GOODIES 2

A morphism of varieties \(\varphi : X \to Y \) is dominant if \(\varphi(X) = Y \).

Problem 1. The commutative algebra result lying over states that, if \(R \subset S \) is an integral extension of commutative rings and \(P \subset R \) is a prime ideal, then there is some prime \(Q \subset S \) such that \(Q \cap R = P \).

(a) Use lying over to show that if \(\varphi : X \to Y \) is a dominant morphism of irreducible varieties, then \(\varphi(X) \) contains a dense open subset of \(Y \).

(b) If \(\varphi : X \to Y \) is any morphism of varieties, then its image \(\varphi(X) \) is constructible, i.e. a finite union of locally closed subsets of \(Y \).

Problem 2. Let \(m_0, m_1, \ldots, m_N \in k[x_0, \ldots, x_n] \) be all the monomials of degree \(d \). The Veronese embedding is the map \(v_d : \mathbb{P}^n \to \mathbb{P}^N \) defined by

\[
v_d(x_0 : \cdots : x_n) = (m_0(x_0, \ldots, x_n) : \cdots : m_N(x_0, \ldots, x_n)).
\]

(a) Show that \(v_d \) is an isomorphism of \(\mathbb{P}^n \) with a closed subvariety in \(\mathbb{P}^N \).

(b) Let \(S \subset \mathbb{P}^n \) be a hypersurface of degree \(d \), i.e. \(S = V_d(f) \) where \(f \in k[x_0, \ldots, x_n] \) is an irreducible form of degree \(d \). Show that \(S = v_d^{-1}(H) \) for a unique hyperplane \(H \subset \mathbb{P}^N \).

Problem 3. Let \(L_1, L_2, \) and \(L_3 \) be lines in \(\mathbb{P}^3 \) such that none of them meet.

(a) There exists a unique quadric surface \(S \subset \mathbb{P}^3 \) containing \(L_1, L_2, \) and \(L_3 \). [Hint: Start by applying an automorphism of \(\mathbb{P}^3 \) to make the lines nice.]

(b) \(S \) is the disjoint union of all lines \(L \subset \mathbb{P}^3 \) meeting \(L_1, L_2, \) and \(L_3 \).

(c) Let \(L_4 \subset \mathbb{P}^3 \) be a fourth line which does not meet \(L_1, L_2, \) or \(L_3 \). Then the number of lines meeting \(L_1, L_2, L_3, \) and \(L_4 \) is equal to the number of points in \(L_4 \cap S \), which is one, two, or infinitely many.

Problem 4. An algebraic group is a pre-variety \(G \) together with morphisms \(m : G \times G \to G \) and \(i : G \to G \), and an identity element \(e \in G \), such that \(G \) is a group in the usual sense when \(m \) is used to define multiplication and \(i \) maps any element to its inverse element.

(a) Show that \(GL_n(k) \) is an algebraic group.

(b) Show that any algebraic group is separated.

(c) Show that \(\mathbb{P}^1 \) is not an algebraic group, i.e. it is not possible to find morphisms \(m : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \) and \(i : \mathbb{P}^1 \to \mathbb{P}^1 \) satisfying the group axioms.

(d) Challenge: How about \(\mathbb{P}^n \) for \(n \geq 2 \)?

Problem 5. A morphism \(f : X \to Y \) of pre-varieties is called affine if, for every open affine subset \(V \subset Y \), the inverse image \(f^{-1}(V) \) is also affine. The morphism \(f \) is called finite if it is affine and \(k[f^{-1}(V)] \) is a finitely generated \(k[V] \)-module for every open affine \(V \subset Y \).

(a) Let \(Y = \bigcup V_i \) be an open affine covering of \(Y \) such that \(f^{-1}(V_i) \) is affine \(\forall i \). Show that \(f \) is affine. If \(k[f^{-1}(V_i)] \) is a finitely generated \(k[V_i] \)-module for all \(i \) then \(f \) is finite.

(b) If \(f \) is affine and \(Y \) is separated, then \(X \) is separated.
Problem 6. Let X be a variety and $V \subset X$ any subset. Then V inherits a structure of space with functions from X. Assume that V is a variety with this structure. Show that V is locally closed in X.

Problem 7. Set $E = V(y^2 - x^3 - 3) \subset \mathbb{C}^2$, $P = (1, 2) \in E$, and $U = E \setminus \{P\}$.
(a) Show that U is an open affine subvariety of E.
(b) Challenge: U is not of the form $D(f)$ for any regular function $f \in \mathcal{O}_E(E)$.

Problem 8. Set $E = k^{n+1}$ and recall that $\mathbb{P}^n = \{\ell \subset E \mid \ell$ is a line through the origin of $E\}$. Define $S = \{(\ell, v) \in \mathbb{P}^n \times E \mid v \in \ell\}$, and let $\rho : S \to \mathbb{P}^n$ be the projection.
(a) S is a subbundle of rank 1 of the trivial vector bundle $\mathbb{P}^n \times E$.
Define an $\mathcal{O}_{\mathbb{P}^n}$-modules \mathcal{L} by $\Gamma(U, \mathcal{L}) = \{\text{morphisms } s : U \to L \mid \rho s = 1_U\}$.
(b) \mathcal{L} is a locally free $\mathcal{O}_{\mathbb{P}^n}$-module of rank 1.
Let $\pi : E \setminus \{0\} \to \mathbb{P}^n$ be the projection. For $d \in \mathbb{Z}$ we define an $\mathcal{O}_{\mathbb{P}^n}$-module $\mathcal{O}(d) = \mathcal{O}_{\mathbb{P}^n}(d)$ by $\Gamma(U, \mathcal{O}(d)) = \{s \in \mathcal{O}_E(\pi^{-1}(U)) \mid s(\lambda v) = \lambda^d s(v) \forall \lambda \in k, v \in E\}$.
(c) The sheaf $\mathcal{O}(d)$ is a locally free $\mathcal{O}_{\mathbb{P}^n}$-module of rank 1.
(d) Find an integer $d \in \mathbb{Z}$ such that $\mathcal{L} \cong \mathcal{O}(d)$ as an $\mathcal{O}_{\mathbb{P}^n}$-module.