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Abstract. We prove that Schubert varieties in flag manifolds are uniquely

determined by their equivariant cohomology classes, as well as a stronger result

that replaces Schubert varieties with closures of Bialynicki-Birula cells under
suitable conditions. This is used to prove a conjecture from [BCP23], stating

that any two-pointed curve neighborhood representing a quantum cohomology

product with a Seidel class is a Schubert variety.

1. Introduction

A Schubert variety Ω in a flag manifold X = G/P is called rigid if it is uniquely
determined by its class [Ω] in the cohomology ring H∗(X). More precisely, if Z ⊂ X
is any irreducible closed subvariety such that [Z] is a multiple of [Ω] in H∗(X), then
Z is a G-translate of Ω. This problem has been studied in numerous papers, see
e.g. [Hon05, Hon07, Cos11, RT12, CR13, Cos14, Cos18, HM20] and the references
therein.

In this paper we show that all Schubert varieties are equivariantly rigid. In other
words, if T ⊂ G is a maximal torus, Ω ⊂ X is a T -stable Schubert variety, and
Z ⊂ X is a (non-empty) T -stable closed subvariety such that the T -equivariant
class [Z] ∈ H∗

T (X) is a multiple of [Ω], then Z = Ω. We use this result to prove
a conjecture from [BCP23], stating that a two-pointed curve neighborhood corre-
sponding to a quantum cohomology product with a Seidel class, is an explicitly
determined Schubert variety. This conjecture was known in some cases when X is
cominuscule, in all cases when X is a flag variety of type A [LLSY22, Tar23], and
for X = SG(2, 2n) [BPX]

More generally, let T be an algebraic torus over an algebraically closed field, let
X be a non-singular projective T -variety with finite fixed point set XT , and assume
that all fixed points p ∈ XT are fully definite, in the sense that all T -weights of the
Zariski tangent space TpX belong to a strict half-space of the character lattice of T .
Assume also that XT = XGm holds for some 1-parameter subgroup Gm ⊂ T , such
that the associated Bialynicki-Birula decomposition X =

⋃
X+

p is a stratification,

in the sense that each cell closure X+
p is a union of cells. In this situation we prove

the following result.

Theorem. Let Z ⊂ X be a T -stable closed subvariety such that the T -equivariant

Chow class of Z is a multiple of the class of a cell closure X+
p . Then Z = X+

p .
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In addition to flag varieties, this result applies to a class of horospherical varieties,
which includes all non-singular horospherical varieties of Picard rank 1 [Pas09]. If
X is defined over the field of complex numbers, the Chow class of Z may be replaced
with its class in the T -equivariant singular cohomology ring H∗

T (X). In fact, we
only use the restrictions [Z]p ∈ H∗

T (point) of this class to T -fixed points p ∈ XT ,
which do not depend on the chosen cohomology theory.

To prove the theorem, we first show that the fixed point set of Z is given by
ZT = {p ∈ XT : [Z]p ̸= 0}. Under the assumptions of the theorem, this implies

that Z and X+
p have the same T -fixed points. We then observe that ZT ⊂ X+

p

implies Z ⊂ X+
p when the Bialynicki-Birula decomposition of X is a stratification.

Our paper is organized as follows. In Section 2 we recall some basic facts and
notation related to torus actions. In Section 3 we prove that the restricted class [Z]p
is non-zero for each fixed point p ∈ ZT , and more generally that the equivariant
local class ηpZ is non-zero when p is a fully definite T -fixed point of Z. This is used
to prove the above theorem in Section 4 and Section 5. Section 6 interprets the
theorem for flag varieties, which is used in Section 7 to prove the conjecture about
curve neighborhoods from [BCP23]. Finally, Section 9 interprets our theorem for
certain horospherical varieties.

2. Torus actions
sec:actions

We work with varieties over a fixed algebraically closed field K. Varieties are
reduced but not necessarily irreducible. A point will always mean a closed point.
The multiplicative group of K is denoted Gm = K∖ {0}. An (algebraic) torus is a
group variety isomorphic to (Gm)r for some r ∈ N.

Let T = (Gm)r be an algebraic torus. Any rational representation V of T is a
direct sum V =

⊕
λ Vλ of weight spaces Vλ = {v ∈ V | t.v = λ(t)v ∀t ∈ T} defined

by characters λ : T → Gm. The weights of V are the characters λ for which Vλ ̸= 0.
The group of all characters of T is called the character lattice and is isomorphic to
Zr. Given a T -variety X, we let XT ⊂ X denote the closed subvariety of T -fixed
points. A subvariety Z ⊂ X is called T -stable if t.z ∈ Z for all t ∈ T and z ∈ Z. In
this case Z is itself a T -variety.

The T -equivariant (operational) Chow cohomology ring of X will be denoted
H∗

T (X), see [Ful98, Ch. 17] and [AF24]. This is an algebra over the ring H∗
T (point),

which may be identified with the symmetric algebra of the character lattice of T .
Given a class σ ∈ H∗

T (X) and a T -fixed point p ∈ XT , we let σp ∈ H∗
T (point)

denote the pullback of σ along the inclusion {p} → X. When X is defined over
K = C, Chow cohomology can be replaced with singular cohomology. In fact, our
arguments will only depend on equivariant classes [Z]p ∈ H∗

T (point) obtained by
restricting the class of a T -stable closed subvariety Z ⊂ X to a fixed point, and
these restrictions are independent of the chosen cohomology theory. Similarly, we
can use cohomology with coefficients in either Z or Q.

defn:extremal Definition 2.1. The T -fixed point p ∈ X is non-degenerate in X if T acts with
non-zero weights on the Zariski tangent space TpX. The point p is fully definite if
all T -weights of TpX belong to a strict half-space of the character lattice of T .

Equivalently, p ∈ XT is fully definite inX if and only if there exists a 1-parameter
subgroup ρ : Gm → T such that Gm acts with strictly positive weights on TpX
though ρ. For example, if X = G/P is a flag variety and T ⊂ G is a maximal torus,
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then all points of XT are fully definite in X (see Section 6). Any non-degenerate
T -fixed point must be isolated in XT .

Remark 2.2. If X is a normal quasi-projective T -variety, then XGm = XT holds
for all general 1-parameter subgroups ρ : Gm → T . Here a 1-parameter subgroup is
called general if it avoids finitely many hyperplanes in the lattice of all 1-parameter
subgroups. This follows because X admits an equivariant embedding X ⊂ P(V ),
where V is a rational representation of T [Kam66, Mum65, Sum74].

3. Equivariant local classes
sec:local

Let Z be a T -variety, fix p ∈ ZT , and let m ⊂ OZ,p be the maximal ideal in the
local ring of p. Then the tangent cone CpZ = Spec(

⊕
mi/mi+1) is a T -stable closed

subscheme of the Zariski tangent space TpZ = (m/m2)∨ = Spec(Sym(m/m2)). The
local class of Z at p is defined by (see [AF24, §17.4])

(1) ηpZ = [CpZ] ∈ H∗
T (TpZ) = H∗

T (point) .

When p is a non-singular point of Z, we have ηpZ = 1.

prop:local Proposition 3.1. Let Z be a T -variety and let p ∈ ZT be fully definite in Z. Then
ηpZ ̸= 0 in H∗

T (point).

Proof. We may assume that p is a singular point of Z, so that CpZ has positive
dimension. Choose Gm ⊂ T such that Gm acts with positive weights on TpZ. It
suffices to show that the class of CpZ is non-zero in H∗

Gm
(TpZ). Let {v1, . . . , vn}

be a basis of TpZ consisting of eigenvectors of Gm. Then the action of Gm is given
by t.vi = taivi for positive integers a1, . . . , an > 0. Set A =

∏n
i=1 ai, and let Gm

act on U = Kn by t.u = tAu. Then the map ϕ : TpZ → U defined by

ϕ(c1v1 + · · ·+ cnvn) = (c
A/a1

1 , . . . , cA/an
n )

is a finite Gm-equivariant morphism. By [EG98, Thm. 4] we obtain

H∗
Gm

(U ∖ {0})⊗Q = H∗(PU)⊗Q ,

where PU = (U ∖ {0})/Gm
∼= Pn−1 is the projective space of lines in U , and

ϕ∗[CpZ] |U∖{0} = deg(ϕ) [ϕ(CpZ ∖ {0})/Gm] ∈ H∗(PU)⊗Q .

The result now follows from the fact that every non-empty closed subvariety of
projective space defines a non-zero Chow class. □

cor:local Corollary 3.2. Let X be a T -variety, Z ⊂ X a T -stable closed subvariety, and
p ∈ ZT a T -fixed point of Z. If p is non-singular and non-degenerate in X, and p
is fully definite in Z, then [Z]p ̸= 0 ∈ H∗

T (point).

Proof. By [AF24, Prop. 17.4.1] we have [Z]p = cm(TpX/TpZ) · ηpZ, where m =
dimTpX − dimTpZ. The result therefore follows from Proposition 3.1, noting that
T acts with non-zero weights on TpX/TpZ. □

The following example rules out some potential generalizations of Corollary 3.2.

Example 3.3. Let Gm act on A4 by

t.(a, b, c, d) = (ta, tb, t−1c, t−1d) .

Set Z = V (ad − bc) ⊂ A4, and let p = (0, 0, 0, 0) be the origin in A4. Then
TpZ = TpA4 = A4 and CpZ = Z. Since Gm acts trivially on the equation ad− bc,
we have ηpZ = [Z] = 0 in H∗

Gm
(A4) (see [AF24, §2.3]).
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4. Rigidity of fixed point inclusive subvarieties
sec:rigidity

Let T be an algebraic torus and let X be a T -variety. We will show in Section 6
that Schubert varieties and Richardson varieties in a flag variety X satisfy the
following two definitions.

defn:rigid Definition 4.1. A T -stable closed subvariety Ω ⊂ X is T -equivariantly rigid if
it is uniquely determined by its T -equivariant cohomology class up to a constant.
More precisely, if Z ⊂ X is any T -stable closed subvariety such that [Z] = c [Ω]
holds in H∗

T (X) for some 0 ̸= c ∈ Q, then Z = Ω.

defn:fpi Definition 4.2. A T -stable closed subvariety Ω ⊂ X is T -fixed point inclusive if,
for any T -stable closed subvariety Z ⊂ X satisfying ZT ⊂ Ω, we have Z ⊂ Ω.

When the action of T is clear from the context, we frequently drop T from the
notation and write simply equivariantly rigid and fixed point inclusive. Both notions
are properties of the T -equivariant embedding Ω ⊂ X; for example, any T -variety
is fixed point inclusive as a subvariety of itself, and any irreducible T -variety is
equivariantly rigid as a subvariety of itself. Intersections of T -fixed points inclusive
subvarieties are again T -fixed point inclusive (with the reduced scheme structure).
Most of this paper concerns applications of the following observation.

thm:rigid Theorem 4.3. Let X be a non-singular projective T -variety such that all fixed
points p ∈ XT are fully definite in X. Then any irreducible T -fixed point inclusive
subvariety of X is T -equivariantly rigid.

Proof. Let Ω ⊂ X be irreducible and fixed point inclusive, and let Z ⊂ X be any
T -stable closed subvariety such that [Z] = c [Ω] holds in H∗

T (X), with 0 ̸= c ∈ Q.
Then Corollary 3.2 shows that ZT = ΩT = {p ∈ XT : [Z]p ̸= 0}. Since Ω is fixed
point inclusive, we obtain Z ⊂ Ω. Finally, the assumption [Z] = c [Ω] implies that
Z and Ω have the same dimension, so we must have Z = Ω. □

5. Rigidity of Bialynicki-Birula cells
sec:bbcells

The multiplicative group Gm is identified with the complement of the origin in
A1. Given a morphism of varieties f : Gm → X, we write limt→0 f(t) = p if f can
be extended to a morphism f̄ : A1 → X such that f̄(0) = p. This limit is unique
when it exists, and it always exists when X is complete.

Let X be a non-singular projective Gm-variety such that XGm is finite. Then
each fixed point p ∈ XGm defines the (positive) Bialynicki-Birula cell

X+
p = {x ∈ X | lim

t→0
t.x = p} .

A negative cell is similarly defined by X−
p = {x ∈ X | limt→0 t

−1.x = p}. By
[BB73, Thm. 4.4], these cells form a locally closed decomposition of X,

eqn:bbdecompeqn:bbdecomp (2) X =
⋃

p∈XGm

X+
p ,

that is, a disjoint union of locally closed subsets. In addition, each cell X+
p is

isomorphic to an affine space.

lemma:include Lemma 5.1. For any Gm-stable closed subset Z ⊂ X, we have Z ⊂
⋃

p∈ZGm

X+
p .
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Proof. For any point x ∈ Z, we have x ∈ X+
p , where p = lim

t→0
t.x ∈ ZGm . □

Definition 5.2. A locally closed decomposition X =
⋃
Xi is called a stratification

if each subset Xi is non-singular and its closure Xi is a union of subsets Xj of the
decomposition.

The Bialynicki-Birula decomposition (2) typically fails to be a stratification, for
example when X is the blow-up of P2 at the point [0, 1, 0], where Gm acts on P2

by t.[x, y, z] = [x, ty, t2z], see [BB73, Ex. 1]. Lemma 5.1 shows that the Bialynicki-

Birula decomposition is a stratification if and only if X+
q ⊂ X+

p holds for each fixed

point q ∈ (X+
p )Gm . It was proved in [BB73, Thm. 5] that the decomposition is a

stratification when each positive cell X+
p meets each negative cell X−

q transversally.
In particular, this holds when X = G/P is a flag variety and Gm ⊂ G is a general
1-parameter subgroup, see [McG02, Ex. 4.2] or Lemma 6.1. When both the positive
and negative Bialynicki-Birula decomposition are stratifications, all cells X+

p and

X−
q of complementary dimensions meet transversally, hence the positive and nega-

tive cell closures form a pair of Poincare dual bases of the cohomology ring H∗(X).
In this paper we utilize the following application, which follows from Lemma 5.1.

prop:bb-fpi Proposition 5.3. Assume that the Bialynicki-Birula decomposition of X is a strat-

ification. Then each cell closure X+
p ⊂ X is Gm-fixed point inclusive.

cor:bb-rigid Corollary 5.4. Let T be an algebraic torus and X a non-singular projective T -
variety such that all fixed points p ∈ XT are fully definite in X. Assume that XT =
XGm for some Gm ⊂ T , such that the associated Bialynicki-Birula decomposition

of X is a stratification. Then each cell closure X+
p is T -fixed point inclusive and

T -equivariantly rigid.

Proof. This follows from Theorem 4.3 and Proposition 5.3. □

Question 5.5. We do not know whether Proposition 5.3 and Corollary 5.4 are
true without the assumption that the Bialynicki-Birula decomposition of X is a
stratification. It would be very interesting to settle this question.

Example 5.6. Let X be a non-singular projective toric variety, with torus T ⊂ X,
and choose Gm ⊂ T such that XT = XGm . We show that the conclusion of
Corollary 5.4 holds, even though the Bialynicki-Birula decomposition is rarely a
stratification. All fixed points p ∈ XT are fully definite in X, as the weights of
TpX form a basis of the character lattice of T . The T -orbits Oτ ⊂ X correspond

to the cones τ of the fan defining X, and we have Oσ ⊂ Oτ if and only if τ is a
face of σ, see [Ful93, §3.1]. In particular, the T -fixed points in X correspond to
the maximal cones σ. Since X is complete, each cone τ is the intersection of the
maximal cones σ corresponding to the T -fixed points in Oτ . Since all cell closures

X+
p are T -orbit closures, it suffices to show that each orbit closure Oτ is T -fixed

point inclusive. Let Z ⊂ X be a T -stable closed subvariety such that ZT ⊂ Oτ . We
may assume that Z is irreducible, in which case Z = Oκ is also a T -orbit closure.
Since κ is the intersection of the maximal cones given by the fixed points in ZT , we
obtain τ ⊂ κ and Oκ ⊂ Oτ , as required. Now assume that X has dimension two.
By [BB73, Cor. 1 of Thm. 4.5], there is a unique repulsive fixed point b ∈ XGm with
X+

b = {b}, and a unique attractive fixed point a ∈ XGm such that X+
a is a dense

open subset of X. For all other fixed points p ∈ XGm ∖ {a, b}, the cell X+
p

∼= A1 is
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a line. If the Bialynicki-Birula decomposition of X is a stratification, then b ∈ X+
p

for all p ∈ XGm . The T -fixed point b corresponds to a maximal cone σ, and b
is connected to exactly two T -stable lines corresponding to the rays forming the
boundary of this cone. We deduce that X contains at most four T -fixed points.
Higher dimensional toric varieties for which the Bialynicki-Birula decomposition is
not a stratification can be constructed by taking products. We do not know if the

cell closures X+
p are Gm-fixed point inclusive.

6. Rigidity of Richardson varieties
sec:schubert

Let X = G/P = {g.P | g ∈ G} be a flag variety defined by a connected reductive
linear algebraic group G and a parabolic subgroup P . Fix a maximal torus T and
a Borel subgroup B such that T ⊂ B ⊂ P ⊂ G. The opposite Borel subgroup
B− ⊂ G is defined by B− ∩ B = T . Let Φ be the root system of non-zero weights
of T1G, the tangent space of G at the identity element. The positive roots Φ+

are the non-zero weights of T1B. Let W = NG(T )/T be the Weyl group of G,
WP = NP (T )/T the Weyl group of P , and let WP ⊂ W be the subset of minimal
representatives of the cosets in W/WP . The set of T -fixed points in X is given by
XT = {w.P | w ∈ W}, where each point w.P depends only on the coset wWP

in W/WP . Each fixed point w.P defines the Schubert varieties Xw = Bw.P and

Xw = B−w.P . For w ∈ WP we have dim(Xw) = codim(Xw, X) = ℓ(w). The
Bruhat order ≤ on WP is defined by

u ≤ w ⇔ Xu ⊂ Xw ⇔ Xu ⊃ Xw ⇔ Xu ∩Xw ̸= ∅ .
A Richardson variety is any non-empty intersection Xu

w = Xw ∩ Xu of opposite
Schubert varieties in X. Any Richardson variety is reduced, irreducible, and ratio-
nal, see [Deo77] and [BK05, §2].

Recall that a cocharacter ρ : Gm → T is strongly dominant if ⟨α, ρ⟩ > 0 for all
positive roots α ∈ Φ+, where ⟨α, ρ⟩ ∈ Z is defined by α(ρ(t)) = t⟨α,ρ⟩ for t ∈ Gm.
The following lemma is well known, see e.g. [McG02, Ex. 4.2] or [BP, Cor. 3.14].

lemma:flagvar Lemma 6.1. Let ρ : Gm → T be a strongly dominant 1-parameter subgroup. Then
the associated Bialynicki-Birula cells of X are given by X+

p = B.p, for p ∈ XT .

Proof. Let Gm act on G by conjugation through ρ. The fixed point set for this
action is [Spr98, (7.1.2), (7.6.4)]

T = {g ∈ G | tgt−1 = g ∀ t ∈ Gm} ,
and the corresponding Bialynicki-Birula cell is [Spr98, (8.2.1)]

B = {g ∈ G | lim
t→0

tgt−1 ∈ T} .

This implies B.p ⊂ X+
p for any fixed point p ∈ XGm . We deduce from (2) that the

positive Bialynicki-Birula cells in X are the B-orbits. □

cor:rigidschub Corollary 6.2. Any Richardson variety Xv
u in the flag variety X = G/P is T -fixed

point inclusive and T -equivariantly rigid.

Proof. It follows from Proposition 5.3 and Lemma 6.1 that Schubert varieties in X
are fixed point inclusive, which in turn implies that Richardson varieties are fixed
point inclusive. The B-fixed point p = 1.P is fully definite in X because the weights
of TpX are a subset of the negative roots of G. Since W acts transitively on XT ,
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this implies that all T -fixed points in X are fully definite. The result therefore
follows from Theorem 4.3. □

Let E = G/B denote the variety of complete flags, and let π : E → X be the nat-
ural projection. A projected Richardson variety in X is the image Πu

w(X) = π(Eu
w)

of a Richardson variety in E. Projected Richardson varieties in the Grassmannian
X = Gr(m,n) of type A, obtained as images of Richardson varieties in Fl(n), are
also called positroid varieties.

cor:positroid Corollary 6.3. Let X = Gr(m,n) be a Grassmannian of type A, and let T =
(Gm)n act on X through the diagonal action on Kn. Then all positroid varieties in
X are T -fixed point inclusive and T -equivariantly rigid.

Proof. It was proved in [KLS13] that any positroid variety Ω is defined by Plucker
equations. Equivalently, Ω is an intersection of T -stable Schubert divisors, so Ω is
fixed point inclusive by Corollary 6.2 and equivariantly rigid by Theorem 4.3. □

Remark 6.4. Corollary 6.3 does not hold for projected Richardson varieties in ar-
bitrary flag varieties X = G/P . Each simple root β defines a projected Richardson
divisor Dβ = Π

sβ
wP

0
(X), where wP

0 denotes the longest element in WP . It frequently

happens that two distinct divisors Dβ′ and Dβ′′ have the same T -equivariant coho-
mology andK-theory classes, which implies that these divisors are not equivariantly
rigid. For example, this is the case for the quadric hypersurfaces of dimensions 7
and 8, of Lie types B4 and D5, and the two-step flag variety Fl(1, 4; 5) of type A4.
For other flag varieties X, all projected Richardson varieties have distinct equivari-
ant classes, but some projected Richardson divisor Dβ contains all T -fixed points
in X, which rules out that Dβ is fixed point inclusive. For example, this is the case
for the Lagrangian Grassmannian LG(2, 4) of type C2 and the maximal orthogonal
Grassmannian OG(4, 8) of type D4. This is a special case of [BP, Lemma 3.1],
which can be used to produce many more examples.

Any element u ∈ W has a unique factorization u = uPuP for which uP ∈ WP and
uP ∈ WP , called the parabolic factorization with respect to P . This factorization
is reduced in the sense that ℓ(u) = ℓ(uP ) + ℓ(uP ). The parabolic factorization of
the longest element w0 ∈ W is w0 = wP

0 w0,P , where wP
0 and w0,P are the longest

elements in WP and WP , respectively. Since w0 and w0,P are self-inverse, we have
w0,P = w0w

P
0 . As preparation for the next section, we prove the following identity

of Schubert varieties.

lemma:dualpoint Lemma 6.5. Let Q ⊂ G be a parabolic subgroup containing B and set w = wQ
0 .

Then w−1.Xw = Xw0w.

Proof. It follows from Corollary 6.2(b) that Xw0,Q
= w0,Q.Xw0,Q

, as the T -fixed
points of both Schubert varieties are {u.P | u ∈ WQ}. By translating both sides by

w = wQ
0 , we obtain w.Xw0w = w0.Xw0w = Xw, as required. □

7. Seidel Neighborhoods
sec:seidel

In this section we prove a conjecture about curve neighborhoods from [BCP23].
Since this conjecture and its proof relies on the moduli space of stable maps, we will
restrict our attention to varieties defined over the field K = C of complex numbers.
As in Section 6, we let X = G/P denote a flag variety.
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For any effective degree d ∈ H2(X,Z), we let Md = M0,3(X, d) denote the
Kontsevich moduli space of 3-pointed stable maps to X of degree d and genus zero,
see [FP97]. The evaluation map evi : Md → X, defined for 1 ≤ i ≤ 3, sends
a stable map to the image of the i-th marked point in its domain. Given two
opposite Schubert varieties Xv and Xu, the Gromov-Witten variety Md(Xv, X

u) is
the variety of stable maps that send the first two marked points to Xv and Xu:

Md(Xv, X
u) = ev−1

1 (Xv) ∩X−1
2 (Xu) ⊂ Md .

The curve neighborhood Γd(Xv, X
u) is the union of all stable curves of degree d in

X connecting Xv and Xu:

Γd(Xv, X
u) = ev3(Md(Xv, X

u)) ⊂ X .

Let Z[q] = SpanZ{qd : d ∈ H2(X,Z) effective} be the semigroup ring defined by
the effective curve classes on X. The equivariant quantum cohomology ring of X is
an algebra over H∗

T (point)⊗Z Z[q], which is defined by QHT (X) = H∗
T (X)⊗Z Z[q]

as a module. The quantum product of two opposite Schubert classes is given by

[Xv] ⋆ [X
u] =

∑
d≥0

qd ev3,∗[Md(Xv, X
u)] ,

where the sum is over all effective degrees d ∈ H2(X;Z).
A simple root γ ∈ Φ+ is called cominuscule if, when the highest root is written

in the basis of simple roots, the coefficient of γ is one. The flag variety G/Q is
cominuscule if Q is a maximal parabolic subgroup corresponding to a cominuscule
simple root γ, that is, sγ is the unique simple reflection in WQ. Let W comin ⊂ W
be the subset of point representatives of cominuscule flag varieties of G, together
with the identity element:

W comin = {wQ
0 | G/Q is cominuscule} ∪ {1} .

This is a subgroup of W , which is isomorphic to the quotient of the coweight lattice

of Φ modulo the coroot lattice [Bou81, Prop. VI.2.6]. The isomorphism sends wQ
0

to the class of the fundamental coweight ω∨
γ corresponding to Q. In the following

we set d(wQ
0 , u) = ω∨

γ − u−1.ω∨
γ ∈ H2(X;Z) for any u ∈ W . Here we identify

the group H2(X,Z) with a quotient of the coroot lattice, by mapping each simple
coroot β∨ to the curve class [Xsβ ] if sβ ∈ WP , and to zero otherwise.

The Seidel representation of W comin on QH(X)/⟨q − 1⟩ is defined by w.[Xu] =
[Xw] ⋆ [Xu] for w ∈ W comin and u ∈ W . In fact, we have [Sei97, Bel04, CMP09]

eqn:seideleqn:seidel (3) [Xw] ⋆ [Xu] = qd(w,u) [Xwu]

in the (non-equivariant) quantum ring QH(X). This implies that d(w, u) is the
unique minimal degree d for which Γd(Xw0w, X

u) is not empty [FW04, BCLM20].
More generally, it was proved in [CMP09, CP23] that the identity

eqn:htseideleqn:htseidel (4) [Xw] ⋆ [w.Xu] = qd(w,u) [Xwu]

holds in the equivariant quantum cohomology ring QHT (X). We will discuss gen-
eralizations to quantum K-theory in Section 8.

It follows from (3) and the definition of the quantum product in QH(X) that
[Γd(w,u)(Xw0w, X

u)] = [Xwu] holds in H∗(X). Conjecture 3.11 from [BCP23] as-
serts that Γd(w,u)(Xw0w, X

u) is in fact equal to the translated Schubert variety

w−1.Xwu. This is proved below as a consequence of Corollary 6.2 and (4). This re-
sult was known when X = G/P is cominuscule and w = wP

0 [BCP23], when X is a
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Grassmannian of type A and [Xw] is a special Seidel class [LLSY22, Cor. 4.6], when
X is any flag variety of type A [Tar23], and when X is the symplectic Grassmannian
SG(2, 2n) [BPX, Thm. 8.1].

thm:seidelnbhd Theorem 7.1. Let X = G/P be a complex flag variety. For w ∈ W comin and
u ∈ W we have Γd(w,u)(Xw0w, X

u) = w−1.Xwu.

Proof. By applying w−1 to both sides of (4) and using Lemma 6.5, we obtain

[Xw0w] ⋆ [X
u] = qd(w,u) [w−1.Xwu]

in QHT (X). By definition of the quantum product, this implies that

[w−1.Xwu] = ev3,∗[Md(w,u)(Xw0w, X
u)] = c [Γd(w,u)(Xw0w, X

u)]

holds in H∗
T (X), where c is the degree of the map ev3 : Md(w,u)(Xw0w, X

u) →
Γd(w,u)(Xw0w, X

u). The result therefore follows from Corollary 6.2. □

8. Seidel products in quantum K-theory
sec:qkseidel

In this section we discuss a generalization of the Seidel multiplication formula
(4) to quantum K-theory. We start by briefly recalling the definition of quantum
K-theory. A more detailed discussion can be found in [BCMP18a, §2].

Let X = G/P be a flag variety defined over K = C. The equivariant K-theory
ring KT (X) is an algebra over the representation ring Γ = KT (point). The equi-
variant quantum K-theory ring QKT (X) is an algebra over the formal power series
ring ΓJqK = ΓJqβ : sβ ∈ WP K, which has one variable qβ for each simple reflection sβ
in WP . This ring was originally constructed by Givental and Lee [Giv00, Lee04].
As a module over ΓJqK we have QKT (X) = KT (X) ⊗Γ ΓJqK. The undeformed
product of two opposite Schubert classes in QKT (X) is defined by

[OXv
]⊙ [OXu ] =

∑
d≥0

qd ev3,∗[OMd(Xv,Xu)] .

Let Ψ : QKT (X) → QKT (X) be the ΓJqK-linear map defined by

Ψ([OXw ]) =
∑
d≥0

qd [OΓd(Xw)] ,

where the curve neighborhood Γd(X
w) = ev2(ev

−1
1 (Xw)) is defined using the eval-

uation maps from Md. This curve neighborhood is a Schubert variety in X by
[BCMP13, Prop. 3.2(b)], whose Weyl group element was determined in [BM15].
By [BCMP18a, Prop. 2.3], Givental’s quantum K-theory product ⋆ is given by

eqn:qkproducteqn:qkproduct (5) [OXv ] ⋆ [OXu ] = Ψ−1([OXv ]⊙ [OXu ]) .

The following conjecture is the K-theoretic analogue of the Seidel multiplication
formula (4) in QHT (X) proved in [CMP09, CP23].

conj:qkseidel Conjecture 8.1. Let X = G/P be a flag variety. For w ∈ W comin and u ∈ W we
have

[OXw0w
] ⋆ [OXu ] = qd(w,u) [Ow−1.Xwu ] and [OXw ] ⋆ [Ow.Xu ] = qd(w,u) [OXwu ]

in QKT (X).
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The two identities in Conjecture 8.1 are equivalent by Lemma 6.5. The non-
equivariant case of this conjecture was proved in [BCP23, Cor. 3.7] when X is a
cominuscule flag variety. Using Theorem 7.1, we can extend this result to equivari-
ant quantum K-theory.

Theorem 8.2. Conjecture 8.1 is true when X is any cominuscule flag variety.

Proof. Since qd(w,u) is the only power of q appearing in the quantum cohomology
product [Xw0w] ⋆ [X

u], it follows from [BCMP22, Thm. 8.3 and Remark 8.15] that
the same holds for the quantum K-theory product [OXw0w

] ⋆ [OXu ], noting that

d(w, u) is not an exceptional degree of this product. Since Γd(w,u)−1(Xw0w, X
u) = ∅,

we obtain [OXw0w
] ⋆ [OXu ] = qd(w,u) [OΓd(w,u)(Xw0w,Xu)] = qd(w,u) [Ow−1.Xwu ] by

Theorem 7.1. □

A morphism π : Z → Y is called cohomologically trivial if π∗OZ = OY and
Rjπ∗OZ = 0 for j ≥ 1. We propose the following generalization of Theorem 7.1.

conj:seidelnbhd Conjecture 8.3. Let X = G/P be a flag variety, w ∈ W comin, u ∈ W , and let
e ∈ H2(X,Z) be any effective degree.

(a) We have Γd(w,u)+e(Xw0w, X
u) = Γe(w

−1.Xwu).

(b) The evaluation map ev3 : Md(w,u)+e(Xw0w, X
u) → Γd(w,u)+e(Xw0w, X

u) is
cohomologically trivial.

Conjecture 8.3 is true for e = 0; part (a) is equivalent to Theorem 7.1, and
part (b) holds because the map ev3 : Md(w,u)(Xw0w, X

u) → Γd(w,u)(Xw0w, X
u) is

birational by [Bel04, CMP09], and Md(w,u)(Xw0w, X
u) has rational singularities by

[BCMP13, Cor. 3.1]. For e ≥ 0, Theorem 7.1 implies that

Γe(w
−1.Xwu) = Γe(Γd(w,u)(Xw0w, X

u)) ⊂ Γd(w,u)+e(Xw0w, X
u) ,

and Γd(w,u)+e(Xw0w, X
u) is irreducible by [BCMP13, Cor. 3.8]. Conjecture 8.3(a)

is therefore true if and only if Γd(w,u)+e(Xw0w, X
u) and Γe(X

wu) have the same
dimension.

The general case of Conjecture 8.3 can be seen as a variant of the quantum-
equals-classical theorem for Gromov-Witten invariants as stated in [BCMP18b,
Thm. 4.1]. The conjecture immediately implies the identity

eqn:seidelpusheqn:seidelpush (6) ev3,∗[OMd(w,u)+e(Xw0w,Xu)] = [OΓe(w−1.Xwu)]

in KT (X). By using the projection formula along ev3, this implies that the K-
theoretic Gromov-Witten invariants of X associated to Seidel products can be
computed in the ordinary equivariant K-theory of X by

Ie([OXw0w
], [OXu ],F) = χ

Me
(ev∗1[OXw0w

] · ev∗2[OXu ] · ev∗3(F))

=

{
χ

X
([OΓe−d(w,u)(w−1.Xwu)] · F) if e ≥ d(w, u),

0 otherwise.

Here F ∈ KT (X) is an arbitrary K-theory class, and χ
X
: KT (X) → Γ is the sheaf

Euler characteristic map.

Theorem 8.4. Conjecture 8.1 follows from Conjecture 8.3.

Proof. Using the identity (6), we obtain

[OXw0w
]⊙ [OXu ] =

∑
e≥0

qd(w,u)+e [OΓe(w−1.Xwu)] = Ψ(qd(w,u) [Ow−1.Xwu ]) ,
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after which Conjecture 8.1 follows from the definition (5) of the quantum product
in QKT (X). □

9. Horospherical varieties of Picard rank 1
sec:horospherical

In this section we interpret Theorem 4.3 and Proposition 5.3 for a class of horo-
spherical varieties that includes all non-singular projective horospherical varieties
of Picard rank 1 (except flag varieties) by Pasquier’s classification [Pas09]. Let G be
a connected reductive linear algebraic group, B ⊂ G a Borel subgroup, and T ⊂ B
a maximal torus. Let V1 and V2 be irreducible rational representations of G, and
let vi ∈ Vi be a highest weight vector of weight λi, for i ∈ {1, 2}. We assume that
λ1 ̸= λ2. Define

X = G.[v1 + v2] ⊂ P(V1 ⊕ V2) .

If X is normal, then X is a horospherical variety of rank 1, see [Tim11, Ch. 7].
We will assume that X is non-singular and K = C, even though many claims hold
more generally; this implies that X is fibered over a flag variety G/P12 with non-
singular horospherical fibers of Picard rank 1, see Remark 9.5. Any G-translate of
a B-orbit closure in X will be called a Schubert variety. Our next result uses the
action of T × Gm on X defined by (t, z).[u1 + u2] = t.[u1 + zu2], for ui ∈ Vi. We
have XT×Gm = XT .

thm:horo Theorem 9.1. Any T × Gm-stable Schubert variety in X is T × Gm-fixed point
inclusive and T ×Gm-equivariantly rigid.

Before proving Theorem 9.1, we sketch elementary proofs of some basic facts
about X, which are also consequences of general results about spherical varieties,
see [Tim11, Per14, Pas09] and the references therein.

Given an element [u1+u2] ∈ P(V1⊕V2), we will always assume ui ∈ Vi, and i will
always mean an element from {1, 2}. We consider P(Vi) as a subvariety of P(V1⊕V2).
Let πi : P(V1 ⊕ V2) ∖ P(V3−i) → P(Vi) denote the projection from V3−i, defined
by πi([u1 + u2]) = [ui]. Set X0 = G.[v1 + v2] ⊂ P(V1 ⊕ V2), Xi = G.[vi] ⊂ P(Vi),
and X12 = G.([v1], [v2]) ⊂ P(V1) × P(V2). Since vi is a highest weight vector,
the stabilizer Pi = G[vi] is a parabolic subgroup containing B. It follows that
Xi

∼= G/Pi and X12
∼= G/(P1 ∩ P2) are flag varieties. In particular, Xi is closed

in P(Vi), and X12 is closed in P(V1) × P(V2). Notice also that X0
∼= G/H, where

H ⊂ P1∩P2 is the kernel of the character λ1−λ2 : P1∩P2 → Gm. This shows that
X0 is a Gm-bundle over G/(P1∩P2), so X is a non-singular projective horospherical
variety of rank 1 (but not necessarily of Picard rank 1, see Remark 9.5).

Let W be the Weyl group of G, and recall the notation from Section 6.

lemma:orbits Lemma 9.2. We have X = X0 ∪X1 ∪X2. The B-orbit closures in X are

Bw.[vi] =
⋃

w′≤w

Bw′.[vi] for w ∈ WPi and i ∈ {1, 2}, and

Bw.[v1 + v2] =
⋃

w′≤w

(Bw′.[v1 + v2] ∪Bw′.[v1] ∪Bw′.[v2]) for w ∈ WP1∩P2 .

Proof. Set P0 = P(V1 ⊕ V2) ∖ (P(V1) ∪ P(V2)). Since λ1 ̸= λ2, it follows that

T.[v1 + v2] is the line through [v1] and [v2] in P(V1 ⊕ V2). This implies X0 =
(π1 × π2)

−1(X12), hence X0 is closed in P0, and X0 = X ∩ P0. We also have
Xi ⊂ X ∩ P(Vi) ⊂ π−1

i (Xi) ∩ P(Vi) = Xi, which proves the first claim. To finish
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the proof, it suffices to show w′.[vi] ∈ Bw.[v1 + v2] if and only if w′ ≤ w (when

w′ ∈ WPi). The implication ‘if’ holds because w′.[vi] ∈ Tw′.[v1 + v2], and ‘only if’

holds because πi(Bw.[v1 + v2]∖X3−i) ⊂ Bw.[vi]. □

Define an alternative action of Pi on V3−i by p • u = λi(p)
−1p.u, and use this

action to form the space

G×Pi V3−i = {[g, u] : g ∈ G, u ∈ V3−i} / {[gp, u] = [g, p • u] : p ∈ Pi} .
Define a morphism of varieties ϕi : G×PiV3−i → P(V1⊕V2) by ϕi([g, u]) = g.[vi+u].
This is well defined since p.(vi + u) = λi(p)(vi + p • u) holds for p ∈ Pi and
u ∈ V3−i. Set Ei = (Pi • v3−i) ∪ {0} ⊂ V3−i. Noting that Ei is the cone over
Pi.[v3−i] ∼= Pi/(P1 ∩ P2), it follows that Ei is closed in V3−i.

lemma:vb Lemma 9.3. The restricted map ϕi : G ×Pi Ei → X0 ∪ Xi is an isomorphism of
varieties. In particular, Ei ⊂ V3−i is a linear subspace.

Proof. Assume ϕi([g, u]) = ϕi([g
′, u′]), and set p = g−1g′. We obtain p ∈ Pi and

[vi+u] = p.[vi+u′] = [vi+p•u′] in P(V1⊕V2), hence [g, u] = [g, p•u′] = [gp, u′] =
[g′, u′] in G×Pi V3−i. We deduce that ϕi : G×Pi Ei → X0 ∪Xi is bijective, so the
lemma follows from Zariski’s main theorem, using that X0∪Xi is non-singular. □

Fix a strongly dominant cocharacter ρ : Gm → T . For a ∈ Z, define ρa :
Gm → T ×Gm by ρa(z) = (ρ(z), za). The resulting action of Gm on X is given by
ρa(z).[u1 + u2] = ρ(z).[u1 + zau2].

lemma:horo_definite Lemma 9.4. All T -fixed points in X are fully definite for the action of T ×Gm.

Proof. It follows from Lemma 9.3 that [v1] has a T ×Gm-stable open neighborhood
in X isomorphic to B−.[v1]×E1, where the action is given by (t, z).(x, u) = (t.x, t•
zu). If a is sufficiently negative, then Gm acts through ρa on T[v1]X = T[v1]X1⊕E1

with strictly negative weights, hence [v1] is fully definite in X for the action of
T ×Gm. A symmetric argument shows that [v2] is fully definite. The result follows
from this, since all T -fixed points in X are obtained from [v1] or [v2] by the action
of the Weyl group W . □

Proof of Theorem 9.1. For a sufficiently negative, it follows from Lemma 6.1 that
the Bialynicki-Birula cells of X defined by ρa are

X+
w.[v1]

= Bw.[v1] and X+
w.[v2]

= Bw.[v1 + v2] ∪Bw.[v2] .

These cells form a stratification of X by Lemma 9.2. It therefore follows from
Corollary 5.4 that Bw.[v1] and Bw.[v1 + v2] are T × Gm-fixed point inclusive and
T × Gm-equivariantly rigid for each w ∈ W . A symmetric argument applies to
Bw.[v2], which completes the proof. □

remark:pasfib Remark 9.5. The exact sequence of [Per14, Thm. 3.2.4] implies that Pic(X) is a
free abelian group of rank equal to the rank of X (which is one) plus the number
of B-stable prime divisors in X that do not contain a G-orbit. Any B-stable prime
divisor meeting X0 has the form D = Bw0sβ .[v1 + v2], where β is a simple root, and
Lemma 9.2 shows that D contains Xi if and only if β is a root of Pi. Let P12 ⊂ G
be the parabolic subgroup generated by P1 and P2. We obtain Pic(X) ∼= Z ⊕
Pic(G/P12). Let π : X → G/P12 be the map defined by π(g.[v1+ v2]) = π(g.[vi]) =
g.P12. This is a G-equivariant morphism of varieties, as its restriction to X0 ∪Xi

is the composition of πi : X0 ∪ Xi → G/Pi with the projection G/Pi → G/P12.
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The fibers of π are translates of π−1(1.P12) = L.[v1 + v2] ⊂ P(V1 ⊕ V2), where L
is the Levi subgroup of P12 containing T . Moreover, π−1(1.P12) is a non-singular
projective horospherical variety of Picard rank 1, so it is either a flag variety or one
of the non-homogeneous spaces from Pasquier’s classification [Pas09].

Question 9.6. Let X be any projective G-horospherical variety fibered over a flag
variety G/P with non-singular horospherical fibers of Picard rank 1. Is it true

that X is isomorphic to an orbit closure G.[v1 + v2] ⊂ P(V ), where V is a rational
representation of G, and v1, v2 ∈ V are highest weight vectors?

Example 9.7. Let X be the blow-up of P2 at a point p, let π : X → P1 be
the morphism defined by projection from p, and set G = SL(2,C). Then X is
G-horospherical and fibered over P1 with fiber P1. This variety X is isomorphic to
G.[v1 + v2] ⊂ P(V1 ⊕ V2), where v1 is a highest weight vector in V1 = C2, and v2 is
a highest weight vector in V2 = Sym2(C2).
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chaput.perrin:affine [CP23] P.-E. Chaput and N. Perrin. Affine symmetries in quantum cohomology: corrections

and new results. Math. Res. Lett., 30(2):341–374, 2023.

coskun.robles:flexibility [CR13] I. Coskun and C. Robles. Flexibility of Schubert classes. Differential Geom. Appl.,
31(6):759–774, 2013.

deodhar:some [Deo77] V. V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and
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