Algebra 551 Takehome Midterm, Fall 2022

Instructions: Do all of the following six problems. Give complete proofs of your claims. You may use the book and other tools.

- When relevant, use only one universal property at the time, and explain how you apply it.
- Make sure to introduce all symbols before you use them. For example, "Let G be a group and let $g \in G$ be an element" introduces the symbols " G " and " g ". The sentence "We have $x^{2}>4$ whenever $x>2$ " is also fine, since it is clear what x is.
- Write as much as you need to argue that your solutions are correct and complete. There is no need to write more than that.
- Your solutions will be evaluated for correctness, completeness, and clarity, so please write your solutions carefully, clearly, and legibly.

Problem 1.

Let $\left\{G_{i}\right\}_{i \in I}$ be a family of abelian groups. Let P be the product of this family, with projections $\pi_{j}: P \rightarrow P_{j}$ for each $j \in I$. Let S be the coproduct of the family, with inclusions $\iota_{k}: G_{k} \rightarrow S$ for each $k \in I$. For $j, k \in I$, let $\phi_{j k}: G_{k} \rightarrow G_{j}$ denote the identity map when $j=k$, and the zero map when $j \neq k$. Use the defining universal properties of P and S to prove the following. (Can you do it without referring to elements in the groups?)
(a) For each fixed $k \in I$, there exists a group homomorphism $\alpha_{k}: G_{k} \rightarrow P$, such that $\pi_{j} \alpha_{k}=\phi_{j k}$ holds for each $j \in I$.
(b) There exists a group homomorphism $\psi: S \rightarrow P$, such that $\pi_{j} \psi \iota_{k}=\phi_{j k}$ holds for all $j, k \in I$.

Problem 2.

Let \mathbb{F} be a field, X a set, $\mathbb{F} X$ the free \mathbb{F}-vector space on $X, S^{\bullet}(\mathbb{F} X)$ the symmetric algebra of $\mathbb{F} X$, and $\mathbb{F}[X]$ the free commutative \mathbb{F}-algebra on X. Use the universal properties of free objects and symmetric algebras to show that $S^{\bullet}(\mathbb{F} X)$ is isomorphic to $\mathbb{F}[X]$ as \mathbb{F}-algebras.

Problem 3.

Let R be a commutative ring and let M, N, and P be R-modules. Use the defining universal property of tensor products to prove the following. (Beware that an R module may not have a basis, so don't use any basis elements.)
(a) There exists a unique R-module homomorphism $\alpha: M \otimes_{R}(N \oplus P) \rightarrow M \otimes_{R} N$, such that $\alpha(m \otimes(n, p))=m \otimes n$ holds for all $m \in M$ and $n \in N$.
(b) There exists a unique isomorphism of R-modules

$$
\phi: M \otimes_{R}(N \oplus P) \rightarrow\left(M \otimes_{R} N\right) \oplus\left(M \otimes_{R} P\right)
$$

such that $\phi(m \otimes(n, p))=(m \otimes n, m \otimes p)$ holds for all $m \in M, n \in N$, and $p \in P$.

Problem 4.

Let G be a group and $H \leq G$ a subgroup. Prove that if H is a characteristic subgroup of G, then H is a normal subgroup of G. Give an example of a normal subgroup that is not a characteristic subgroup.

Problem 5.

Let A_{n} be the group of even permutations of n elements. Show that for $n \geq 5$, all 3 -cycles in A_{n} are conjugate as elements of A_{n}.

Problem 6.

Find the number of colorings of the edges of a regular hexagon using n colors, up to rotations and reflections. In other words, two colorings are considered the same if one can be obtained from the other by a rotation or reflection of the hexagon.
Hint: There are 92 colorings when using 3 colors.

