ALGEBRAIC GEOMETRY PROBLEMS

Let k be an algebraically closed field and let $\mathbb{A}^{n}=k^{n}$ be affine n-space over k.
Problem 1. Define the ideal $I=\left(y^{2}+2 x y^{2}+x^{2}-x^{4}, x^{2}-x^{3}\right) \subset k[x, y]$. Find (generators of) the radical \sqrt{I}.
Problem 2. Show that $W=\left\{(x, y, z) \in \mathbb{A}^{3} \mid x^{2}=y^{3}\right.$ and $\left.y^{2}=z^{3}\right\}$ is a Zariski closed subset of \mathbb{A}^{3}, find $I(W)$, and show that $I(W)$ is a prime ideal in $k[x, y, z]$. Hint: Construct a ring homomorphism $k[x, y, z] \rightarrow k[T]$ with kernel $I(W)$.
Problem 3. [Hartshorne I.1.2 and I.1.11]
(a) Show that $X=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ is Zariski closed in \mathbb{A}^{3} and find $I(X)$.
(b) Same for $Y=\left\{\left(t^{3}, t^{4}, t^{5}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$.
(c) Show that $I(Y)$ can't be generated by less than three polynomials.

Hint: Is $I(Y)$ a graded ideal? Are you sure??

