1. Affine varieties

$k = \overline{k}$ alg closed field.
R f.g. reduced k-algebra.
Spec-$m(R) = \{ \text{max. ideals } m \subset R \}$
Topology: Zariski closed sets are $Z(I) = \{ m \supset I \}$
Let $f \in R$. Def. $f : \text{Spec-}m(R) \to k$, $f(m) =$ image of f by $R \to R/m = k$.
Def: Let $U \subset \text{Spec-}m(R)$ be open, $f : U \to k$ a function.
f is regular if it is locally of the form $f(m) = p(m)/q(m)$, $p, q \in R$.
$\mathcal{O}(U) = \{ \text{regular } f : U \to k \}$.
Exercise*: $\mathcal{O}($Spec-$m(R)) = R$

Coordinate ring: $\mathcal{A}($Spec-$m(R)) = R$ (only for affine varieties)
Example: $R = k[f_1, \ldots, f_n] = k[x_1, \ldots, x_n]/I$. ($f_1, \ldots, f_n) : X \xrightarrow{\sim} Z(I) \subset A^n$

2. Spaces with functions

Def: A space with functions is a top space X with assignment $U \mapsto \mathcal{O}_X(U) \subset \{ \text{all fcns } U \to k \}$ (k-subalgebra) such that
1. $U = \bigcup_\alpha U_\alpha : f \in \mathcal{O}_X(U) \iff f|_{U_\alpha} \in \mathcal{O}_X(U_\alpha) \ \forall \alpha$.
2. $f \in \mathcal{O}_X(U) \Rightarrow D(f) \subset U$ open and $1/f \in \mathcal{O}_X(D(f))$.
Def: A morphism of SWFs is a cont. map $\varphi : X \to Y$ such that pullback of regular functions are regular.
I.e. if $V \subset Y$ is open and $f \in \mathcal{O}_Y(V)$, then $\varphi^*(f) = f \circ \varphi \in \mathcal{O}_X(\varphi^{-1}(V))$.

3. Subspace of SWF

X SWF, $Y \subset X$ any subset. Give Y structure of SWF as follows:
* Subspace topology.
* If $U \subset Y$ is open, $f : U \to k$ function, then f is regular iff f can locally be extended to regular fn on X.
I.e. $\forall y \in U \exists U' \subset X$ and $F \in \mathcal{O}_X(U')$ s.t. $y \in U'$ and $f(x) = F(x)$, $\forall x \in U \cap U'$.
Def. A prevariety is a SWF X s.t. \exists open cover $X = U_1 \cup \cdots \cup U_m$, with $U_i \cong \text{Spec-}m(R_i)$ affine variety for each i.
Exercise: Let $X = \text{Spec-}m(R)$ be affine and $f \in R$. Then $X_f := D(f) \cong \text{Spec-}m(R_f)$.
Exercise: X SWF and Y affine variety.
1-1 correspondence $\{ \text{morphisms } X \to Y \} \leftrightarrow \{ k$-alg homs $A(Y) \to \mathcal{O}(X) \}$.
Cor: Two affine varieties isomorphic iff coordinate rings isomorphic.
Exercise: \(\mathbb{A}^n \setminus \{0\} \) is not affine for \(n \geq 2 \).

Exercise: An open subset of a prevariety is a prevariety.

Exercise: A closed subset of a prevariety is a prevariety.

Def: \(X \) top space. A subset \(W \subset X \) is **locally closed** if it is an intersection of an open set and a closed set.

Cor: A locally closed subset of a prevariety is a prevariety.

4. Projective space

Def: \(\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\})/k^* \) = lines through origin in \(\mathbb{A}^{n+1} \).

\[\pi : \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n \ \text{projection}. \]

Topology: \(U \subset \mathbb{P}^n \) open \(\iff \pi^{-1}(U) \subset \mathbb{A}^{n+1} \) open.

Regular fns: \(f : U \to k \) is regular \(\iff \pi^*(f) = f \circ \pi : \pi^{-1}(U) \to k \) regular.

Notation: \((a_0 : \cdots : a_n) = \pi(a_0, \ldots, a_n) \).

Projective coord ring: \(\mathcal{O}(\mathbb{A}^{n+1}) = k[x_0, \ldots, x_n] \).

Def: Let \(f \in k[x_0, \ldots, x_n] \) homogeneous poly.

\[D_+(f) = \{(a_0 : \cdots : a_n) \in \mathbb{P}^n \mid f(a_0, \ldots, a_n) \neq 0\} \]

Exercise: \(D_+(x_i) \cong \mathbb{A}^n \).

Cor: \(\mathbb{P}^n = D_+(x_0) \cup \cdots \cup D_+(x_n) \) is a prevariety.

Exercise: \(X \) SWF and \(\phi : \mathbb{P}^n \to X \) function. Then \(\phi \) is a morphism iff \(\phi \circ \pi : \mathbb{A}^{n+1} \setminus \{0\} \to X \) is a morphism.

Def: If \(W \subset \mathbb{P}^n \) subset, then \(I(W) = I(\pi^{-1}(W)) \subset k[x_0, \ldots, x_n] \).

Def: If \(I \subset k[x_0, \ldots, x_n] \) homogeneous ideal, then \(Z_+(I) = \pi(Z(I)) \subset \mathbb{P}^n \).

Projective Nullstellensatz: \(I \subset k[x_0, \ldots, x_n] \) homogeneous ideal. If \(Z_+(I) \neq \emptyset \) then \(I(Z_+(I)) = \sqrt{I} \).

5. Projective varieties

Def. A **projective variety** is a closed subset of \(\mathbb{P}^n \) (with SWF structure).

A **quasi-projective variety** is a locally closed subset of \(\mathbb{P}^n \).

An **affine variety** is a closed subset of \(\mathbb{A}^n \).

A **quasi-affine variety** is a locally closed subset of \(\mathbb{A}^n \).

Exercise: \(\mathbb{P}^n \) is not quasi-affine for \(n \geq 1 \).

Exercise*: If \(X \) is both projective and quasi-affine, then \(X \) is finite.

Def: If \(X \subset \mathbb{P}^n \) is closed, then proj. coord. ring of \(X \) is \(k[x_0, \ldots, x_n]/I(X) \). Depends on embedding!!

Def: \(R \) graded ring, \(f \in R_d \).

\[R_{(f)} = \{ \text{homogeneous elts. in } R_f \text{ of degree zero } \} = \{g/f^m \mid g \in R_{dm}\}. \]

Exercise: \(R \) f.g. reduced graded \(k \)-algebra \(\Rightarrow \) \(R_{(f)} \) f.g. reduced \(k \)-algebra.

Exercise: \(X \subset \mathbb{P}^n \) projective, \(R = k[x_0, \ldots, x_n]/I(X) \). \(f \in R_d \) with \(d > 0 \). Then \(X_f := X \cap D_+(f) \cong \text{Spec-m}(R_{(f)}). \)

Hints: Enough to assume \(X = \mathbb{P}^n \), \(R = k[x_0, \ldots, x_n] \).
Show that $O(D_+(f)) = R(f)$.
Identity map $R(f) \to O(D_+(f))$ defines morphism $D_+(f) \to \text{Spec-m}(R(f))$.
Show this is an isomorphism.

6. Products

Let X and Y be SWFs. A **product** of X and Y is a SWF called $X \times Y$ with morphisms $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$, such that $(X \times Y, \pi_X, \pi_Y)$ is universal.

Exercise: Show that products of SWFs exist and are unique.

Example: $A^1 \times A^1 = A^2$. NOTE: A^2 does not have the product topology!

Exercise: If X and Y are affine varieties, then $X \times Y \cong \text{Spec-m}(A(X) \otimes_k A(Y))$.
Cor: A product of prevarieties is a prevariety.

7. Separated SWFs

Def: A SWF X is **separated** if \forall SWFs Y and morphisms $f, g : Y \to X$ the set \{ $y \in Y \mid f(y) = g(y)$ \} $\subset Y$ is closed.

(Algebraic version of Hausdorff.)
Non-example: $X = (A^1 \setminus \{0\}) \cup \{O_1, O_2\} = \text{union of two copies of } A^1$.

Def: An **algebraic variety** is a separated prevariety.

Exercise: Any subspace of a separated SWF is separated.

Exercise: A product of separated SWFs is separated.

Exercise: $\Delta : X \to X \times X, x \mapsto (x, x)$ is a morphism.
Def: $\Delta_X := \Delta(X) \subset X \times X$.
Exercise: $\Delta : X \to \Delta_X$ isomorphism.

Exercise: X is separated $\iff \Delta_X \subset X \times X$ is closed.

Exercise: A^n is separated, hence all (quasi-) affine varieties are algebraic varieties.

Exercise: P^n is separated, hence all (quasi-) projective varieties are varieties.

8. Rational maps

Def: A topological space X is **irreducible** if X is not a union of two proper closed subsets.

Let X and Y be irreducible varieties.
Consider pairs (U, f) such that $\emptyset \neq U \subset X$ is open and $f : U \to Y$ is a morphism.
Relation: $(U, f) \sim (V, g)$ iff $f = g$ on $U \cap V$.
Exercise: \sim is an equiv. relation. (Since X is irreducible and Y is separated.)

Def: A **rational map** $f : X \dashrightarrow Y$ is an equivalence class for \sim.
Exercise: There is a unique maximal open subset of points in X where f is defined as a morphism.

Def: A **rational function** on X is a rational map $f : X \dashrightarrow A^1 = k$.
f is given by a regular function $f : U \to k$, where $\emptyset \neq U \subset X$ is open.
Def: $k(X) = \{ f : X \dashrightarrow k \}$
Exercise: \(k(X) \) is a field.
Exercise: \(\emptyset \neq U \subset X \) open \(\Rightarrow k(U) = k(X) \).
Exercise: \(X \) irreducible, affine variety \(\Rightarrow k(X) = K(A(X)) \) fraction field.

Def: For \(V \subset X \) irreducible, closed, the local ring of \(V \) along \(V \) is the subring \(O_{X,V} \subset k(X) \) of rational functions that are defined in at least one point of \(V \):

\[
O_{X,V} = \{(U,f) \in k(X) \mid U \cap V \neq \emptyset\}.
\]

Unique max. ideal: \(m_{X,V} = \{(f,U) \in O_{X,V} \mid f(x) = 0 \forall x \in V \cap U\} \).

Exercise: \(X \) irreducible, affine, \(V \subset X \) irreducible closed \(\Rightarrow O_{X,V} = A(X)/I(V) \).

Def: \((U,f) : X \to Y \) is dominant if \(f(U) = Y \).

Exercise: If \(f : X \to Y \) and \(g : Y \to Z \) are rational maps and \(f \) is dominant, then \(\exists \) well-defined composition \(g \circ f : X \to Z \).

Exercise: Let \(X \) and \(Y \) be irreducible varieties. 1-1 correspondence:

\[
\{ \text{dominant } f : X \to Y \} \leftrightarrow \{ \text{field ext. } k(Y) \subset k(X) \text{ over } k \}.
\]

Def: \(f : X \to Y \) is birational if \(f \) is dominant and \(\exists \) dominant \(g : Y \to X \) s.t.

\[
f \circ g = \text{id}_Y \text{ and } g \circ f = \text{id}_X.
\]

Def: \(X \) and \(Y \) are birationally equivalent (written \(X \cong Y \)) iff \(\exists \) birational map \(f : X \to Y \).

Example: \(\mathbb{A}^2 \cong \mathbb{P}^2 \cong \mathbb{P}^1 \times \mathbb{P}^1 \)

Exercise: \(X \cong Y \Leftrightarrow k(X) \cong k(Y) \) as \(k \)-algebras \(\Leftrightarrow \)

\(\exists \) open subsets \(U \subset X \) and \(V \subset Y \) s.t. \(U \cong V \).

Def: \(X \) is rational if \(X \) is birationally equivalent to \(\mathbb{A}^n \) for some \(n \).

Def: \(X \) is unirational if \(\exists \) dominant rational map \(f : \mathbb{A}^n \to X \).

Exercise*: \(E = \mathbb{Z}(y^2 - x^3 + x) \subset \mathbb{A}^2 \) is not rational.

Exercise**: If \(C \) is a unirational curve, then \(C \) is rational.

9. Complete Varieties

Def: A variety \(X \) is complete if for any variety \(Y, \pi_Y : X \times Y \to Y \) is closed.
(Analogue of compact manifolds. Schemes: same as proper over \(\text{Spec}(k) \).)

Note: 1) Closed subsets of complete varieties are complete.
2) Products of complete varieties are complete.

Example: Points are complete!

Example: \(\mathbb{A}^1 \) is not complete.

\(W = \mathbb{Z}(xy - 1) \subset \mathbb{A}^1 \times \mathbb{A}^1 \) is closed but \(\pi_2(W) = \mathbb{A}^1 \setminus \{0\} \) is not closed in \(\mathbb{A}^1 \).

Exercise: Let \(\varphi : X \to Y \) be a morphism of varieties. If \(X \) is complete then \(\varphi(X) \subset Y \) is closed and complete. (Use graph \(\Gamma_f \subset X \times Y \).)

Exercise: \(\varphi : X \to Y \) cont. map of top. spaces. Then \(X \) irreducible. \(\Rightarrow \varphi(X) \) irreducible.

Cor: If \(X \) is irreducible and complete then \(O(X) = k \).

Proof: If \(f : X \to \mathbb{A}^1 \) is any morphism then \(f(X) \subset \mathbb{A}^1 \) is closed, complete, and irreducible, hence a point.

Exercise: Any complete quasi-affine variety if finite.

Exercise*: \(\mathbb{P}^n \) is complete, hence all projective varieties are complete.