ALGEBRAIC GEOMETRY PROBLEMS

Problem 1. Show that \(I(\mathbb{A}^n) = (0) \).

Problem 2. If \(I \subset R \) is any ideal, show that \(\sqrt{I} \) is a radical ideal.

Problem 3. (a) \(S \subset I(V(S)) \).
(b) \(W \subset V(I(W)) \).
(c) If \(W \) is an algebraic set then \(W = V(I(W)) \).
(d) If \(I \subset k[x_1, \ldots, x_n] \) is any ideal then \(V(I) = V(\sqrt{I}) \) and \(\sqrt{I} \subset I(V(I)) \).

Problem 4. (Hartshorne I.1.2 and I.1.11)
(a) Show that the set \(X = \{ (t, t^2, t^3) \in \mathbb{A}^3 \mid t \in k \} \) is closed in \(\mathbb{A}^3 \) and find \(I(X) \).
(b) Same for the subset \(Y = \{ (t^3, t^4, t^5) \in \mathbb{A}^3 \mid t \in k \} \) of \(\mathbb{A}^3 \).
(c) Show that \(I(Y) \) can’t be generated by less than three polynomials.

Problem 5. Let \(R \) be a commutative ring. The following are equivalent:
(a) \(R \) is Noetherian.
(b) Every ascending chain of ideals in \(R \) stabilizes.
(c) Every non-empty collection of ideals of \(R \) has a maximal element.

Problem 6. Show that \(W = \{ (x, y, z) \in \mathbb{A}^3 \mid x^2 = y^3 \text{ and } y^2 = z^3 \} \) is an irreducible closed subset of \(\mathbb{A}^3 \) and find \(I(W) \).

Problem 7. Find \(\sqrt{(y^2 + 2xy^2 + x^4, x^2 - x^3)} \).

Problem 8. Let \(X \) be a Noetherian topological space.
(a) If an irreducible closed set \(Y \) is contained in a union \(\bigcup X_i \) of finitely many closed sets \(X_i \), then \(Y \subset X_i \) for some \(i \).
(b) \(X \) has finitely many components.
(c) \(X \) is the union of its components.
(d) \(X \) is not the union of any proper subset of its components.

Problem 9. Let \(X \) be any space with functions and \(Y \subset \mathbb{A}^n \) an affine variety. Show that a function \(f : X \rightarrow Y \) is a morphism if and only if each coordinate function \(f_i : X \rightarrow k \) is regular for \(1 \leq i \leq n \).

Problem 10. Let \(X = V(xy - zw) \subset \mathbb{A}^4 \) and \(U = V(y) \cup V(w) \subset X \). Define a regular function \(f : U \rightarrow k \) by \(f = x/w \) on \(V(w) \) and \(f = z/y \) on \(V(y) \).
Show that there are no polynomial functions \(p, q \in A(X) \) such that \(q(a) \neq 0 \) and \(f(a) = p(a)/q(a) \) for all \(a \in U \).

Problem 11. Let \(X \) be an affine variety such that the affine coordinate ring \(A(X) \) is a unique factorization domain. Let \(U \subset X \) be an open subset. Show that if \(f : U \rightarrow k \) is any regular function, then there exist \(p, q \in A(X) \) such that \(q(x) \neq 0 \) and \(f(x) = p(x)/q(x) \) for all \(x \in U \).
Problem 12. (a) \(k[\mathbb{A}^n \setminus \{0\}] = k[x_1, \ldots, x_n] \) for \(n \geq 2 \).
(b) \(\mathbb{A}^n \setminus \{0\} \) is not an affine variety for \(n \geq 2 \).
(c) Every global regular function on \(\mathbb{P}^n \) is constant, i.e. \(k[\mathbb{P}^n] = k \).
(d) \(\mathbb{P}^n \) is not quasi-affine for \(n \geq 1 \).

Problem 13. Let \(\varphi : \mathbb{A}^1 \to V(y^2 - x^3) \subset \mathbb{A}^2 \) be the morphism given by \(\varphi(t) = (t^2, t^3) \). Show that \(\varphi \) is bijective, but not an isomorphism.

Problem 14. Define the homogenization of a polynomial \(f \in k[x_1, \ldots, x_n] \) to be \(f^* = x_0^{\deg(f)} f(x_1/x_0, \ldots, x_n/x_0) \). Equivalently, if we write \(f = f_0 + f_1 + \cdots + f_d \), with \(f_i \) a form of degree \(i \) and \(f_d \neq 0 \), then \(f^* = x_0^d f_0 + x_0^{d-1} f_1 + \cdots + f_d \in k[x_0, x_1, \ldots, x_n] \).

Given any ideal \(I \subset k[x_1, \ldots, x_n] \), let \(I^* \subset k[x_0, x_1, \ldots, x_n] \) be the homogeneous ideal generated by \(\{f^* \mid f \in I\} \).
(a) Find an example where \(I = (h_1, \ldots, h_m) \) and \(I^* \neq \langle h_1^*, \ldots, h_m^* \rangle \).
(b) Let \(X \subset \mathbb{A}^n \) be a closed subvariety. Identify \(\mathbb{A}^n \) with \(D_+(x_0) \subset \mathbb{P}^n \) and let \(\overline{X} \) be the closure of \(X \) in \(\mathbb{P}^n \). Show that \(I(\overline{X}) = I(X)^* \subset k[x_0, \ldots, x_n] \).

Problem 15. Let \(X \subset \mathbb{P}^n \) be a projective variety with projective coordinate ring \(R = k[x_0, \ldots, x_n]/I(X) \). Let \(f \in R \) be a non-constant homogeneous element. Show that \(D_+(f) \subset X \) is an open affine subvariety with affine coordinate ring \(k[D_+(f)] = R(f) \).

Problem 16. Show that if \(R \) is a finitely generated reduced \(k \)-algebra then the space with functions \(\text{Spec-m}(R) \) is an affine variety.

Problem 17. Let \(X \) be any space with functions. A map \(\varphi : \mathbb{P}^n \to X \) is a morphism if and only if \(\varphi \circ \pi : \mathbb{A}^{n+1} \setminus \{0\} \to X \) is a morphism.

Problem 18. Prove that the Segre map \(s : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{n+m} \) gives an isomorphism of \(\mathbb{P}^n \times \mathbb{P}^m \) with a closed subvariety of \(\mathbb{P}^{n+m} \), where \(N = nm + n + m \).

Problem 19. Let \(\varphi : X \to Y \) be a morphism of spaces with functions and suppose \(Y = \bigcup V_i \) is an open covering such that each restriction \(\varphi : \varphi^{-1}(V_i) \to V_i \) is an isomorphism. Then \(\varphi \) is an isomorphism.

Problem 20. Assume that the characteristics of \(k \) is not 2. If \(C = V_+(f) \subset \mathbb{P}^2 \) is any curve defined by an irreducible homogeneous polynomial \(f \in k[x, y, z] \) of degree 2, then \(C \cong \mathbb{P}^1 \).

Problem 21. Let \(X \) and \(Y \) be spaces with functions and let \((P, \pi_X, \pi_Y)\) and \((P', \pi'_X, \pi'_Y)\) be two products of \(X \) and \(Y \). Show that there is a unique isomorphism \(\varphi : P \isom P' \) such that \(\pi_X = \pi'_X \circ \varphi \) and \(\pi_Y = \pi'_Y \circ \varphi \).

Problem 22. (a) Any subspace of a separated space with functions is separated.
(b) A product of separated spaces with functions is separated.

Problem 23. Let \(X \) be a pre-variety such that for each pair of points \(x, y \in X \) there is an open affine subvariety \(U \subset X \) containing both \(x \) and \(y \).
(a) Show that \(X \) is separated.
(b) Show that \(\mathbb{P}^n \) has this property.
Problem 24. [Hartshorne II.2.16 and II.2.17]
Let X be any pre-variety and $f \in k[X]$ a regular function.
(a) If h is a regular function on $D(f) \subset X$ then $f^n h$ can be extended to a regular function on all of X for some $n > 0$. [Hint: Let $X = U_1 \cup \cdots \cup U_m$ be an open affine cover. Start by showing that some $f^n h$ can be extended to U_i for each i.]
(b) $k[D(f)] = k[X]_f$.
(c) Let R be a k-algebra and let $f_1, \ldots, f_r \in R$ be elements that generate the unit ideal, $(f_1, \ldots, f_r) = R$. If R_{f_i} is a finitely generated k-algebra for each i, then R is a finitely generated k-algebra.
(d) Suppose $f_1, \ldots, f_r \in k[X]$ satisfy $(f_1, \ldots, f_r) = k[X]$ and $D(f_i)$ is affine for each i. Then X is affine.

Problem 25. Let E be the elliptic curve $V_+(y^2 z - x^3 + xz^2) \subset \mathbb{P}^2$ and let $f, g : E \dashrightarrow \mathbb{P}^1$ be the rational maps defined by $f(x : y : z) = (x : z)$ and $g(x : y : z) = (y : z)$. (These are just projections to the x and y axis on the open subset $D_+(z)$.)
(a) Find the maximal open sets in E where f and g are defined as morphisms.
(b) Find the degrees of the field extensions $k(t) \subset k(E)$ induced by f and g.
(c) Find the cardinality of $f^{-1}(p)$ and $g^{-1}(p)$ when $p \in \mathbb{P}^1$ is a typical point. (Part of the exercise is to define what “typical” means.)

Problem 26. Let X be a projective variety and $\varphi : \mathbb{P}^1 \dashrightarrow X$ any rational map. Show that φ is defined as a morphism on all of \mathbb{P}^3.

Problem 27. (a) If X has components X_1, \ldots, X_m then $\dim(X) = \max \dim(X_i)$.
(b) $\dim(X \times Y) = \dim(X) + \dim(Y)$.

Problem 28. The commutative algebra result lying over states that, if $R \subset S$ is an integral extension of commutative rings and $P \subset R$ is a prime ideal, then there is some prime $Q \subset S$ such that $Q \cap R = P$.
(a) Use lying over to show that if $\varphi : X \rightarrow Y$ is a dominant morphism of irreducible varieties, then $\varphi(X)$ contains a dense open subset of Y.
(b) If $\varphi : X \rightarrow Y$ is any morphism of varieties, then its image $\varphi(X)$ is constructible, i.e. a finite union of locally closed subsets of Y.

Problem 29. [Hartshorne I.5.2]
Assume $\text{char}(k) \neq 2$. Locate the singular points of the surfaces $X = V(xy^2 - z^2)$, $Y = V(x^2 + y^2 - z^2)$, and $Z = V(xy + x^3 + y^3)$ in \mathbb{A}^3. (Take a look at the nice pictures in Hartshorne!)

Problem 30. Assume $\text{char}(k) = 0$. Let $X = V_+(f) \subset \mathbb{P}^n$ be a hypersurface given by a square-free homogeneous polynomial $f \in k[x_0, \ldots, x_n]$.
(a) Show that $X_{\text{sing}} = V_+(\frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n})$.
(b) Show that $X_{\text{sing}} \neq X$.

Problem 31. [Shafarevich II.1.13]
(a) Show that an intersection of r hypersurfaces in \mathbb{P}^r is never empty.
(b) Let $X \subset \mathbb{P}^n$ be a hypersurface of degree at least two, such that X contains a linear subspace $L \subset \mathbb{P}^n$ of dimension $r \geq n/2$. Prove that X is singular. [Hint: Choose the coordinates on \mathbb{P}^n such that $L = V_+(x_{r+1}, x_{r+2}, \ldots, x_n) \subset \mathbb{P}^n$.]
Problem 32. [Shafarevich II.1.10].
Let $X \subset \mathbb{P}^n$ be a hypersurface of degree three. If X has two different singular points, then X contains the line joining them.

Problem 33. If X is a variety and $x \in X$, we define the Zariski cotangent space to X at x to be $\mathfrak{m}_x/\mathfrak{m}_x^2$. The Zariski tangent space is the dual vector space $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$. Show that if $f : X \to Y$ is a morphism of varieties with $f(x) = y$, then f induces linear maps $\mathfrak{m}_y/\mathfrak{m}_y^2 \to \mathfrak{m}_x/\mathfrak{m}_x^2$ and $(\mathfrak{m}_x/\mathfrak{m}_x^2)^* \to (\mathfrak{m}_y/\mathfrak{m}_y^2)^*$.

Problem 34. [Mostly Hartshorne I.6.3]
Give examples of varieties X and Y, a point $P \in X$, and a morphism $\varphi : X \setminus \{P\} \to Y$ such that φ can’t be extended to a morphism on all of X in each of the cases:
(a) X is a non-singular curve and Y is not projective.
(b) X is a curve, P is a singular point on X, Y is projective.
(c) X is non-singular of dimension at least two, Y is projective.

Problem 35. Let X and Y be curves and $\varphi : X \to Y$ a birational morphism.
(a) X_{sing} is a proper closed subset of X.
(b) $\varphi(X_{\text{sing}}) \subset Y_{\text{sing}}$.
(c) If $y \in Y$ is a non-singular point, then $\varphi^{-1}(y)$ contains at most one point.

Problem 36. Two non-singular projective curves are isomorphic if and only if they have the same function field.

Problem 37. Resolution of singularities for curves.
Let X be a curve with smooth locus $U = X - X_{\text{sing}}$. Prove that there exists a non-singular curve \tilde{X} with a finite morphism $\varphi : \tilde{X} \to X$ such that the restriction $\varphi : \varphi^{-1}(U) \to U$ is an isomorphism. (For resolution of singularities in higher dimension, one can only hope for a “proper” morphism φ.)

Problem 38. Let $E = V(y^2 - x^3 + x) \subset \mathbb{A}^2$. Show that if $P \in E$ is any point then $E \setminus \{P\}$ is affine.

Problem 39. [Hartshorne I.6.2]
Let $E = V(y^2 - x^3 + x) \subset \mathbb{A}^2$, char$(k) \neq 2$.
(a) E is a non-singular curve.
(b) The units in $k[E]$ are the non-zero elements of k. [Hints: Define an automorphism $\sigma : k[E] \to k[E]$ fixing x and sending y to $-y$. Then define a norm $N : k[E] \to k[x]$ by $N(a) = a \sigma(a)$. Show that $N(1) = 1$ and $N(ab) = N(a)N(b)$,]
(c) $k[E]$ is not a unique factorization domain.
(d) Show that E is not rational.

Problem 40. Let $m_0, m_1, \ldots, m_N \in k[x_0, \ldots, x_n]$ be all the monomials of degree d. The Veronese embedding is the map $v_d : \mathbb{P}^n \to \mathbb{P}^N$ defined by
$$v_d(x_0 : \cdots : x_n) = (m_0(x_0, \ldots, x_n) : \cdots : m_N(x_0, \ldots, x_n)).$$
(a) Show that v_d is an isomorphism of \mathbb{P}^n with a closed subvariety in \mathbb{P}^N.
(b) Let $S \subset \mathbb{P}^n$ be a hypersurface of degree d, i.e. $S = V_{\mathbb{P}}(f)$ where $f \in k[x_0, \ldots, x_n]$ is an irreducible form of degree d. Show that $S = v_d^{-1}(H)$ for a unique hyperplane $H \subset \mathbb{P}^N$.

Problem 41. Let L_1, L_2, and L_3 be lines in \mathbb{P}^3 such that none of them meet.
(a) There exists a unique quadric surface $S \subset \mathbb{P}^3$ containing L_1, L_2, and L_3. [Hint: Start by applying an automorphism of \mathbb{P}^3 to make the lines nice.]
(b) S is the disjoint union of all lines $L \subset \mathbb{P}^3$ meeting L_1, L_2, and L_3.
(c) Let $L_4 \subset \mathbb{P}^3$ be a fourth line which does not meet L_1, L_2, or L_3. Then the number of lines meeting L_1, L_2, L_3, and L_4 is equal to the number of points in $L_4 \cap S$, which is one, two, or infinitely many.

Problem 42. An algebraic group is a pre-variety G together with morphisms $m : G \times G \to G$ and $i : G \to G$, and an identity element $e \in G$, such that G is a group in the usual sense when m is used to define multiplication and i maps any element to its inverse element.
(a) Show that $\text{GL}_n(k)$ is an algebraic group.
(b) Show that any algebraic group is separated.
(c) Show that \mathbb{P}^1 is not an algebraic group, i.e. it is not possible to find morphisms $m : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ and $i : \mathbb{P}^1 \to \mathbb{P}^1$ satisfying the group axioms.
(d) Challenge: How about \mathbb{P}^n for $n \geq 2$?

Problem 43. Let G be an irreducible algebraic group acting on a variety X, i.e. we have a morphism $G \times X \to X$ such that the axioms for a group action are satisfied.
(a) Show that each orbit in X is locally closed.
(b) Each orbit is a non-singular variety.

Problem 44. Let $\text{GL}_n(k)$ act on $\text{Gr}(d,n)$ by $g.V = \{g(x) \mid x \in V\}$. Show that for any points $V_1, V_2 \in \text{Gr}(d,n)$ there exists an element $g \in \text{GL}_n(k)$ such that $g.V_1$ and $g.V_2$ are both in $U_{1,\ldots,d} \subset \text{Gr}(d,n)$. Conclude that $\text{Gr}(d,n)$ is separated.

Problem 45. (a) Let $0 < p < q < n$ be integers and $E = k^n$. Show that the set \{(V,W) \in \text{Gr}(p,E) \times \text{Gr}(q,E) \mid V \subset W\} is closed in $\text{Gr}(p,E) \times \text{Gr}(q,E)$.
(b) Let $0 < d_1 < d_2 < \cdots < d_m < n$ be integers and let $\text{Fl}(d_1,\ldots,d_m;E)$ be the set of flags of subspaces $V_1 \subset V_2 \subset \cdots \subset V_m \subset E$ such that $\dim V_i = d_i$. Give this set a structure of projective variety.

Problem 46. Set $E = k^n$, $X = \text{Gr}(d,E)$, and let $F_1 \subset F_2 \subset \cdots \subset F_n = E$ be a flag of subspaces such that $\dim F_i = i$. Given a sequence of integers $a = (0 < a_1 < a_2 < \cdots < a_d \leq n)$, let $\Omega_a(F_i)$ be the set of all $V \in X$ such that $\dim(V \cap F_p) = i$ whenever $a_i \leq p < a_{i+1}$, $0 \leq i \leq d$. (We set $a_0 = 0$ and $a_{d+1} = n + 1$.)
(a) Show that $\Omega_a(F_i) \cong \mathbb{A}^m$, where $m = \sum a_i - (d+1)$.
(b) Show that the orbits for the action of the upper triangular matrices on X are the sets $\Omega_a(F_i)$ for all sequences a where $F_i = \text{span}\{e_1,\ldots,e_i\}$.
(c) The Schubert varieties in X are the closures $\Omega_a(F_i) = \overline{\Omega_a(F_i)}$. Find a singular Schubert variety in some Grassmannian.

Problem 47. Let $X \subset \mathbb{P}^5$ be the subset of points $(x_0 : \cdots : x_5)$ such that the matrix
\[
\begin{pmatrix}
x_0 & x_1 & x_2 \\
x_3 & x_4 & x_5
\end{pmatrix}
\] has rank one. Show that X is a non-singular rational closed subvariety of \mathbb{P}^5, and find its dimension and degree.
Problem 48. [Mostly Hartshorne I.7.1] In this problem, just find the numbers and give an argument why they are correct that could be expanded into a proof.

(a) Find the degree of $v_3(\mathbb{P}^n)$ in \mathbb{P}^N where v_3 is the Veronese embedding.
(b) Find the degree of the Segre embedding of $\mathbb{P}^n \times \mathbb{P}^m$ in \mathbb{P}^{nm+n+m}.
(c) Challenge: Find the degree of $\text{Gr}(2, 5)$ in \mathbb{P}^9.

Problem 49. [Hartshorne I.5.3 and I.5.4]

Let $X \subset \mathbb{P}^2$ be a curve and $P \in \mathbb{P}^2$ any point. Let $I_{X, P} \subset \mathcal{O}_{\mathbb{P}^2, P}$ be the ideal of functions $f \in \mathcal{O}_{\mathbb{P}^2, P}$ such that $f|_{U \cap X} = 0$ for some open set U containing P. The multiplicity $\mu_P(X)$ of X at P is the largest number r such that $I_{X, P} \subset m_P^r$ where $m_P \subset \mathcal{O}_{\mathbb{P}^2, P}$ is the maximal ideal.

(a) $P \in X \iff \mu_P(X) \geq 1$.
(b) P is a non-singular point of X iff $\mu_P(X) = 1$.
(c) Let $Y \subset \mathbb{P}^2$ be another curve such that $X \cap Y$ is a finite set. Show that if $P \in X \cap Y$ then $I(X \cdot Y; P) = \dim_k \mathcal{O}_{\mathbb{P}^2, P}/(I_{X, P} + I_{Y, P})$.
(d) $I(X \cdot Y; P) = 1$ iff P is a non-singular point of both X and Y, and the tangent directions at P are different.
(e) $I(X \cdot Y; P) \geq \mu_P(X) \cdot \mu_P(Y)$.
(f) For all but a finite number of lines $L \subset \mathbb{P}^2$ through P we have $\mu_P(X) = I(X \cdot L; P)$.

Problem 50. Let \mathcal{F} be a sheaf on X and $p \in X$ a point. Prove the following from the definition of the stalk \mathcal{F}_p:

(a) Each element of \mathcal{F}_p has the form s_p for some section $s \in \mathcal{F}(U)$, $p \in U$.
(b) Let $s \in \mathcal{F}(U)$, $p \in U$. Then $s_p = 0 \iff s|_V = 0$ for some $p \in V \subset U$.
(c) Let $s \in \mathcal{F}(U)$. Prove that $s = 0$ if and only if $s_p = 0$ for all $p \in U$.

Problem 51. [Hartshorne II.1.2]

Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subset X$, and for every $s \in \mathcal{G}(U)$, there is a covering $U = \bigcup V_i$ of U and sections $t_i \in \mathcal{F}(V_i)$ such that $\varphi_{V_i}(t_i) = s|_{V_i}$ for all i.

Problem 52. [Hartshorne II.1.14]

Let \mathcal{F} be a sheaf on X and $s \in \mathcal{F}(X)$ a global section. Show that the set $\{p \in X \mid s_p \neq 0\}$ is a closed subset of X.

Problem 53. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of abelian sheaves on X. Show that $\ker(\varphi)_p = \ker(\varphi_p)$ and $\text{Im}(\varphi)_p = \text{Im}(\varphi_p)$ for all $p \in X$.

Problem 54. Let $f : X \to Y$ be a continuous map and \mathcal{G} a sheaf on Y. Show that $(f^{-1}\mathcal{G})_p = \mathcal{G}_{f(p)}$ for all $p \in X$.

Problem 55. Let $f : X \to Y$ be a continuous map, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y. Show that the map $\text{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \text{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$ constructed in class is bijective.

Problem 56. (a) Let X be an affine variety, M a $k[X]$-module, and \mathcal{F} an \mathcal{O}_X-module. Show that $\text{Hom}_{k[X]}(M, \Gamma(X, \mathcal{F})) \cong \text{Hom}_{\mathcal{O}_X}(M, \mathcal{F})$.
(b) If X is affine and M and N are $k[X]$-modules then $\tilde{M} \otimes_{\mathcal{O}_X} \tilde{N} = (M \otimes_k N)^\sim$.
(c) If $f : X \to Y$ is a morphism of varieties and \mathcal{G} is a (quasi-) coherent \mathcal{O}_Y-module, then $f^*\mathcal{G}$ is a (quasi-) coherent \mathcal{O}_X-module.
Problem 57. (a) X is a ringed space, F and G are \mathcal{O}_X-modules. Then the assignment $U \mapsto \text{Hom}_{\mathcal{O}_X}(F|_U, G|_U)$ defines an \mathcal{O}_X-module. It is denoted $\text{Hom}_{\mathcal{O}_X}(F, G)$.

(b) Let \mathcal{L} be an invertible \mathcal{O}_X-module. Show that $\mathcal{L}^{-1} = \text{Hom}_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$ is also invertible and that $\mathcal{L}^{-1} \otimes_{\mathcal{O}_X} \mathcal{L} \cong \mathcal{O}_X$.

Problem 58. Let X be a scheme of characteristic $p > 0$, $F : X \to X$ the Frobenius morphism, and \mathcal{L} an invertible \mathcal{O}_X-module. Show that $F^* \mathcal{L} \cong L^p$.

Problem 59. A morphism $f : X \to Y$ of pre-varieties is called affine if, for every open affine subset $V \subset Y$, the inverse image $f^{-1}(V)$ is also affine. The morphism f is called finite if it is affine and $k[f^{-1}(V)]$ is a finitely generated $k[V]$-module for every open affine $V \subset Y$.

(a) Let $Y = \bigcup V_i$ be an open affine covering of Y such that $f^{-1}(V_i)$ is affine \forall i. Show that f is affine. If $k[f^{-1}(V_i)]$ is a finitely generated $k[V_i]$-module for all i then f is finite.

(b) If f is affine and Y is separated, then X is separated.

Problem 60. (a) Let X be a complete variety and $f : X \to Y = \text{Spec} \text{-} \text{m}(k)$ the unique morphism to a point. Show that $f^* : \mathcal{O}_Y \to f_* \mathcal{O}_X$ is an isomorphism.

(b) Find a projective variety X and a birational morphism $f : X \to Y$ such that $f_* \mathcal{O}_X$ is not locally free on Y.

Problem 61. (a) $Y \subset \mathbb{P}^n$ is a hypersurface of degree d with ideal sheaf $\mathcal{I}_Y \subset \mathcal{O}_{\mathbb{P}^n}$. Show that $\mathcal{I}_Y \cong \mathcal{O}(-d)$.

(b) Let $v_d : \mathbb{P}^n \to \mathbb{P}^N$ be the Veronese embedding, $N = \binom{n+d}{n} - 1$. Show that $(v_d)^*(\mathcal{O}_{\mathbb{P}^N}(1)) = \mathcal{O}_{\mathbb{P}^n}(d)$.

Problem 62. Let $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ be any non-constant morphism. Then $\dim \varphi(\mathbb{P}^n) = n$. Furthermore, φ is the composition of a Veronese embedding $v_d : \mathbb{P}^n \to \mathbb{P}^{n-1}$, a projection $\mathbb{P}(k^N) \to \mathbb{P}(L) \to \mathbb{P}(k^N/L)$ for some linear subspace $L \subset k^N$, and an inclusion of a linear subspace $\mathbb{P}(k^N/L) \subset \mathbb{P}^n$.

Problem 63. (a) Let $\varphi : X \to Y$ be an affine morphism of pre-varieties. Show that if Y is separated then so is X.

(b) X is an irreducible affine variety, $U \subset X$ an open affine subset, $U \subset \bar{X}$ their normalizations, and $\pi : \bar{X} \to X$ the normalization map. Show that $\pi^{-1}(U) = U$.

(c) If X is any irreducible variety then $\pi : \bar{X} \to X$ is a finite morphism. Conclude that \bar{X} is separated.

Problem 64. (a) If Y is a normal variety and $f : Y \to X$ a dominant morphism, then there exists a unique morphism $\bar{f} : Y \to X$ such that $f = \pi \circ \bar{f}$.

(b) Give a counter example to (a) when f is not dominant.

Problem 65. $X = V(xy-z^2) \subset \mathbb{A}^3$ is normal. [Hint: $k[X] = k[x, xt, xt^2] \subset k(x, t)$ where $t = z/x$.]

Problem 66. If X is any normal rational variety then $\text{Cl}(X)$ is a finitely generated Abelian group.

Problem 67. (a) Let $X \subset \mathbb{P}^2$ be a non-singular curve of degree 3 and $P \in X$ a point. Show that $\dim k \Gamma(X, \mathcal{L}(n[P])) \geq n$ for all n.

(b) Any proper open subset of X is affine.
Problem 68. (a) Let $F, G, H \in k[x, y, z]$ be forms such that $V_0(G, H, z) = \emptyset$ in \mathbb{P}^2. Show that if $zF \in (G, H)$ then $F \in (G, H)$. [Hint: Use that $G_0 = G(x, y, 0)$ and $H_0 = H(x, y, 0)$ are relatively prime.]

(b) Let $C \subset \mathbb{P}^2$ be a curve, and set $O_C(n) = \mathcal{O}_{\mathbb{P}^2}(n)|_C$. Then $\Gamma(C, O_C(n)) = (k[x, y, z]/I(C))_n$ for all $n \geq 0$. [Hint: If $C = V_+(H) \subset D_+(y) \cup D_+(z)$ and if σ is a global section of $O_C(n)$ then $\sigma/y^n = F(x, y, z)/y^m$ and $\sigma/z^n = A(x, y, z)/z^m$ for forms $F, A \in k[x, y, z]$ of degree $m \geq n$. Now use part (a).]

(c) Define the arithmetic genus of C to be $1 - P_C(0)$ where $P_C(m)$ is the Hilbert polynomial of $C \subset \mathbb{P}^2$. Show that $p_a = \frac{(d-1)(d-2)}{2}$ where d is the degree of C and that $\dim_k \Gamma(C, O_C(n)) = nd + 1 - p_a$ for all large integers n.

Problem 69. (a) Let $C \subset \mathbb{P}^2$ be a non-singular curve and $Y \subset \mathbb{P}^2$ an irreducible curve different from C. Set $Y.C = \sum P I(Y.C; P) \in \text{Div}(C)$. Show that $\mathcal{L}(Y)|_C \cong \mathcal{L}(Y.C)$ on C.

(b) Let $L = V_+(f)$ and $M = V_+(g) \subset \mathbb{P}^2$ be lines (not equal to C) where $f, g \in k[x, y, z]$ are linear forms. Then the divisor of $f/g \in k(C)$ is $(f/g) = L.C - M.C$.

Problem 70. Let $E \subset \mathbb{P}^2$ be an elliptic curve and $P_0 \in E$ any point. Show that the map $E \rightarrow \mathcal{O}_E^\times(E)$ given by $P \mapsto P - P_0$ is bijective.

Problem 71. Let $D : S \rightarrow M$ be an R-derivation and $p(x_1, \ldots, x_n) \in R[x_1, \ldots, x_n]$ a polynomial. Then $D(p(a_1, \ldots, a_n)) = \sum_{i=1}^n \frac{\partial p}{\partial x_i}(a_1, \ldots, a_n) D(a_i)$ for all elements $a_1, \ldots, a_n \in S$.

Problem 72. Let $E = V_+(zy^2 - x^3 + z^2x) \subset \mathbb{P}^2$, $\text{char}(k) \neq 2$. Show that $\Omega_E \cong \mathcal{O}_E$. [Hint: Compute the divisor of the section $d(x/z)$ of Ω_E.]

Problem 73. Let $\phi : X \rightarrow Y$ be a morphism of varieties and let $P \in X$ be a point such that $\phi^* : \mathcal{O}_Y(\phi(P)) \rightarrow \mathcal{O}_{X,P}$ is an isomorphism. Then there exists an open subset $U \subset Y$ such that $\phi(P) \in U$ and $\phi : \phi^{-1}(U) \cong U$ is an isomorphism.

Problem 74. Let X be a variety and $V \subset X$ any subset. Then V inherits a structure of space with functions from X. Assume that V is a variety with this structure. Show that V is locally closed in X.

Problem 75. Let $f : X \rightarrow Y$ be a rational map of algebraic varieties. Show that there exists a birational morphism $\pi : \hat{X} \rightarrow X$ such that the rational map $f \pi$ extends to a morphism of varieties $f \pi : \hat{X} \rightarrow Y$.

Problem 76. Set $E = V(y^2 - x^3 - 3) \subset \mathbb{C}^2$, $P = (1, 2) \in E$, and $U = E \setminus \{P\}$.

(a) Show that U is an open affine subvariety of E.

(b) Challenge: U is not of the form $D(f)$ for any regular function $f \in \mathcal{O}_E(E)$.

Problem 77. Set $E = k^{n+1}$ and recall that $\mathbb{P}^n = \{l \subset E \mid l$ is a line through the origin of $E \}$. Define $S = \{ (l, v) \in \mathbb{P}^n \times E \mid v \in l \}$, and let $\rho : S \rightarrow \mathbb{P}^n$ be the projection.

(a) S is a subbundle of rank 1 of the trivial vector bundle $\mathbb{P}^n \times E$.

Define an $\mathcal{O}_{\mathbb{P}^n}$-modules \mathcal{L} by $\Gamma(U, \mathcal{L}) = \{ \text{morphisms } s : U \rightarrow L \mid s \rho = 1_U \}$.

(b) \mathcal{L} is a locally free $\mathcal{O}_{\mathbb{P}^n}$-module of rank 1.

Let $\pi : E \setminus \{0\} \rightarrow \mathbb{P}^n$ be the projection. For $d \in \mathbb{Z}$ we define an $\mathcal{O}_{\mathbb{P}^n}$-module $\mathcal{O}(d) = \mathcal{O}_{\mathbb{P}^n}(d)$ by $\Gamma(U, \mathcal{O}(d)) = \{ s \in \mathcal{O}_E(\pi^{-1}(U)) \mid s(\lambda v) = \lambda^d s(v) \forall \lambda \in k, v \in E \}$.

(c) The sheaf $\mathcal{O}(d)$ is a locally free $\mathcal{O}_{\mathbb{P}^n}$-module of rank 1.
(d) Find an integer \(d \in \mathbb{Z} \) such that \(\mathcal{L} \cong \mathcal{O}(d) \) as an \(\mathcal{O}_P \)-module.