Consider the linear problem:

Maximize $z = 6x_1 + 5x_2$ subject to $5x_1 + 2x_2 + x_3 = 20$ $-2x_1 + x_2 + x_4 = 1$ $x_1 + x_2 + x_5 = 5$

Rewrite this problem in tableau form. We can easily do this because there is an obvious BFS.

	x_1	x_2	x_3	x_4	x_5	z	
x_3	5	2	1	0	0	0	20
x_4	-2	1	0	1	0	0	1
x_5	1	1	0	0	1	0	5
	-6	-5	0	0	0	1	0

The objective row has a negative number (-6) in the column of x_1 . So we can choose x_1 as our entering variables. To find the departing variable, calculate the θ -ratios:

$$\begin{aligned} \theta_1 &= \frac{20}{5} = 4 \\ \theta_2 &= \frac{1}{-2} = -\frac{1}{2} \\ \theta_3 &= \frac{5}{1} = 5. \end{aligned}$$

The smallest positive θ -ratio is $\theta_1 = 4$. So the departing variable is the basic variable of row 1, namely x_3 . We create a pseudo-pivot in row 1, column 1:

	x_1	x_2	x_3	x_4	x_5	z	
x_1	1	2/5	1/5	0	0	0	4
x_4	0	9/5	2/5	1	0	0	9
x_5	0	3/5	-1/5	0	1	0	1
	0	-13/5	6/5	0	0	1	24

This time the objective row has a negative entry in the column of x_2 , so we use x_2 as entering variable. To find the departing variable, compute the θ -ratios:

$$\theta_1 = \frac{4}{2/5} = 10$$

$$\theta_2 = \frac{9}{9/5} = 5$$

$$\theta_3 = \frac{1}{3/5} = 5/3$$

The smallest positive θ -ratio is $\theta_3 = 5/3$, so the departing variable is x_5 , the basic variable of row 3. We create a pseudo-pivot in row 3, column 2:

	x_1	x_2	x_3	x_4	x_5	z	
x_1	1	0	1/3	0	-2/3	0	10/3
x_4	0	0	1	1	-3	0	6
x_2	0	1	-1/3	0	5/3	0	5/3
	0	0	1/3	0	13/3	1	85/3

This time all entries of the objective row are non-negative, so we have found an optimal solution: $x = (10/3, 5/3, 0, 6, 0)^T$, z(x) = 85/3.

Notice: Since the 'z'-column never changes, we can safely drop it. This is done in most examples and exercises in the book.