Some algebra review problems that will be needed in our course

1. (a) Use completion of squares to solve $2x^2 - 4x - 5 = 0$.

 (b) Use completion of squares to find the center and radius of the circle $x^2 + y^2 - 4x + 6y - 3 = 0$.

2. For the true-or-false questions, encircle true or false; then give a reason if the assertion is true or a counterexample if the assertion is false.

 (a) True or False: If A and P are 2×2 matrices with P invertible and λ is an eigenvalue for A, then λ is an eigenvalue for $P^{-1}AP$.

 (b) True or False: If A and P are 2×2 matrices with P invertible and v is an eigenvector for A, then v is an eigenvector for $P^{-1}AP$.

 (c) True or False: If A is an $n \times n$ matrix such that $Ax = b$ is consistent for every vector b in \mathbb{R}^n, then $Ax = 0$ has only the zero solution $x = 0$.

 (d) True or False: If A is a 3×2 matrix whose columns u, v are mutually orthogonal, then A^TA is a diagonal matrix.

 (e) True or False: If A and B are two $n \times n$ invertible matrices, then $(A+B)^{-1} = A^{-1} + B^{-1}$.
3. Suppose A is a 3×3 matrix and u, v, w are \textit{nonzero vectors} in \mathbb{R}^3 such that

$$Au = 2u, \quad Av = -2v, \quad Aw = 0.$$

(a) Let $P = [u \mid v \mid w]$ (the 3×3 matrix with columns u, v, w). Find a 3×3 matrix D so that $AP = PD$. Prove that your answer is correct by calculating AP and PD separately.

(b) Let $x = au + bv + cw$, where $a, b, \text{ and } c$ are scalars. Write the vectors Ax and A^2x as linear combinations of $u, v, \text{ and } w$.

(c) Suppose $a, b, \text{ and } c$ are scalars such that $au + bv + cw = 0$. Prove that $a = 0, b = 0, \text{ and } c = 0$. (Hint: Use (b) with $x = 0$.)

(d) Prove that the matrix P in (a) is invertible and the matrix A is diagonalizable.

(e) Use (a) to find $\det A$ and the characteristic polynomial of A in factorized form.
4. Let W be the subspace of \mathbb{R}^3 spanned by the vector $u = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

(a) Let $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find the orthogonal projection w of v onto W.

(b) Suppose $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is in W^\perp. Write down the equation satisfied by x_1, x_2, x_3. Use this to find a basis for W^\perp.
5. Let \(W \) be the subspace of \(\mathbb{R}^4 \) with basis vectors

\[
\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ -2 \\ -2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 4 \\ 0 \\ -2 \\ 0 \end{bmatrix}.
\]

(a) Apply the Gram-Schmidt process to the vectors \(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \) given below to obtain an orthogonal set of vectors \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) with \(\mathbf{v}_1 = \mathbf{u}_1 \). Fill in the table on the left as you calculate. (Don’t normalize \(\mathbf{v}_2 \) and \(\mathbf{v}_3 \).)

\[
\begin{array}{c|c|c|c|c}
\mathbf{v}_1 \cdot \mathbf{v}_1 & \\
\mathbf{u}_2 \cdot \mathbf{v}_1 & \\
\mathbf{v}_2 \cdot \mathbf{v}_2 & \\
\mathbf{u}_3 \cdot \mathbf{v}_1 & \\
\mathbf{u}_3 \cdot \mathbf{v}_2 & \\
\end{array}
\]

\[
\mathbf{u}_1 = \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ -2 \\ -2 \end{bmatrix}.
\]

\[
\mathbf{v}_2 =
\]

\[
\mathbf{u}_3 = \begin{bmatrix} 4 \\ -2 \\ -2 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 =
\]

(Problem 5 continues on next page)
(Continuation of Problem 5)

(b) Normalize the orthogonal basis for the subspace \(W \) from (a) to obtain an orthonormal basis \(\{w_1, w_2, w_3\} \) for \(W \).

(c) If \(v \in \mathbb{R}^4 \) and \(\{w_1, w_2, w_3\} \) is any orthonormal basis for the subspace \(W \), then the orthogonal projection of \(v \) onto \(W \) is the vector \(w = c_1w_1 + c_2w_2 + c_3w_3 \), where

\[
c_1 = \text{__________} \quad c_2 = \text{__________} \quad c_3 = \text{__________}
\]

(give a formula for the coefficients in terms of dot products).

(d) Take \(v = \begin{bmatrix} 6 \\ 4 \\ 2 \\ 0 \end{bmatrix} \) and use the formulas from part (c) and the orthonormal basis from part (b) to calculate the orthogonal projection of \(v \) onto \(W \). Check your answer by calculating the vector \(z = v - w \) and showing that \(z \) is perpendicular to \(u_1, u_2, \) and \(u_3 \).
6. Let
\[A = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}. \]
Find the eigenvalues of \(A \) and prove that \(A \) is diagonalizable, \(i.e., \) there is an invertible matrix \(P \) such that \(P^{-1}AP \) is diagonalizable. Furthermore, \(P \) can be chosen to be an orthogonal matrix, \(i.e., \) a matrix whose columns are unit vectors and whose distinct columns are orthogonal to each other.

7. Let \(A \) be a \(3 \times 3 \) symmetric matrix with real entries, and have eigenvalues \(\lambda_1 = 0, \lambda_2 = 6, \) and \(\lambda_3 = 3. \) Let \(u_1, u_2, \) and \(u_3 \) be corresponding eigenvectors (normalized to have length one).

(a) Since \(A \) is symmetric and \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) are all different, it follows that
\[u_1 \cdot u_2 = u_1 \cdot u_3 = u_2 \cdot u_3 = \]

(b) The \(3 \times 3 \) matrix \(P = [u_1 \mid u_2 \mid u_3] \) satisfies
\[P^T P = \begin{bmatrix} \text{(fill in the entries of this 3 \times 3 matrix)} \end{bmatrix} \]

(c) Let \(P \) be the matrix of normalized eigenvectors from (b). Then \(A = PDP^T, \) where
\[D = \begin{bmatrix} \text{(fill in the entries of this 3 \times 3 matrix)} \end{bmatrix} \]

(d) The characteristic polynomial of \(A \) is \(

\)