Example of the Simplex Algorithm

Consider the linear problem:
$\begin{aligned} \text { Maximize } z=6 x_{1}+5 x_{2} & \text { subject to } \\ 5 x_{1}+2 x_{2}+x_{3} & =20 \\ -2 x_{1}+x_{2}+x_{4} & =1 \\ x_{1}+x_{2}+x_{5} & =5\end{aligned}$
Rewrite this problem in tableau form. We can easily do this because there is an obvious BFS.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	z	
x_{3}	5	2	1	0	0	0	20
x_{4}	-2	1	0	1	0	0	1
x_{5}	1	1	0	0	1	0	5
	-6	-5	0	0	0	1	0

The objective row has a negative number (-6) in the column of x_{1}. So we can choose x_{1} as our entering variables. To find the departing variable, calculate the θ-ratios:
$\theta_{1}=\frac{20}{5}=4$
$\theta_{2}=\frac{1}{-2}=-\frac{1}{2}$
$\theta_{3}=\frac{5}{1}=5$.
The smallest positive θ-ratio is $\theta_{1}=4$. So the departing variable is the basic variable of row 1 , namely x_{3}. We create a pseudo-pivot in row 1 , column 1 :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	z	
x_{1}	1	$2 / 5$	$1 / 5$	0	0	0	4
x_{4}	0	$9 / 5$	$2 / 5$	1	0	0	9
x_{5}	0	$3 / 5$	$-1 / 5$	0	1	0	1
	0	$-13 / 5$	$6 / 5$	0	0	1	24

This time the objective row has a negative entry in the column of x_{2}, so we use x_{2} as entering variable. To find the departing variable, compute the θ-ratios:
$\theta_{1}=\frac{4}{2 / 5}=10$
$\theta_{2}=\frac{9}{9 / 5}=5$
$\theta_{3}=\frac{1}{3 / 5}=5 / 3$
The smallest positive θ-ratio is $\theta_{3}=5 / 3$, so the departing variable is x_{5}, the basic variable of row 3 . We create a pseudo-pivot in row 3 , column 2 :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	z	
x_{1}	1	0	$1 / 3$	0	$-2 / 3$	0	$10 / 3$
x_{4}	0	0	1	1	-3	0	6
x_{2}	0	1	$-1 / 3$	0	$5 / 3$	0	$5 / 3$
	0	0	$1 / 3$	0	$13 / 3$	1	$85 / 3$

This time all entries of the objective row are non-negative, so we have found an optimal solution: $x=(10 / 3,5 / 3,0,6,0)^{T}, z(x)=85 / 3$.
Notice: Since the ' z '-column never changes, we can safely drop it. This is done in most examples and exercises in the book.

