Solution to HW 8

2.5 1(b).
Theorem: \(\forall n \in \mathbb{N}: \ n > 33 \Rightarrow (\exists s, t \in \mathbb{Z} : s \geq 3 \land t \geq 2 \land n = 4s + 5t) \).

Proof. Define the predicate
\[P(n) : n > 33 \Rightarrow (\exists s, t \in \mathbb{Z} : s \geq 3 \land t \geq 2 \land n = 4s + 5t) \]
We must prove: \(\forall n \in \mathbb{N} : P(n) \).
By the PCI, it is enough to show:
\[(*) \forall n \in \mathbb{N} : (P(1) \land P(2) \land \cdots \land P(n-1)) \Rightarrow P(n) \]
Let \(n \in \mathbb{N} \).
Assume \(P(1) \land P(2) \land \cdots \land P(n-1) \).
We must show that \(P(n) \) is true.
Assume that \(n > 33 \).
We consider two cases.
Case 1: Assume that \(34 \leq n \leq 37 \).
Set \(s = 40 - n \) and \(t = n - 32 \).
Then \(s \geq 40 - 37 = 3 \) and \(t \geq 34 - 32 = 2 \).
Furthermore, we have \(4s + 5t = 4(40 - n) + 5(n - 32) = 5n - 4n + 4 \cdot 40 - 5 \cdot 32 = n \).
It follows that \(P(n) \) is true.
Case 2: Assume that \(n \geq 38 \).
By assumption we know that \(P(n - 4) \) is true.
Since \(P(n - 4) \) holds and \(n - 4 > 33 \), we may choose \(s, t \in \mathbb{Z} \) such that:
\(s \geq 3 \) and \(t \geq 2 \) and \(n - 4 = 4s + 5t \).
Set \(s' = s + 1 \) and \(t' = t \).
Then we have \(s', t' \in \mathbb{Z} \), \(s' \geq 3 \), \(t' \geq 2 \), and \(4s' + 5t' = (4s + 5t) + 4 = n \).
It follows that \(P(n) \) is true.
We deduce that \((*) \) is true, hence the theorem is true by the PCI.

2.5 2. Let \(a_1 = 2, a_2 = 4 \), and \(a_{n+2} = 5a_{n+1} - 6a_n \) for all \(n \geq 1 \).
Theorem: \(\forall n \in \mathbb{N}: a_n = 2^n \).

Proof. Define the predicate
\[P(n) : a_n = 2^n \]
We must prove: \(\forall n \in \mathbb{N} : P(n) \).
By the PCI, it is enough to show:
\[(*) \forall n \in \mathbb{N} : (P(1) \land P(2) \land \cdots \land P(n-1)) \Rightarrow P(n) \]
Let \(n \in \mathbb{N} \).
Assume \(P(1) \land P(2) \land \cdots \land P(n-1) \).
We must show that \(P(n) \) is true.
We consider 3 cases.
Case 1: If \(n = 1 \), then \(a_n = 2 = 2^n \).
Case 2: If \(n = 2 \), then \(a_n = 4 = 2^n \).
Case 3: Assume that \(n \geq 3 \).
Then \(P(n - 2) \) holds by assumption, so we have \(a_{n-2} = 2^{n-2} \).
And \(P(n - 1) \) holds by assumption, so we have \(a_{n-1} = 2^{n-1} \).
We therefore obtain:
\[a_n = 5a_{n-1} - 6a_{n-2} = 5 \cdot 2^{n-1} - 6 \cdot 2^{n-2} = 5 \cdot 2^{n-1} - 3 \cdot 2^{n-1} = 2 \cdot 2^{n-1} = 2^n \]
This shows that \(P(n) \) is true.
We deduce that \((*) \) is true, hence the theorem is true by the PCI.
2.5 4(b).
\[f_1 = 1, \ f_2 = 1, \ f_3 = 2, \ f_4 = 3, \ f_5 = 5, \]
\[f_6 = 8, \ f_7 = 13, \ f_8 = 21, \ f_9 = 34, \ f_{10} = 55. \]

2.5 5(b).
Theorem: \(\forall n \in \mathbb{N}: \gcd(f_n, f_{n+1}) = 1. \)

Proof. (i) Basis step:
For \(n = 1 \) we have \(\gcd(f_n, f_{n+1}) = \gcd(f_1, f_2) = \gcd(1, 1) = 1. \)

(ii) Inductive step: Let \(n \in \mathbb{N}. \)
Assume that \(\gcd(f_n, f_{n+1}) = 1. \)
Then we obtain
\[\gcd(f_{n+1}, f_{n+2}) = \gcd(f_{n+1}, f_n + f_{n+1}) = \gcd(f_{n+1}, f_n) = 1. \]
(iii) Conclude by PMI: \(\forall n \in \mathbb{N}: \gcd(f_n, f_{n+1}) = 1. \)

2.5 8.
Theorem:
\(\forall a, b \in \mathbb{Z}: (a, b) \neq (0, 0) \Rightarrow \) (there is a smallest positive linear comb. of \(a \) and \(b \)).

Proof. Let \(a, b \in \mathbb{Z}. \)

Assume that \((a, b) \neq (0, 0). \)
Consider the set of positive linear combinations of \(a \) and \(b: \)
\[S = \{ n \in \mathbb{N} \mid \exists s, t \in \mathbb{Z}: n = sa + tb \}. \]
Since \((a, b) \neq (0, 0), \) we must have \(a \neq 0 \) or \(b \neq 0. \)
It follows that \(|a| + |b| > 0, \) hence \(|a| + |b| \in \mathbb{N}. \)
Notice that \(|a| + |b| \) is a linear combination of \(a \) and \(b. \)
In fact, we may choose \(s \in \{ 1, -1 \} \) such that \(|a| = sa. \)
And we may choose \(t \in \{ 1, -1 \} \) such that \(|b| = tb. \)
Then we have \(|a| + |b| = sa + tb. \)
We deduce that \(|a| + |b| \in S. \)
This shows that \(S \) is not empty.
Since \(S \) is a non-empty subset of \(\mathbb{N}, \)
it follows from the WOP that \(S \) has a smallest element \(m. \)
This integer \(m \) is the smallest linear combination of \(a \) and \(b. \)

3.1 5(g,h).
Define the relations
\[R = \{(1, 5), (2, 2), (3, 4), (5, 2)\}, \]
\[S = \{(2, 4), (3, 4), (3, 1), (5, 5)\}, \]
and
\[T = \{(1, 4), (3, 5), (4, 1)\}. \]
Then \(S \circ T = \{(3, 5)\} \) and \(R \circ (S \circ T) = \{(3, 2)\}. \)
And we have \(R \circ S = \{(3, 5), (5, 2)\} \) and \((R \circ S) \circ T = \{(3, 2)\}. \)

3.1 9.
Let \(R \subset A \times B \) and \(S \subset B \times C \) be relations.
Then \(S \circ R \subset A \times C \) is a relation from \(A \) to \(C. \)

(a) Claim: \(\text{Dom}(S \circ R) \subset \text{Dom}(R). \)

Let \(x \in \text{Dom}(S \circ R). \)
By definition of the domain of a relation,
we may choose \(z \in C \) such that \((x, z) \in S \circ R. \)
By definition of the composition of two relations,
we may choose \(y \in B \) such that \((x, y) \in R \) and \((y, z) \in S\).

Since \((x, y) \in R\), it follows that \(x \in \text{Dom}(R)\).

(b) Take \(A = B = C = \{1, 2\} \).

Set \(R = I_{\{1,2\}} = \{(1, 1), (2, 2)\} \) and \(S = \{(1, 1)\} \).

Then \(S \circ R = \{(1, 1)\} \).

We have \(\text{Dom}(S \circ R) = \{1\} \subsetneq \{1, 2\} = \text{Dom}(R) \).

(c) We always have \(\text{Rng}(S \circ R) \subset \text{Rng}(S) \).

The opposite inclusion is not true in the following example.

Take \(A = B = C = \{1, 2\} \).

Set \(R = \{(1, 1)\} \) and \(S = I_{\{1,2\}} = \{(1, 1), (2, 2)\} \).

Then \(S \circ R = \{(1, 1)\} \).

We have \(\text{Rng}(S \circ R) = \{1\} \subsetneq \{1, 2\} = \text{Rng}(S) \).