the Rogers-Selberg identity (1.3) may be stated as

∞∑
j=0

q2j2+2j(q; q2)j(−q2j+2; q)∞
(q2; q2)j

=
∏
j=1

j 6≡0,±1(mod 6)

1

1− qj
. (4.4)

Equation (4.4) is due to Slater [20, p. 154, Eq. (27), with q replaced by −q].

The k = 3, i = 2 case of Bressoud’s theorem corresponds to Euler’s classic
theorem that the number of partitions into odd parts equals the number of
partitions into distinct parts [3, p. 5, Cor. 1.2], and so the “mod 6 analog” of
the Rogers-Selberg identity (1.4) is simply
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(−q; q)∞ =
∏
j=1

j 6≡0,±2(mod 6)

1

1− qj

=
∞∏
j=1

j≡1(mod 2)

1

1− qj

 . (4.5)

Since the f map restricted to partitions with distinct parts is the identity
map, this case will not be of interest here.

A third partner also exists, but the infinite product on the right hand side is
not as neat as that of (4.4) or (4.5) because −3 ≡ 3 (mod 6):

∞∑
j=0

q2j2(q; q2)j(−q2j+1; q)∞
(q2; q2)j

=
∏
j=1

(1− q3j)(1− q6j−3)

1− qj
. (4.6)

An identity equivalent to (4.6) was found independently by James McLaughlin
in a computer search [14].

Notice that for a given k and i, the conditions restricting the appearance of
parts in partitions enumerated by Gk,i(n) in Gordon’s theorem are the same as
those restricting the appearance of parts in partitions enumerated by Bk,i(n) in
Bressoud’s theorem, except that Bressoud’s theorem contains condition (4.3),
while Gordon’s theorem does not. Thus if B1 denotes the set of partitions
enumerated by B3,1(n) in Bressoud’s theorem, it is immediate that

B1 $ G1.

Therefore f maps B3,1(n) onto some proper subset of A1. It fairly straightfor-
ward to see that the subset of A1 in question is those partitions in which the
distinct parts greater than the largest repeated even part are all nonconsecu-
tive integers. Formally, the f map supplies the following theorem.

Theorem 4.3 Let B3,1(n) be as in Bressoud’s theorem. Let T (n) denote the
number of partitions of n into parts such that if 2j is the largest repeated even
part, then all positive even integers less than 2j also appear at least twice, no
odd part less than 2j + 2 appears, no part greater than 2j is repeated, and no
two consecutive integers appear. Then B3,1(n) = T (n) for all n.

While it must be admitted that the preceding theorem is not the most elegant
identity in the theory of partitions, it would nonetheless be desirable, in the
present context, to be able to identify the partitions enumerated by T (n) with
the left hand side of (4.4). Unfortunately, the presence of the factor (q; q2)j
in the numerator of the left hand side of (4.4) (which is absent from the
Rogers-Selberg identities) creates an inclusion-exclusion situation; i.e. unlike
Eqs. (1.3), (1.4), and (1.5), Eq. (4.4) is not positive term-by-term. Accordingly,
any hope of getting an immediate result like that of Theorem 1.5 is dashed.
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The author tried to find a direct combinatorial proof of Theorem 4.3, but was
unable to do so.

Undeterred, we proceed by defining the following two-variable analogs of
Eqs. (4.4)–(4.6).

F1(a) := F1(a; q) :=
∞∑
n=0

a2nq2n(n+1)(q; q2)n(−aq2n+2; q)∞
(q2; q2)n

(4.7)

F2(a) := F2(a; q) := (−aq; q)∞ (4.8)

F3(a) := F3(a; q) :=
∞∑
n=0

a2nq2n2
(q; q2)n(−aq2n+1; q)∞

(q2; q2)n
. (4.9)

Next, define

E1(a) := E1(a; q) :=
∞∑
n=0

a2nq2n(n+1)

(q2; q2)n

∞∑
m=0

amqm(m+2n+1)

(q; q)m
(4.10)

E2(a) := E2(a; q) := (−aq; q)∞ (4.11)

E3(a) := E3(a; q) :=
∞∑
n=0

a2nq2n2

(q2; q2)n

∞∑
m=0

amqm(m+2n)

(q; q)m
. (4.12)

Lemma 4.4 The functions F1(a), F2(a), F3(a) satisfy the following system
of q-difference equations:

F1(a) = F3(aq) (4.13)

F2(a) = (1 + aq)F2(aq) (4.14)

F3(a) = F1(a) + aq(1 + aq)F1(aq) (4.15)
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PROOF. Equations (4.13) and (4.14) are immediate from the definitions (4.7)–
(4.9).

F3(a)− F1(a) =
∞∑
n=0

a2nq2n2
(q; q2)n(−aq2n+2; q)∞

(q2; q2)n
(1 + aq2n+1 − q2n)

=
∞∑
n=0

a2nq2n2
(q; q2)n(−aq2n+2; q)∞

(q2; q2)n

×
(

(1− q2n)(1 + aq2n+1) + aq4n+1
)

=
∞∑
n=1

a2nq2n2
(q; q2)n(−aq2n+1; q)∞

(q2; q2)n−1

+
∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(−aq2n+2; q)∞
(q2; q2)n

=
∞∑
n=0

a2n+2q2n2+4n+2(q; q2)n+1(−aq2n+3; q)∞
(q2; q2)n

+
∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(−aq2n+2; q)∞
(q2; q2)n

= aq
∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(1− q2n+1)(−aq2n+3; q)∞
(q2; q2)n

+
∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(−aq2n+2; q)∞
(q2; q2)n

=
∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(−aq2n+3; q)∞
(q2; q2)n

×
(
aq(1− q2n+1) + (1 + aq2n+2)

)
= (1 + aq)

∞∑
n=0

a2n+1q2n2+4n+1(q; q2)n(−aq2n+3; q)∞
(q2; q2)n

= aq(1 + aq)F1(aq),

and thus (4.15) is established.

Lemma 4.5 The functions E1(a), E2(a), E3(a) satisfy the following system
of q-difference equations:

E1(a) = E3(aq) (4.16)

E2(a) = (1 + aq)E2(aq) (4.17)

E3(a) = E1(a) + aq(1 + aq)E1(aq) (4.18)
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PROOF. Equations (4.16) and (4.17) are immediate from the definitions (4.10)–
(4.12).

E3(a)− E1(a) =
∞∑
n=0

∞∑
m=0

a2n+mq2n2+m2+2mn

(q2; q2)n(q; q)m
(1− q2n+m)

=
∞∑
n=0

∞∑
m=0

a2n+mq2n2+m2+2mn

(q2; q2)n(q; q)m

(
(1− q2n) + q2n(1− qm)

)

=
∞∑
n=1

∞∑
m=0

a2n+mq2n2+m2+2mn

(q2; q2)n−1(q; q)m
+
∞∑
n=0

∞∑
m=1

a2n+mq2n2+m2+2mn+2n

(q2; q2)n(q; q)m−1

=
∞∑
n=0

∞∑
m=0

a2n+m+2q2n2+2n+m2+2mn+2m+2

(q2; q2)n(q; q)m

+
∞∑
n=0

∞∑
m=0

a2n+m+1q2n2+m2+2m+2mn+4n+1

(q2; q2)n(q; q)m

=
∞∑
n=0

∞∑
m=0

a2n+m+1q2n2+m2+2m+2mn+4n+1

(q2; q2)n(q; q)m
(1 + aq)

= aq(1 + aq)
∞∑
n=0

∞∑
m=0

a2n+mq2n2+m2+2m+2mn+4n

(q2; q2)n(q; q)m

= aq(1 + aq)E1(aq),

and thus (4.18) is established.

Theorem 4.6

∞∑
n=0

T (n)qn =
∞∑
n=0

q2n(n+1)(q; q2)n(−q2n+2; q)∞
(q2; q2)n

(4.19)

PROOF. By a standard argument (see, e.g. [2, p. 442 ff., Lemma 1 and the
remark following Eq. (5.9)]), the system (4.13)–(4.15) has unique solutions
with F1(0) = F2(0) = F3(0). Since by Lemma 4.5, (4.10)–(4.12) satisfy the
same system of q-difference equations and E1(0) = E2(0) = E3(0), it follows
that Ei(a) = Fi(a), for i = 1, 2, 3. In particular, E1(1) = F1(1). Further,
observing that the inner sum in E1(1), by (1.1), generates partitions into
parts which are distinct, nonconsecutive integers greater than 2n+ 1,

∞∑
n=0

T (n)qn = F1(1),

and thus the result follows.

Remark 4.7 The motivation behind using the set of q-difference equations (4.13)–
(4.15) comes from the fact that it is known (see [2], [7], [19]) that the func-
tions arising in k = 3 case of Bressoud’s theorem must satisfy (4.13)–(4.15).
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Namely, it can be shown that if Qi(a) := (−aq; q)∞J1,i/2(; a2; q2), where Jk,i(a;x; q)
is defined in [2] and [3, p. 106, Eq. (7.2.2)], the Qi(a) for i = 1, 2, 3 also sat-
isfy (4.13)–(4.15).

5 Discussion

The f map was created specifically to map the set G2 onto the set A2. As was
shown, f was also useful in a variety of other closely related contexts. It might
be interesting to explore whether this map, or a generalization of it, might be
applicable in additional settings.

This having been said, it is not clear what these additional settings might be.
Recall that our work began with the observation that

∞∑
n=0

G3,2(n)qn =
∏
j=1

j 6≡0,±2(mod 7)

1

1− qj
=
∞∑
j=0

q2j2+2j(−q2j+1; q)∞
(q2; q2)j

, (5.1)

where the first equality follows from Gordon’s theorem, and the second equal-
ity is the second Rogers-Selberg identity. Our f map provides a bijection be-
tween the partitions enumerated on the left hand side with those enumerated
in Andrews’ combinatorial interpretation of the right. The middle member
of (5.1) serves only as a bridge between the left and right and does not play
a role in the bijection.

A natural modulus 5 analog of (5.1) is

∞∑
n=0

G2,1(n)qn =
∏
j=1

j 6≡0,±1(mod 5)

1

1− qj
=
∞∑
j=0

(−1)jq3j2−2j(−q2j+1; q)∞
(q2; q2)j

, (5.2)

where the first equality follows from Gordon’s theorem and the second equality
is an identity due to Rogers [15, p. 339, Ex. 2] which also appears in Slater’s
list [20, p. 154, Eq. (19)]. We are confronted with several difficulties immedi-
ately. First, the partitions enumerated by G2,1(n) do not have any repeated
parts and therefore our f map becomes the identity map in this context. Next,
even though the right hand side of (5.2) resembles that of (5.1), the presence
of the factor (−1)j in (5.2) precludes the possibility of a combinatorial inter-
pretation as simple as that of the right hand side of (5.1).

Perhaps the following modulus 9 analog of (5.3) would be more amenable to
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study via the methods of this paper:

∞∑
n=0

G4,1(n)qn =
∏
j=1

j 6≡0,±1(mod 9)

1

1− qj

=
∞∑
j=0

q3j2+3j(−q3j+3; q3)∞
(q3; q3)j(1− q3j+2)

∞∏
h=j+1

(
1 +

q3h+1

1− q3h+1
+

q3h+2

1− q3h+2

)
, (5.3)

where the first equality follows from Gordon’s theorem and the second equal-
ity is an identity due to Bailey [6, p. 422, Eq. (1.7)] which also appears in
Slater [20, p. 156, Eq. (40)]. Andrews provides a (somewhat complicated)
combinatorial interpretation of the last member of (5.3) in [5, §5]. It should
be noted, however, that in the k = 4 case of Gordon’s theorem, parts may be
repeated up to three times (with certain additional restrictions) and thus it is
not obvious how to adapt or generalize the f map to this situation.
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