
Bilinear Forms over a field F

Let V be a vector space. A bilinear form on V is a set map B : V × V −→ F
which is linear in each slot. This means that for λ ∈ F and x, x′, y, y′ ∈ F we have

λB(x, y) = B(λx, y) = B(x, λy),

B(x + x′, y) = B(x, y) + B(x′, y)

B(x, y + y′) = B(x, y) + B(x, y′).

We call B symmetric if B(x, y) = B(y, x) and alternating if B(x, y) = −B(y, x).
The most famous symmetric bilinear form is the dot product B(x, y) = x · y on

Fn. Another symmetric bilinear form is the “Lorentz metric” on R4: B(x, y) =
x1y1 + x2y2 + x3y3 − x4y4. The most famous alternating bilinear form is the cross
product B(x, y) = x × y = x1y2 − x2y1 on F 2. Every n × n matrix A = (aij) gives
rise to a bilinear form on the vector space Fn of column vectors by the formula
B(x, y) = xtAy = x · Ay.

A variation of this definition is often used for vector spaces over C. Let λ∗ denote
the complex conjugate of λ ∈ C. We call a set map B : V × V −→ F sesquilinear
if it is linear in the second slot and anti-linear in the first; that is we replace the
scalar condition for a bilinear form by the condition

λB(x, y) = B(λ∗x, y) = B(x, λy)

We call B hermitian if B(x, y) = B(y, x)∗. The most famous hermitian form on Cn

is given by x∗ · y =
∑

x∗

i yi.
Any square matrix A gives rise to a sesquilinear form: B(x, y) = x∗ · Ay. If

A is a hermitian matrix (a matrix with At = A∗) then this is a hermitian form.
Our discussion will concentrate on bilinear forms, because the sesquilinar/hermitian
cases are all proven the same way (with conjugation thrown in where needed).

Proposition. If dim(V ) = n, there is a 1-1 correspondence between bilinear forms
and n × n matrices. The symmetric and alternating bilinear forms correspond to
symmetric and alternating matrices.

There is also a 1-1 correspondence between sesquilinear forms and n×n matrices,
in which the hermitian forms correspond to hermitian matrices.

To make this correspondence, choose a basis e1..., en for V . The matrix A = (aij)
associated to a bilinear form B has aij = B(ei, ej). The formula B(x, y) = xtAy
follows from bilinearity of B.

Change of basis. A change of basis for V is carried out by an invertible matrix P .
Writing x = Px0, y = Py0 we see that xtAy = xt

0(P
tAP )y0. Thus the change of

basis replaces the matrix A by the matrix P tAP .
Warning: the use of A to describe a linear transformation and a bilinear form

result in two distinct equivalence relations on matrices: A is similar to P−1AP as
a linear transformation, and is equivalent to P tAP as a bilinear form (or to P ∗tAP
as a sesquilinear form.)

We call a form B non-degenerate if its corresponding matrix A has a nonzero de-
terminant. Note that det(A) is only well-defined up to a square, since det(P tAP ) =
det(A) det(P )2; det(A) is called the discriminant of B. If B is nondegenerate, the
discriminant is well-defined in F ∗/F ∗2.
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Lemma. The following are equivalent for a bilinear (or even sesquilinear) form B.
(a) B is a non-degenerate form on V
(b) For x 6= 0, the linear map f : V −→ F defined by f(y) = B(x, y) is nonzero.
(c) Every linear map f : V −→ F is f(y) = B(x, y) for some unique x ∈ V .

Quadratic Forms. A set map q : V −→ F is called a quadratic form if q(λx) =
λ2x for λ ∈ F, x ∈ V and if the function

B(x, y) = q(x + y) − q(x) − q(y)

is a symmetric bilinear form. B is called the associated bilinear form of q.
Every symmetric bilinear form determines a quadratic form, namely q(x) =

B(x, x), whose associated bilinear form is 2B. Thus if char(F ) 6= 2 there is a 1-1
correspondence between quadratic forms and symmetric bilinear forms.

Associated to the dot product (a bilinear form) is the quadratic form q(x) =
x · x = ‖x‖2. This corresponds to the usual Riemannian metric on Rn. Associated
to the Lorentz metric on R4 is the quadratic form q(x) = x2

1 + x2
2 + x2

3 − x2
4.

Diagonalizability of symmetric and hermitian forms. Every real symmetric
matrix, and every complex hermitian matrix, is diagonalizable as a linear transfor-
mation. That is, V has a basis of eigenvectors for A, and all the eigenvalues of A
are real numbers.

To see that every eigenvalue λ is real, choose an eigenvector x with ‖x‖ = 1 and
compute: λ = x∗t · Ax = (x∗t · Ax)∗ = λ∗. If A were not diagonalizable then some
eigenvalue λ would have a Jordan block of length ≥ 2. Thus there would exist a
vector x which is not an eigenvector, but such that y = (A− λ)x is an eigenvector.
But we must have y∗t ·y = (y∗t ·Ax)−λ(y∗t ·x) = (λ∗−λ)(y∗t ·x) = 0, contradiction.
A non-diagonalizable symmetric matrix over C is given below.

Classification of symmetric bilinear forms. If B is a symmetric bilinear form,
and char(F ) 6= 2, then there is a basis of V , and an integer r (the rank of B) such
that the matrix of B has the diagonal form









a1 0
. . .

0 ar

0









B(x, y) =
r

∑

i=1

arxiyi,

To construct the diagonal matrix, we use the notion of orthogonality relative
to B. Write x ⊥ y if B(x, y) = 0. If B = 0 we are done. Otherwise choose e1

such that a1 = B(e1, e1) is nonzero, and set U = e⊥1 = {x ∈ V : x ⊥ e1}. Then
dim(U) = dim(V ) − 1, so by induction on n = dim(V ) we can pick e2, ..., en to
diagonalize B.

The diagonal elements ai constructed by this process are not well-defined. For
example, if we replace ei by rei in our basis, the effect is to divide xi, yi by r and
change ai to ai/r2. Thus over an algebraically closed field like C every nondegen-
erate symmetric bilinear form is the dot product (up to change of basis).

Over R, this only shows that we can replace each ai by ±1. We will see that the
number of +1′s and −1′s is an invariant, typically described using the signature of
B, defined as

signature σ = (number of +1 entries) − (number of −1 entries).
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Sylvester’s Law of Inertia. The rank r and signature σ of a symmetric bilinear
form on V = Rn are well-defined. If B and B1 are two symmetric forms with
the same rank and signature, then they differ only by a change of basis matrix P :
B1(x, y) = B(Px, Py). If p = (r + σ)/2, there is a basis for V such that

B(x, y) = (x1y1 + ... + xpyp) − (xp+1yp+1 + ... + xryr).

Indeed, if we follow the algorithm classifying symmetric forms, always choosing
eigenvectors, then we see that p = (r + σ)/2 is the number of positive eigenvalues
of A, and the number of negative eigenvalues of A is (r−σ)/2. As an example, the
Lorentz metric on R4 has rank 4 and signature σ = 2, so it is really different than
the Riemann metric.

Classification of Hermitian forms. The rank r and signature σ of a Hermitian
form is well-defined. If B and B1 are two Hermitian forms, then they differ only
by a change of basis matrix P : B1(x, y) = B(Px, Py). (The matrices A and A1 of
the forms satisfy A1 = P ∗tAP .) If p = (r + σ)/2, there is a basis for V such that

B(x, y) = (x1y1 + ... + xpyp) − (xp+1yp+1 + ... + xryr).

If the rank and signature are the same, the hermitian form is (up to change of
basis) the usual dot product x∗t · y.

Classification of alternating bilinear forms. If B is an alternating bilinear
form, and char(F ) 6= 2, then there is a basis of V such that the matrix of B has
the block form





0 1 0
−1 0 0
0 0 0





In particular, if B is a nondegenerate alternating form then dim(V ) is even, and

B

((

x1

x2

)

,

(

y1

y2

))

= x1 · y2 − x2 · y1.

Exercises. 1) A real symmetric form (or a complex hermitian form) is called
positive definite when B(x, x) > 0 for all nonzero x. Show that r = σ, and that
there is an invertible matrix P such that B(x, y) = (Px) · (Py).

2) Suppose that a symmetric n × n matrix A has n distinct eigenvalues λi over
some field F . Show that there is a basis of eigenvectors ei for Fn such that the
associated bilinear form is described by a diagonal matrix, with ai = λiei · ei.

3) Let A be a real symmetric (or complex hermitian) matrix. Show that there is
basis of orthonormal eigenvectors, i.e., eigenvectors ei for A such that ei · ej = δij .

4) Over C, show that the symmetric matrix A =

(

1 i
i −1

)

has Jordan form
(

0 1
0 0

)

. Then show that C
2 cannot have a basis of orthonormal eigenvectors.
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Orthogonal and Unitary matrices. If B is a symmetric bilinear form over a
field F , its orthogonal group is the group OB of all invertible matrices P such that
B(Px, Py) = B(x, y) for all x, y. When B is the dot product, we write On(F ) for
this group, and can also describe it as {P : P−1 = P t}. The special orthogonal
group is the group SOn(F ) of orthogonal matrices with determinant 1; On is the
semidirect product of SOn and the group {±1}.

For example, O1(R) = {±1}, and SO2(R) is the circle group of all rigid rotations
in the plane. More generally, SOn(R) is the group of rigid rotations in the usual
sense about the origin. The entire orthogonal group On includes reflections about
the origin. The Lorentz group O31 is the orthogonal group OB for the Lorentz
metric B, and plays a fundamental role in physics.

The unitary group Un = Un(C) is the corresponding group for the canonical
hermitian form: a quick calculation shows that Un = {P : P−1 = P ∗t}. For
example, U1 = {z ∈ C : ‖z‖ = 1}. The special unitary group is the subgroup of all
unitary matrices with determinant 1; if we write S1 for the group of n×n matrices
of the form {zIn : ‖z‖ = 1}, then as a group Un = S1 × SUn.

Normal matrices. A matrix A over C is called normal if AA∗t = A∗tA. The
main theorem states that A is normal if and only if Cn has a basis of orthonormal
eigenvectors, i.e., eigenvectors ei for A such that ei · ej = δij .

Both real orthogonal and complex unitary matrices are trivially normal, the
columns of these matrices forming an orthonormal basis. It is also clear that real
symmetric and complex hermitian matrices are normal; the orthonormal bases were
found in exercise 3 above. Real alternating matrices are also clearly normal, al-
though they have purely imaginary eigenvalues and no real eigenvectors (why?).

If there is an orthonormal basis of eigenvectors ui for the matrix A, the change-of-
basis matrix U has the ui as its columns. Since u∗t

i ·uj = δij , U is a unitary matrix.
Note that the matrix U−1AU = U∗tAU is the diagonal matrix D of eigenvectors of
A. A quick calculation shows that A is normal.

Conversely, suppose that A is normal. If we write A = B + iC with B =
1

2
(A + A∗t) and C = 1

2i
(A − A∗t) both hermitian, then BC = CB and hence B

preserves the eigenspaces of C: if Cv = λv then w = Bv satisfies

Cw = CBv = BCv = B(λv) = λw.

Hence Cn is the direct sum of subspaces Vij which are eigenspaces for both B and
C. By exercise 3, each Vij has an orthonormal basis diagonalizing both B and C,
hence A. Concatenating these yields an orthonormal basis of Cn (why?), and this
basis diagonalizes A, B and C.


