The main reference for the first two parts are [5]. We refer the interested readers to Chapter 3 in [4] for a general definition of stable envelope in a much more general setting.

1. Definition of stable basis

Let G be a semisimple linear algebraic group. Let $A \subset B \subset G$ be a maximal torus and a Borel subgroup respectively. Let B be the flag variety G/B. Let us first define the stable basis in T^*B.

1.1. Fixed point set. The A-fixed points of T^*B is in one-to-one correspondence with the Weyl group W. The fixed point corresponds to $w \in W$ is denoted by wB. For any cohomology class $\alpha \in H^*(T^*B)$, let $\alpha|_w$ denote the restriction of α to the fixed point wB.

1.2. Chamber decomposition. The cocharacters $\sigma : \mathbb{C}^* \to A$ form a lattice. Let $a_R = \text{cochar}(A) \otimes \mathbb{R}$. Define the torus roots to be the A-weights occurring in the normal bundle to $(T^*B)^A$. Then the root hyperplanes partition a_R into finitely many chambers $a_R \setminus \bigcup \alpha_i^+ = \bigcap C_i$.

It is easy to see in this case that the torus roots are just the roots for G. Let $+$ denote the chamber such that all roots in R^+ are positive on it, and $-$ the opposite chamber.

1.3. Stable leaves. Let C be a chamber. For any fixed point yB, define the stable leaf of yB by

$$\text{Leaf}_C(yB) = \left\{ x \in T^*B \left| \lim_{z \to 0} \sigma(z) \cdot x = yB \right. \right\}$$

where σ is any cocharacter in C; the limit is independent of the choice of $\sigma \in C$. In the T^*B case, $\text{Leaf}_+(yB) = T_{B_B/B}^*$, and $\text{Leaf}_-(yB) = T_{B^-_{-yB/B}}^*$, where B^- is the opposite Borel subgroup.

Define a partial order on the fixed points as follows:

$$wB \preceq \sigma yB \quad \text{if} \quad \text{Leaf}_C(yB) \cap wB \neq \emptyset.$$

By the description of $\text{Leaf}_+(yB)$, the order \preceq_+ is the same as the Bruhat order \leq, and \preceq_- is the opposite order. Define the slope of a fixed point yB by

$$\text{Slope}_C(yB) = \bigcup_{wB \preceq \sigma yB} \text{Leaf}_C(wB).$$

1.4. Stable basis. For each $y \in W$, let T^*_yB and $T_y(T^*B)$ denote T_{yB}^* and $T_{yB}(T^*B)$ respectively, and define $\epsilon_y = e^A(T^*_yB)$. Here, e^A denotes the A-equivariant Euler class. Let N_y denote the normal bundle of T^*B at the fixed point yB. The chamber C gives a decomposition of the normal bundle

$$N_y = N_{y,+} \oplus N_{y,-}$$

into A-weights which are positive and negative on C respectively. The sign in $\pm e(N_{y,-})$ is determined by the condition

$$\pm e(N_{y,-})|_{H^*_A(pt)} = \epsilon_y.$$
Theorem 1.1. There exists a unique map of $H^*_T(pt)$-modules

$$\text{stab}_\epsilon : H^*_T((T^*B)^A) \to H^*_T(T^*B)$$

such that for any $y \in W$, $\Gamma = \text{stab}_\epsilon(y)$ satisfies:

1. $\text{supp} \Gamma \subset \text{Slope}_\epsilon(yB)$,
2. $\Gamma_{|y} = \pm \epsilon(N_{-y})$, with sign according to ϵ_y,
3. $\Gamma_{|w}$ is divisible by \hbar, for any $wB < \epsilon yB$,

where y in $\text{stab}_\epsilon(y)$ is the unit in $H^*_T(yB)$.

Remark 1.2.

1. The map is defined by a Lagrangian correspondence between $(T^*B)^A \times T^*B$, hence maps middle degree to middle degree.
2. From the characterization, the transition matrix from $\{\text{stab}_\epsilon(y)|y \in W\}$ to the fixed point basis is a triangular matrix with nontrivial diagonal terms. Hence, after localization, $\{\text{stab}_\epsilon(y)|y \in W\}$ form a basis for the cohomology, which we call the stable basis.
3. Maulik and Okounkov prove that $\{\text{stab}_\epsilon(y)|y \in W\}$ and $\{(-1)^n \text{stab}_{-\epsilon}(y)|y \in W\}$ are dual bases, i.e.,

$$(\text{stab}_\epsilon(y), (-1)^n \text{stab}_{-\epsilon}(w)) = \delta_{y,w}.$$

Here $n = \dim \mathbb{C} B$.

2. Restriction Formulas

Let \pm denote the positive/negative chamber. Then the formula I proved is:

Theorem 2.1. Let $y = \sigma_1 \sigma_2 \cdots \sigma_l$ be a reduced expression for $y \in W$. Then

$$\text{stab}^- (w)|_y = (-1)^{(1)} \prod_{\alpha \in R^+ \setminus R(y)} (\alpha - \hbar) \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq l} h^{l-k} \prod_{j=1}^k \beta_{i_j},$$

where σ_i is the simple reflection associated to a simple root α_i, $\beta_i = \sigma_1 \cdots \sigma_{i-1} \alpha_i$, $R(y) = \{\beta_i | 1 \leq i \leq l\}$, and $\text{stab}^- (w)|_y$ denotes the restriction of $\text{stab}^- (w)$ to the fixed point yB.

For the positive chamber, we have

Theorem 2.2. Let $y = \sigma_1 \sigma_2 \cdots \sigma_l$ be a reduced expression for $y \in W$, and $w \leq y$. Then

$$\text{stab}^+(y)|_w = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq l} (-1)^{(1)} \prod_{\iota \in \{\sigma_1 \sigma_2 \cdots \sigma_k\}} \sum_{1 \leq j_1 < j_2 < \cdots < j_k \leq k} (\prod_{j=1}^k \sigma_{i_{j_1}} \sigma_{i_{j_2}} \cdots \sigma_{i_{j_k}} - \hbar) \prod_{j=0}^{k-1} \prod_{r < j_{r+1}} \sigma_{i_r} \sigma_{i_{j_r}} \sigma_{i_{j_{r+1}}} \prod_{\alpha \in R^+} \alpha.$$

The proof is very similar to the proof of the restriction formula of Schubert variety. The basic idea is the following. I learned this from $[3]$, which is a very good reference if you want to learn equivariant cohomology and Schubert calculus.

Let Q be the quotient field of $H^*_T(pt)$, and $F(W, Q)$ be the functions from W to Q. Restriction to fixed points gives a map

$$H^*_T(T^*B) \to H^*_T((T^*B)^T) = \bigoplus_{w \in W} H^*_T(wB)$$

and embeds $H^*_T(T^*B)$ into $F(W, Q)$.

For each simple root $\alpha \in \Delta$, let Y_α be the orbit corresponding to the reflection σ_α. Then

$$\Sigma_\alpha = B \times P_\alpha B$$

where $P_\alpha = G/P_\alpha$ and P_α is the minimal parabolic subgroup corresponding to the simple root α. Let $T^*_\alpha(B \times B)$ be the conormal bundle to Σ_α. This is a Lagrangian correspondence in $T^*B \times T^*B$, and defines a map

$$D_\alpha : H^*_T(T^*B) \to H^*_T(T^*B).$$
Define an operator $A_0 : F(W,Q) \to F(W,Q)$ by the formula

$$(A_0 \psi)(w) = \psi(w \sigma_\alpha) - \psi(w) (w \alpha - \hbar).$$

Then we have the following important commutative diagram.

Proposition 2.3. The diagram

$$
\begin{array}{ccc}
H^*_T(T^*B) & \rightarrow & F(W,Q) \\
\downarrow D_\alpha & & \downarrow A_0 \\
H^*_T(T^*B) & \rightarrow & F(W,Q)
\end{array}
$$

commutes.

Apply this diagram to stable basis, we get some recursive formulas for the restriction, which finally lead to the proof of Theorems 2.1 and 2.2.

3. Applications

This is joint work with Leonardo C. Mihalcea.

3.1. **First relation with CSM classes.** Let $c_* : L_{C^*}(T^*(G/B)) \to H_*(G/B)$ be the map define by Ginzburg in the appendix of [2] between the Lagrangian cycles in the cotangent bundle of the flag manifold G/B and the homology of G/B. We found

$$c_*(\text{stab}_+(w)) = \pm CSM(X(w)^\circ).$$

This is essentially due to Ginzburg.

3.2. **Second relation with CSM classes.** With the formula proved in [1], we proved the following Theorem:

Theorem 3.1. Let i be the inclusion of X into T^*X, then

$$(2) \quad (-1)^{\dim X} i^*(\text{stab}_+(y))|_{\hbar=1} = CSM(X(y)^\circ).$$

In particular, let $y = \sigma_1 \sigma_2 \cdots \sigma_k$ be a reduced expression for $y \in W$, and $w \leq y$. Then

$$CSM(X(y)^\circ)|_{w} = (-1)^{\dim X + \ell(y)} \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq \ell} \prod_{j=1}^{k} \frac{\sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_j} \alpha_{i_j} - 1}{\sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_j} \alpha_{i_j}} \prod_{j=0}^{k} \frac{1}{\prod_{j < r < i_j + 1} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_j} \alpha_{i_j} \sigma_{i_r} \alpha_{i_r}} \prod_{\alpha \in R^+} \alpha.$$

With this formula, we can check in some simple cases the conjecture in [1].

References

Department of Mathematics, Columbia University, 2900 Broadway, New York, NY 10027

E-mail address: changjian@math.columbia.edu