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Abstract. We establish two spectral sequences in knot Floer homology associated to a directed
strongly invertible knot K: one from the knot Floer homology of K to a two dimensional vector
space, and one from the singular knot Floer homology of a singular knot associated to K to the
knot Floer homology quotient knot of K. The first of these spectral sequences is used to define a
numerical invariant of strongly invertible knots.
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1. Introduction

1.1. Main results. A symmetric knot (K̃, τ) is a knot K̃ ⊂ S3 along with a finite order diffeomor-

phism τ : (S3, K̃) → (S3, K̃). A symmetric knot K̃ is strongly invertible if τ is order 2, orientation

preserving, and |Fix(τ) ∩ K̃| = 2. The study of strongly invertible knots was initiated by Sakuma
[Sak86].

The purpose of this paper is to establish two new spectral sequences in knot Floer homology for
strongly invertible knots.

Theorem 1.1. Given K̃ a strongly invertible knot, there is a spectral sequence with E1 page equal

to ĤFK (K̃, 0)⊗F[θ, θ−1] and E∞ page isomorphic to ĤF (S3)⊗F[θ, θ−1]. Every page of this spectral

sequence is an invariant of K̃.

From Theorem 1.1 we extract a numerical invariant sτ of strongly invertible knots constructed
similarly to many concordance invariants including Rasmussen’s s invariant [Ras04], and Hendricks-

Lipshitz-Sarkar’s qτ (K̃) and dτ (K̃,m) [HLS16], and conjecture that this invariant is an equivariant
concordance invariant.

Let (K̃, τ, Ã) be a directed strongly invertible knot (DSI) with quotient knot K as in Definition
2.1 and Figure 1.

Figure 1. Left: The left handed trefoil 31 with strong inversion given by a π-
radian rotation about the vertical symmetry axis. Middle: The quotient unknot of
the directed strong inversion on 31 denoted 3+1 with the short vertical red segment
chosen as the distinguished half axis. Right: The quotient trefoil of the directed
strong inversion on 31 denoted 3−1 with the opposite choice of distinguished half
axis.

The next spectral sequence makes use of

• singular knot Floer homology, a Floer homology group associated to a singular knot due to
Ozsváth, Szabó and Stipsicz [OSS09], [OS09], and

• a singular knot Sb(K̃) constructed from Boyle and Issa’s butterfly link Lb(K̃), and also their

axis linking number l̃k(K̃) [BI22].

Section 2 contains the definitions of Lb(K̃), Sb(K̃) and l̃k(K̃), and Section 3.3 is a brief review of
singular knot Floer homology.
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Figure 2. Left: The butterfly link Lb(3
+
1 ). Right: The singular butterfly link

Sb(3
+
1 ).

Theorem 1.2. Let (K̃, τ, A) be a DSI with quotient knot K and axis linking number l̃k(K̃) < 0.
There is a spectral sequence with E1-page equal to

ĤFK (Sb(K̃))⊗ F[θ, θ−1]

and E∞-page isomorphic to

ĤFK (K)⊗ F[θ, θ−1].

Furthermore, this spectral sequence splits along Alexander gradings:

• For each a ∈ Z there is a spectral sequence with E1 page equal to

ĤFK (Sb(K̃), 2a+ l̃k(K̃) +
3

2
)⊗ F[θ, θ−1]

and E∞ page isomorphic to

ĤFK (K, a+ l̃k(K̃) + 1)⊗ F[θ, θ−1].

• For any Alexander grading A which cannot be written as A = 2a+ l̃k + 3
2 , there is spectral

sequence with E1 page equal to ĤFK (Sb(K̃), A)⊗ F[θ, θ−1] and E∞ page equal to 0.

Every page of this spectral sequence is an invariant of K̃.

Remark 1.3. The condition l̃k(K̃) < 0 is not restrictive; if l̃k(K̃) > 0 then l̃k(m(K̃)) < 0. Alterna-

tively, there is a slightly different grading shift formula for positive l̃k(K̃). The condition l̃k(K̃) < 0
is chosen for simplicity.

1.2. Background. There has been a recent burst of activity in the study of strongly invertible
knots and their relation to 3- and 4-dimensional topology. For instance, Boyle–Issa studied equi-
variant versions of 3- and 4-genera [BI22], and Hirasawa–Hiura–Sakuma computed the equivariant
3-genus for all 2-bridge strongly invertible knots [HHS23]; Alfieri–Boyle introduced an equivari-
ant knot signature [AB21] and used it to give a lower bound on the butterfly 4-genus; Di-Prisa
showed that the equivariant concordance group is non-abelian [Pri22]; Dai–Mallick–Stoffregen in-
troduced equivariant concordance invariants derived from knot Floer homology and used them to
give lower bounds on the equivariant 4-genus [DMS22]; Dai–Kang–Mallick–Park–Stoffregen stud-
ied the (2, 1)-cable of 41 and proved that is not slice by showing that the branched double cover
Σ((41)2,1) ∼= S+1(41#4r1) does not bound an equivariant Z/2Z homology ball, in part by studying
the swapping strong inversion on 41#4r1; Lobb–Watson constructed a spectral sequence involving
a refinement of Khovanov homology in the presence of an involution for a strongly invertible knot
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[LW21]; Lipshitz-Sarkar constructed another spectral sequence involving Khovanov homology of
a DSI [LS22] and the annular Khovanov homologies of its two annular quotients, and also used
it to distinguish exotic slice disks; and, Hendricks-Mak-Raghunath constructed the analog of the
Lipshitz-Sarkar spectral sequence using symplectic Khovanov homology and symplectic annular
Khovanov homology [HMR24].

Theorems 1.1 and 1.2 are in part inspired by Lipshitz and Sarkar’s spectral sequence. An annular
link is a link in a thickened annulus D2 × S1, or equivalently a link in S3 along with a choice of

unknotted axis. Given an intravergent diagram as in Definition 2.2 D̃n for a DSI (K̃, τ, Ã′), there
are two naturally associated annular quotient knots, K0 and K1 – the quotients of the 2-periodic

0 and 1 resolutions of the central crossing of D̃n. The subscript n in D̃n is the winding number of
the annular knot K0 or equivalently the linking number of K0 with the symmetry axis A. Lipshitz
and Sarkar define an axis moving map

f+ : Σ0,0,1ACKh(K1) → ACKh(K0)

on the annular Khovanov chain complexes of K1 and K0. Here Σ0,0,1 denotes a degree shift of
(0, 0, 1) on the triply graded complex ACKh(K1). With these ingredients in place they prove the
following theorem, stated below with small tweaks to conform with terminology used in this paper.

Theorem 1.4. [LS22] Given an intravergent diagram D̃n for a DSI K̃ with annular quotient knots
K0 and K1, there is a spectral sequence with the following properties:

(1) The E1 page is Kh(K̃,F) ⊗ F[θ, θ−1] with d1 differential the map θ(Id + τ∗) where τ∗ is
induced by the strong inversion.

(2) The dr differential preserves the quantum grading and increases the θ power by r.
(3) The spectral sequence converges to AKh(K0,K1)⊗ F[θ, θ−1], where

(1.1) ACKh(K0,K1) := Cone(Σ0,0,1ACKh(K0)
f+−−→ ACKh(K1)).

By property (2) above, the spectral sequence splits along quantum gradings; specifically the

summand of the spectral sequence in quantum grading j̃ converges to

(1.2)
⊕
i,j,k∈Z

i+j=j̃−1−3(n−2·l̃k(K̃))

H∗Cone(ACKhi,j,k−1(K1,F)
f+−−→ ACKhi,j,k(K0,F))⊗ F[θ, θ−1].

Our techniques are inspired by Hendricks’ work concerning localization spectral sequences for link

Floer homology of doubly periodic knots [Hen15]. A doubly periodic link is a link P̃ ⊂ S3 equipped

with an order 2 orientation preserving diffeomorphism τ : (S3, P̃ ) → (S3, P̃ ) that preserves the

orientation of P̃ . The fixed point set of τ is an unknot Ã disjoint from P̃ called the axis of

symmetry. The quotient link of (P̃ , τ) is the link P which is the image of P̃ under the quotient

map q : S3 → S3/τ ∼= S3, and A := q(Ã) is the quotient axis.

Theorem 1.5. [Hen15, HLS16] There is a spectral sequence with E1 page equal to ĤFK (P̃ )⊗V ⊗
W ⊗ F[θ, θ−1] and E∞ page isomorphic to ĤFK (P ) ⊗ W ⊗ F[θ, θ−1]. Furthermore this spectral
sequence splits along Alexander gradings:

• For any a ∈ Z there is a spectral sequence with E1 page equal to

ĤFK (P̃ , 2a+
1− λ

2
)⊗ V ⊗W ⊗ F[θ, θ−1]
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Figure 3. Left: An intravergent diagram for 3+1 . Right: An intravergent diagram
for S1

b (3
+
1 ).

and E∞ page isomorphic to

ĤFK (P, a+
1− λ

2
)⊗W ⊗ F[θ, θ−1].

• For any Alexander grading A which cannot be written as A = 2a+ 1−λ
2 , there is a spectral

sequence with E1 page equal to ĤFK (P̃ )⊗ V ⊗W ⊗ F[θ, θ−1] and E∞ page equal to 0.

where V and W are bigraded two dimensional vector spaces over F and λ = lk(P̃ , Ã) = lk(P,A).

Every page of this spectral sequence is an invariant of (P̃ , τ).

The spectral sequences of Theorems 1.1, 1.2 and 1.5 are constructed via the following procedure:

(1) Construct a τ -equivariant Heegaard diagram H̃ for the symmetric knot.

(2) Identify the fixed point sets of the symmetric product and tori associated to H̃ with the

symplectic manifold associated to Heegaard data H = H̃/τ for the quotient.
(3) In this setting verify the symplectic hypotheses for a localization isomorphism in Z/2Z-

equivariant Floer homology are met.

In Hendricks’ work the result used for (3) is Seidel-Smith’s localization isomorphism [SS10],
and in this paper we make use of Large’s more general localization isomorphism [Lar19]. The
equivariant Heegaard diagrams constructed in [Hen15] have underlying surface S2 and multiple
basepoints because this is the setting in which one of the restrictive hypotheses required by Seidel-
Smith’s localization theorem – the existence of a stable normal trivialization – can be met. The
flexibility afforded by the analogous weaker hypothesis in Large’s localization theorem – a stable
tangent normal isomorphism – allows us to make use of higher genus equivariant Heegaard diagrams
with minimal basepoints. This is of particular relevance in Theorem 1.1, because an equivariant
Heegaard diagram for a DSI with more than 2 basepoints induces a spectral sequence that abuts to
0. For the benefit of the expert reader, we include an example of the symmetric Heegaard diagrams
associated to an intravergent diagram for 3+1 and S1

b (3
+
1 ) in Figures 3 and 4. For the definition of

Snb (K̃) we refer the reader to Definition 2.14. The Heegaard diagram for S1
b (3

+
1 ) induces a spectral

sequence that is identical to the one from Theorem 1.2 besides an Alexander grading shift; it is
used as the illustrating example in this paper instead of a Heegaard diagram for Sb(3

+
1 ) because it

is simple.

Organization. This paper is organized as follows. In Section 2 we recall background on strongly
invertible knots and singular links. Section 3 is background on Heegaard Floer homology, link Floer
homology and singular link Floer homology. In Section 4.2 we introduce Large’s localization iso-
morphism and use it to prove Theorems 1.1 and 1.2, deferring the verification of Large’s hypotheses
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Figure 4. Left: A symmetric Heegaard diagram for 3+1 . Right: A symmetric
Heegaard diagram for S1

b (3
+
1 ).

to later Sections. Section 5 contains examples of Theorems 1.1 and 1.2 along with a computation
of sτ for all Floer δ−thin and L-space strongly invertible knots. We study the homotopy type and
cohomology of the symmetric product of punctured surfaces in Section 6. Section 7 contains a
proof of the existence of a stable tangent normal isomorphism of the polarization data associated
to the fixed point sets of τ . Appendix A is an exposition of a grid diagram based proof of the skein
exact triangle for singular knot Floer homology, and an explanation of how this proof pins down
absolute Alexander gradings for singular knot Floer homology.

Acknowledgments. The author would like to thank Kristen Hendricks for suggesting this project
and providing guidance and support throughout. The author is also grateful to Akram Alishahi,
Anna Antal, Keegan Boyle, Jen Hom, Tye Lidman, Robert Lipshitz, Abhishek Mallick, Danielle
O’Donnol and Sriram Raghunath for helpful conversations.

2. Topological preliminaries

In this Section we recall basics about strongly invertible knots and singular links.

2.1. Strongly invertible knots.

Definition 2.1. A knot K̃ ⊂ S3 is strongly invertible if there is an order 2 orientation preserving

diffeomorphism τ : (S3, K̃) → (S3, K̃) that reverses the orientation on K̃. The fixed point set of τ

is an unknotted circle called the axis of symmetry that intersects K̃ in exactly two points denoted
by

Ã := {x ∈ S3|τ(x) = x}.
The two points of Fix(τ) ∩ K̃ separate Ã into two pieces Ã = Ã′ ∪ Ã′′ called half-axes. The pair

(K̃, τ) along with the choice of an oriented half axis, without loss of generality say Ã′, is called a
directed strongly invertible knot (DSI). Say that q : S3 → S3/τ ∼= S3 is the quotient map induced

by τ . Defining A := q(Ã), and A′ = q(Ã′), we see that q(K̃) is a (knotted) arc whose endpoints lie

on the unknotted axis A ⊂ S3. The quotient knot K of a DSI (K̃, τ, Ã′) is the union of the knotted

arc and the chosen half axis; K := q(K̃) ∪A′.

It is useful to have diagrams for strongly invertible knots that display their symmetry.
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Definition 2.2. [BI22, Definition 3.3] Let (K̃, τ) be a strongly invertible knot. A knot diagram

for K̃ is

(1) transvergent if τ acts as rotation around an axis contained in the diagram, and
(2) intravergent if τ acts as rotation around an axis perpindicular to the plane of the diagram.

Remark 2.3. Every strongly invertible knot admits both transvergent and intravergent diagrams.
An intravergent diagram for a strongly invertible knot distinguishes a half-axis, namely the one
that lies between the over and under strands of the central crossing.

The primary example that we use to illustrate our constructions is the directed strong inversion

on the left-handed trefoil K̃ = 3+1 , depicted as a transvergent symmetry (rotation about the short
red vertical half axis) in Figure 1, and as an intravergent symmetry in 5. Notice that this DSI has
an unknotted quotient, K = 01.

Definition 2.4. Strongly invertible knots (K̃0, τ0) and (K̃1, τ1) are equivariantly isotopic or equiv-

alent if there is an orientation preserving diffeomorphism ϕ : S3 → S3 such that ϕ(K̃0) = K̃1 and

ϕ ◦ τ0 = τ1 ◦ ϕ. If K̃0 and K̃1 are directed with oriented half axes Ã0
′
and Ã1

′
they are equivalent

as DSIs if ϕ(Ã0
′
) = Ã1

′
and ϕ preserves the chosen orientations on the half axes.

Remark 2.5. The data of a DSI consists of the knot K̃ along with the involution τ and the choice

of oriented half axis Ã′. Indeed, the quotient knot of a directed strong inversion depends on the
choice of half axis; for example the strong inversion on the trefoil yields quotient knots equal to the
unknot or the trefoil depending on the choice of half axis as seen in Figure 1. However, once we fix

a DSI (K̃, τ, Ã′), we abuse notation and refer to K̃ as the DSI.

See the left hand side of Figure 1 for a transvergent diagram for the unique strong inversion on
the trefoil, and the left hand side of Figure 5 for an intravergent diagram for the directed strong
inversion on the trefoil 3+1 .

Figure 5. Left: An intravergent diagram for 3+1 . Right: The quotient unknot of
3+1 .

There is a family of two component 2-periodic links naturally associated to a DSI. The definition

of Lb(K̃) is given in [BI22, Section 1]. This definition is generalized to construct Lnb (K̃) for integer
values of n in [Pri23, Definition 1.8].

Definition 2.6. [BI22][Pri23] The n-butterfly link Lnb (K̃) of a DSI K̃ is the two component 2-

periodic link with linking number n constructed by performing an equivariant band move on K̃

along a band containing the chosen half axis. The 0-butterfly link is the butterfly link of K̃ and is

denoted Lb(K̃) := L0
b(K̃) .
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See the left hand side of Figure 2 for an illustration of the butterfly link Lb(3
+
1 ) or part (2) of

Figure 6 for an illustration of the 1-butterfly link L1
b(3

+
1 ).

Definition 2.7. The axis linking number l̃k(K̃) is the linking number of either component of Lb(K̃)

with the symmetry axis Ã.

We will need the following extension of the definition of Lnb (K̃) to half integer values of n.

Definition 2.8. Given n ∈ Z and c a negative crossing in the equivariant band used to construct

Lnb (K̃) in Definition 2.6, then L
n+ 1

2
b (K̃) is the oriented resolution (Lnb (K̃))0 (c.f Figure 10) at c. If

c is instead a positive crossing then (Lnb (K̃))0 =: L
n− 1

2
b (K̃).

See part (4) of Figure 6 for an example of this construction with K̃ = 3+1 and n = 3
2 . The quotient

knot of Lnb (K̃), considered as a doubly periodic link, for each value n is the same quotient knot K

of the DSI K̃. For integer values of m, the linking number of Lmb (K̃) with the symmetry axis Ã is

lk(Lmb (K̃), Ã) = l̃k(K̃) +m, and the linking number of L
m+ 1

2
b (K̃) with the Ã is given by

(2.1) lk(L
m+ 1

2
b (K̃), Ã) =

{
2(l̃k(K̃) +m)− 1 if l̃k(K̃) +m > 0

2(l̃k(K̃) +m) + 1 if l̃k(K̃) +m < 0
.

1 2 3 4

5 6 7 8

Figure 6. (1) A transvergent diagram showing the strong inversion on left handed
trefoil 31. The symmetry axis is split into two halves corresponding to the DSIs 3+1
in red and 3−1 in blue. (2) A transvergent diagram for L1

b(3
+
1 ), the positive Hopf

link. (3) A transvergent diagram for the singular link S1
b (3

+
1 ), as in Definition 2.14,

obtained from singularizing L1
b(3

+
1 ). (4) A transvergent diagram for L

3
2
b (3

+
1 ), the

unknot. Diagrams (5)-(8) display intravergent perspectives of (1)-(4) respectively.
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2.2. Singular links. Because of the natural relationship of DSIs and trivalent graphs or equiva-
lently singular knots via appending the distinguished half axis, we will also be interested in a family

of singular links Snb (K̃).

Definition 2.9. An oriented singular link is an immersion K : ∪ki=1S
1 ↪→ S3 with transverse

double point singularities. Oriented singular links K and K ′ are equivalent as oriented singular
links if there is an orientation preserving homeomorphism h : (S3,K) → (S3,K ′) that preserves a
small rigid disk separating the incoming and outgoing strands at each singularity.

Definition 2.10 ([HO17]). An oriented spatial graph is an orientation preserving embedding f of
a directed graph G in S3,

f : G→ S3.

A transverse spatial graph is an oriented spatial graph such that there is a small disk D ⊂ S3 that
separates the incoming edges and the outgoing edges for each vertex. Two transverse spatial graphs
are equivalent if there is an ambient isotopy between them.

We associate a transverse spatial graph to a singular knot K by taking the vertex set V to be the
transverse double point singularities of K and the oriented edges to be the connected components
of K − V . Considering oriented singular links up to the weaker equivalence relation ′̃ that K and
K ′ are ′̃-equivalent if there is an orientation preserving homeomorphism h : (S3,K) → (S3,K ′),

then K and K ′ are ′̃-equivalent iff their associated transverse spatial graphs are equivalent.

Definition 2.11. If f : G→ S3 is a transverse spatial graph, then a diagram for f is a projection
D : S3 → S2 such that if x ∈ f(G), then D−1(D(x)) contains one or two points, and if it contains
two points then neither is a vertex of f . Diagrams are similarly defined for oriented singular links,
replacing vertex with transverse double point singularity.

Let D be a diagram for a link, and let c be a positive or negative crossing in D. Below we describe
two different singular links obtained by replacing the crossing c with a singularity. The first, Sc(D),
is the singularization of D at c, and the second, ISc(D), is the intravergent singularization of D at
c.

Definition 2.12. The singularization of D at c is the diagram Sc(D) obtained by performing the
local modification seen in Figure 7 at c.

Figure 7. Singularizing a positive or negative crossing

Definition 2.13. The intravergent singularization of D at c is the diagram ISc(D) obtained by
performing the local modification seen in Figure 8 followed by orientations changes on the rest of
D that are forced by the new orientations at c.

It is worth emphasizing the diagrammatic difference between the singularization and intraver-
gent singularization of a crossing. A transverse double point singularity has two incoming and
two outgoing strands. In a singularization, the singularity is presented so that the plane of the
diagram is transverse to a disk separating the incoming and outgoing arrows. In an intravergent
singularization, the singularity is presented with the separating disk in the plane of the diagram.

We are now ready to give the definition of the singularized n-butterfly link Snb (K̃).
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Figure 8. Intravergent singularization of a positive (left) or negative (right) cross-
ing.

Definition 2.14. Let D̃ be a transvergent diagram for a DSI K̃, D̃n
b be the diagram for Lnb (K̃)

obtained by surgering in an equivariant band in D̃, and c be a crossing in that band. Then the

singularlized n-butterfly link of K̃ is the singular link Snb (K̃) represented by the diagram Sc(L
n
b (K̃)).

The singular butterfly link of K̃, denoted Sb(K̃), is the singularized 0-butterfly link S0
b (K̃).

In Figure 2 the butterfly link Lb(3
+
1 ) and the singular butterfly link Sb(3

+
1 ) are depicted.

Remark 2.15. There is a set of Reidemeister moves for singular link diagrams, analogous to
the Reidemeister moves for classical link diagrams. An application of the move labeled Ω5a in

[BEHY18, Figure 2] shows that Snb (K̃) is independent of the choice crossing c in a diagram for the

equivariant band of Lnb (K̃), and the other Reidemeister moves guarantee that Snb (K̃) is independent

of chosen The Reidemeister move RV in [HO17, Figure 4] further shows that the transverse spatial

graph equivalence class of Snb (K̃) is independent of n.

It will be helpful to explain how we can obtain a diagram for Snb (K̃) from an intravergent diagram

D̃ for K̃: we apply an intravergent singularization as in Definition 2.13 to the central crossing c of

D̃ to obtain a diagram ISc(D̃) for Snb (K̃).

Remark 2.16. The value of n will depend on the intravergent diagram D̃ that we choose. From here

on out, we will label intravergent diagrams with a subscript n: if D̃n is an intravergent diagram

for K̃ with central crossing c, then ISc(D̃n) is a diagram for Snb (K̃). If one applies the equivariant

Reidemeister move illustrated in [LS22, Figure 4.1] to the central crossing of a diagram D̃n, this
has the effect of shifting n by a half integer.

Associated to an intravergent diagram D̃n of K̃ is a singular skein triple consisting of Snb (K̃) and

two 2-periodic resolutions as shown in Figure 9. If the central crossing of D̃n is positive this is called

Figure 9. A singular skein triple from the intravergent perspective.

a positive singular skein triple, and we denote these 2-periodic resolutions as Snb (K̃)+ = Lnb (K̃) and

Snb (K̃)0 = L
n− 1

2
b (K̃). If the central crossing of D̃ is negative this is called a negative singular skein

triple, and we denote these 2-periodic resolutions as Snb (K̃)0 = L
n+ 1

2
b (K̃) and Snb (K̃)− = Lnb (K̃).

These labeling conventions come from looking at Figure 9 from the transvergent perspective; this
is illustrated in case of 3+1 in Figure 6.
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3. Heegaard Floer homology

In Sections 3.1 and 3.2 we give brief reviews of Heegaard Floer homology and link Floer homology,
mainly to set up notation. The original references for this standard material are [OS04c, OS04b,
OS08b, Ras03]. In Subsection 3.3 we review singular link Floer homology and grid homology

[OSS09, OS09, OSS15]. Equivariant Heegaard diagrams for K̃, Lnb (K̃) and Snb (K̃) are constructed
in Section 3.5.

3.1. Heegaard Floer homology. Let X be a integer homology 3-sphere. A Heegaard splitting
of X is a decomposition X = Uα ∪Σg Uβ into two genus g handlebodies glued along their common
boundary Σg. The handlebodies Uα and Uβ are specified by systems of attaching curves α =
{α1, . . . , αg+n−1} and β = {β1, . . . , βg+n−1} on Σg. Given n basepoints w = {w1, . . . , wn} ⊂ Σg
such that each connected component of Σg − α and Σg − β contains exactly one wi, the data
H = (Σg,α,β,w) defines an n−pointed Heegaard diagram for X. The α and β curves define
two Lagrangians Tα := α1 × . . .× αg+n−1 and Tβ := β1 × . . .× βg+n−1 in the symplectic manifold

(Symg+n−1(Σg\w), ωα,β) where ωα,β is a symplectic form which agrees with the product symplectic
form away from the fat diagonal of the symmetric product as constructed in [Per08]. Then the
Heegaard Floer homology of the diagram H is the Lagrangian Floer homology

(3.1) H̃F (H) := HF (Tα,Tβ)

of (Tα,Tβ) computed in Symg+n−1(Σg\w). Heegaard Floer homology admits a Z-valued homolog-
ical (or Maslov) grading which we denote by M :

(3.2) H̃F (H) =
⊕
M∈Z

H̃FM (H)

The version of Heegaard Floer homology defined above is not quite a three manifold invariant as
it depends on the number of basepoints; if H′ is a k-pointed Heegaard diagram for X and H is a
singly pointed Heegaard diagram for X then

(3.3) H̃F (H′) ∼= H̃F (H)⊗ (F⊕ F(−1))
⊗(k−1).

where F⊕ F(−1) is the two dimensional vector space with generators in Maslov gradings 0 and −1.

The isomorphism class of the homology H̃F (H) is independent of the choice of diagram H for X,

and hence is a three manifold invariant denoted ĤF (X).

3.2. Link Floer homology. Next we discuss a link invariant due to Ozsváth, Szabó and inde-
pendently Rasmussen called link Floer homology, whose definition closely mirrors that of Heegaard
Floer homology [OS08a, Ras03]. Given an ℓ-component link L ⊂ S3, a 2n-pointed Heegaard diagram
for L is a quintuple

H = (Σg,α = {α1, . . . , αg+n−1},β = {β1, . . . , βg+n−1},w = {w1, . . . , wn}, z = {z1, . . . , zn})

such that

• The quadruples (Σg,α,β,w) and (Σg,α,β, z) are n-pointed Heegaard diagrams for S3.

• The union of arcs ξi connecting each wi to a zj on Σg − ∪g+n−1
i=1 αi that are then slightly

pushed into the handlebody specified by α and arcs ζi connecting each zj to a wi on

Σg −∪g+n−1
i=1 βi that are then slightly pushed into the handlebody specified by α yields the

link L: that is,
⋃
i ξi ∪ ζi = L.
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Then the link Floer homology is

(3.4) H̃FL(H) := HF (Tα,Tβ)

where Tα := α1× . . .×αg+n−1 and Tβ := β1× . . .×βg+n−1, and the right hand side of the Equation

(3.4) is the Lagrangian Floer homology HF (Tα,Tβ) computed inside of Symg+n−1(Σg\(w ∪ z)),
again with respect a suitable symplectic form [Per08]. Link Floer homology decomposes as a direct
sum along two gradings – the Z valued homological/Maslov grading, and the Alexander grading.
Write L = K1 ∪ . . . ∪Kℓ for a decomposition of L into its ℓ connected components. Define

ai :=

{
0 if

∑
j ̸=i lk(Ki,Kj) ≡ 0 (mod 2)

1
2 if

∑
j ̸=i lk(Ki,Kj) ≡ 1 (mod 2)

and a :=
∑ℓ

i=1 ai. Then the Alexander grading takes values in Z+ a.

Remark 3.1. In some variations the Alexander grading of a multi-component link is a multi-grading,
but we use the collapsed version of this grading defined by adding up all of the multi-gradings.

Link Floer homology in Maslov and Alexander gradings (M,A) is denoted H̃FLM (H, A):

(3.5) H̃FL(H) =
⊕

(M,A)∈Z⊕(Z+a)

H̃FLM (H, A).

This version of link Floer homology depends on the number basepoints; if we let V := F(0,0) ⊕
F(−1,−1) be the two dimensional vector space with generators in gradings (0, 0) and (−1,−1), H′

be a 2k-pointed Heegaard diagram for L for some k ≥ ℓ, and H be a 2ℓ pointed Heegaard diagram
for L, then

(3.6) H̃FL(H′) ∼= H̃FL(H)⊗ V ⊗(k−ℓ).

The isomorphism class of the homology H̃FL(H) is independent of the choice of 2ℓ pointed diagram

H for L, and hence is a link invariant denoted ĤFL(L). We recall the relationship of link Floer

homology and the Alexander polynomial ∆L(t) ∈ Z[t
1
2 , t−

1
2 ] defined by normalization on the unknot

U

(3.7) ∆U (t) = 1

and the skein relation

(3.8) ∆L+(t)−∆L−(t) = (t
1
2 − t−

1
2 )∆L0(t)

where L+, L− and L0 are as in Figure 10.

Figure 10. L+, L− and L0.

An important property of link Floer homology is that it recovers the Alexander polynomial as
its bigraded Euler characteristic [OSS15, Proposition 8.2.10]:

(3.9) χ(ĤFL(L)) :=
∑
d,s

tsdim(ĤFLd(L, s)) = ∆L(t) · (t
1
2 − t−

1
2 )ℓ−1.
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3.3. Singular link Floer homology. In [OSS09] and [OS09], a variant of Heegaard Floer homol-
ogy is established for singular links. Here we review this construction. In this Section a singular
link will refer to a singular link with exactly one transverse double point singularity and one com-
ponent. The conventions and equations for singular link Floer homology described below reflect
this specialization, but can be easily generalized at the cost of additional notation.

Remark 3.2. We follow the basepoint conventions of [OS09] for singular link Floer homology with
the understanding that our w basepoints are their O basepoints and our z basepoints are their X
basepoints.

Definition 3.3. A multipointed Heegaard diagram for a singular link S is a quintuple
(3.10)
H = (Σg,α = {α1, . . . , αg+n−1},β = {β1, . . . , βg+n−1},w = {w1, . . . , wn+1}, z = {z∗1 , z2, . . . , zn})

such that

• The sets of attaching curves α and β specify a handlebody decomposition of S3.
• In each region R of Σg−∪g+n−1

i=1 αi or Σg−∪g+n−1
i=1 βi, |R∩z| = 1 and either z∗1 ̸∈ R∩z and

|R ∩w| = 1, or z∗1 ∈ R ∩ z and |R ∩w| = 2.

• If one connects w’s to z’s by arcs ξi on Σg−∪g+n−1
i=1 αi that are then slightly pushed into the

α handlebody, and connects z’s to w’s by arcs ζi on Σg − ∪g+n−1
i=1 βi that are then slightly

pushed into the β handlebody, then the union of the ξ and ζi recovers the singular link S:

(
⋃
ξi) ∪ (

⋃
ζi) = S.

Then the singular link Floer homology of H is the Lagrangian intersection Floer homology

(3.11) H̃FK(H) := HF (Tα,Tβ)

where Tα := α1 × . . . × αg+n−1, Tβ := β1 × . . . × βg+n−1 ⊂ Symg+n−1(Σg\(w ∪ z)) and the

ambient symplectic manifold is Symg+n−1(Σg\(w ∪ z)) equipped with an appropriate symplectic
form [Per08]. Singular link Floer homology also decomposes as a bigraded sum on a Maslov
(homological) and Alexander grading:

(3.12) H̃FK(H) =
⊕

(d,s)∈Z⊕(Z+a)

H̃FKd(H, s)

where a = 1
2 if resolving the singularity of S yields a 2 component link and a = 0 if desingularizing

S yields a knot; refer to Figure 7 for a reminder of what is meant by (de)singularization. Singular
link Floer homology again depends on the number of basepoints. If H′ is a Heegaard diagram for
S with |z| = |w| − 1 = k then and H is a Heegaard diagram for S with |z| = |w| − 1 = 1 then

(3.13) H̃FK(H′) ∼= H̃FK(H)⊗ V ⊗(k−1)

where V = F(0,0) ⊕ F(−1,−1) is as in the last Section. The homology H̃FK(H) is independent of
choice of triply pointed Heegaard diagram for S, and hence is a singular link invariant denoted

ĤFK(S). Singular links also have Alexander polynomials, characterized by either of the skein
relations

(3.14) ∆S+(t) = ∆S(t) + t
1
2∆S0(t)

or

(3.15) ∆S−(t) = ∆S(t) + t−
1
2∆S0(t)
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where S, S−, S+ and S0 are as in Figure 11. The Alexander polynomials of S+, S− and S0 are
inductively defined, as each of these potentially singular links will have one fewer singularity than
S.

Figure 11. S, S−, S+ and S0.

Singular link Floer homology recovers the Alexander polynomial of a singular link as its bi-graded
Euler characteristic [OSS09, Theorem 1.1]:

(3.16) χ(ĤFK(S)) =
∑
d,s

tsdim(ĤFK(S), s) = ∆S(t).

In direct analogy to the skein triangle of link Floer homology of [OS04b, Section 8] which categorifies
the skein relation Equation (3.8) , there are singular skein exact triangles that recover the singular
skein relations Equations (3.14) and (3.15) upon taking bi-graded Euler characteristics.

Proposition 3.4. [OS09, Theorem 4.1] Let (S, S0, S+) be a positive singular skein triple. Then for
m sufficiently large there is an exact triangle

(3.17)

ĤFK (S0)⊗ V ⊗m ĤFK (S+)⊗ V ⊗(m−1)

ĤFK(S)⊗ V ⊗m

Similarly, if (S, S0, S−) is a negative singular skein triple, then for m sufficiently large there is an
exact triangle

(3.18)

ĤFK (S−)⊗ V ⊗(m−1) ĤFK (S0)⊗ V ⊗m

ĤFK(S)⊗ V ⊗m

Proof. The proof is very similar to the ordinary link Floer homology case and may be found in the
Appendix. □

3.4. Grid homology. Link Floer homology has a combinatorial reformulation, called grid homol-
ogy. We give a lightning review of grid homology here; for more details the reader is referred to
[OSS15]. Grid homology is used in the proof of Proposition 3.4 given in Appendix and in the
construction of the spherical grid diagrams of Section 3.5.

A grid diagram G for a possibly singular link L is a Heegaard diagram on the torus with m =
|α| = |β|. Traditionally these diagrams are drawn on an m × m grid with sides identified, and
the α (respectively β) curves are the horizontal (respectively vertical) rulings of this grid. The
basepoints w = {w1, . . . , wa} are instead written as O = {O1, . . . , Oa} markings, and similarly the
basepoints z are written as X = {X1, . . . , Xn} markings, with z∗1 written instead as XX in the
case that L is singular. Recall that a = n+ 1 if L is singular and a = n otherwise. See Figures 14
and 15 for examples of grid diagrams. A grid diagram is an example of a nice diagram, meaning
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that all of the elementary regions that don’t contain a basepoint are rectangles or bigons. One can
compute the differential of the Floer chain complex associated to a nice Heegaard diagram purely
combinatorially by work of Sarkar and Wang [SW10]. This incarnation of link Floer homology
was elaborated by Manolescu, Ozsváth and Szabó so that many features of link Floer homology
have explicit formulas in terms of combinatorics of the grid diagram G. In particular, there are
formulas for the Alexander and Maslov grading of grid homology generators in the case that L is
non-singular as follows. Let xNWO and xNWX denote the grid states obtained by marking the top
left corner of each box containing an O or X respectively. Notice that xNWO is only a valid grid
state if L is non-singular. Define functions MO,MX : S(G) → Z by setting

(3.19) MO(x
NWO) =MX(x

NWX) = 0

,

(3.20) MO(x)−MO(y) = 1− 2|r ∩O|+ 2|x ∩ Int(r)|
and

(3.21) MX(x)−MX(y) = 1− 2|r ∩ X|+ 2|x ∩ Int(r)|
where x and y are grid states that differ at exactly two points and r ∈ Rect(x, y) is any rectangle
with bottom left and top right corners in x, and bottom right and top left corners in y. Then the
Maslov grading M(x) is given by

(3.22) M(x) :=MO(x)

and if L has ℓ components, the Alexander grading A(x) is given by

(3.23) A(x) :=
1

2
(MO(x)−MX(x))−

m− ℓ

2
.

Consider an m×m grid diagram G for a knot C with a distinguished negative crossing c that is
represented in G by the local picture on the left hand side of Figure 12. Marking the empty square
in the center of the distinguished crossing of G with an XX and relabeling half of the X ′s and O′s
of G as forced by the local picture on the right hand side of Figure 12, we obtain a diagram GS for
S = ISc(C), the intravergent singularization of C at c (cf. Definition 2.13). Performing the local
modifications in Figure 13 to GS yields (m+1)× (m+1) grid diagrams G− and G0 for S− and S0
respectively. This is illustrated in the case of the trefoil in Figures 14 and 15.

Remark 3.5. The reasons we start with C and G instead of S and GS are twofold. Firstly, by
specifying that S arises from an intravergent singularization performed at a negative crossing, it is
automatically determined that the two “resolutions” of S shown in Figure 13 are in fact S− and

S0 (rather than S0 and S+). Secondly, this is the situation relevant in this paper with C = K̃ and

S = Snb (K̃).

3.5. Equivariant Heegaard diagrams for strongly invertible knots. Let D̃n be a 2g − 1

crossing intravergent diagram, as in Definition 2.2 and Remark 2.16, for a DSI K̃. Assume for

simplicity that D̃n has negative central crossing. Let G be an (2k + 1) × (2k + 1) τ -equivariant

planar grid realization of D̃n with associated grid diagrams GS , G0 and G− for Snb (K̃), L
n+ 1

2
b (K̃)

and Lnb (K̃). Recall that performing an intravergent singularization at the central crossing c of D̃n

yields a diagram ISc(D̃n) of S
n
b (K̃). In this Section we construct the following Heegaard diagrams.

(1) A doubly pointed genus 2g diagram H̃(D̃n) for K̃.

(2) A triply pointed genus 2g diagram H̃S(D̃n) for S
n
b (K̃).
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X

O

X

O O

O

XX

O

O

Figure 12. Left: The grid diagram G for C at the distinguished negative crossing
c. Right: The modification to move from G to a grid diagram GS for ISc(C).

O X

O

O

X O

O

X

O

O

X

O

Figure 13. Left: Local modifications to move from GS to a diagram G− for S−.
Right: Local modifications to move from GS to a diagram G0 for S0.

X

O

O

X

O

X

O

X

X

O

X

O

X

O

O

XX

O

O

X

O

X

Figure 14. Left: A grid diagram G for an intravergent picture of 3+1 . Right: A
grid diagram GS for S1

b (3
+
1 ) formed from G by marking the center square with an

XX and swapping the labeling of half of the existing X’s and O′s.

(3) A multi-pointed genus 0 diagram Gsphere
S for Snb (K̃).

(4) For ∗ = 0,−, multipointed genus 0 diagrams AxGsphere
∗ for Snb (K̃)∗ ∪ Ã. The prefix Ax

stands for axis, as these are diagrams for butterfly links along with their orientation reversed
symmetry axes.

We also describe the quotient diagrams associated to the τ -action.

3.5.1. A doubly pointed Heegaard diagram for a strongly invertible knot. Briefly, the doubly pointed

Heegaard diagram H̃(D̃n) for K̃ is the same as the “pringle chip” Heegaard diagram derived from a
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X

O

X

O X

O

O

X O

X

O

X

X

O

X

O

X

O

O

X

O

X

O

X

Figure 15. Left: The grid diagram G− for the Hopf link L1
b(K̃). Right: The grid

diagram G0 for the unknot L
3
2
b (K̃)

knot diagram in [OS04a, Proposition 12.1] except at the central crossing where we instead use the
placement of basepoints and β curves seen in Figure 16. We now explain this in more detail. Ignore

the crossing data on D̃n to obtain an immersed curve in the plane C with 2g−1 double points. Let

Σ̃ be the boundary of a τ -equivariant regular neighborhood of C in S3. For each of the 2g bounded

regions in the complement of C, put attaching curves α̃ = {α̃1, . . . , α̃2g} on Σ̃. Pick the labels on

the α̃ circles so that τ(α̃i) = α̃g+i for i = 1, . . . , g. Corresponding to the central crossing in D̃n,

in the Heegaard diagram label two meridians for K̃ as β̃1 and β̃g+1, and place two basepoints w̃

and z̃ in such a way that τ(w̃) = z̃ as indicated in Figure 16. Notice that τ(β̃1) = β̃g+1. For each

Figure 16. The placement of β curves for the Heegaard diagram H̃(D̃n) near the
central crossing.

of the non-central 2g − 2 crossings in D̃n, insert a β̃ curve on Σ̃ as shown in Figure 17 labeled as

β̃2, . . . , β̃g, β̃g+2, . . . , β̃2g in such a way that τ(β̃i) = β̃g+i for i = 2, . . . , g. Then we define

H̃(D̃n) := (Σ̃, α̃ = {α̃1, . . . , α̃2g}, β̃ = {β̃1, . . . , β̃2g}, w̃ = {w̃}, z̃ = {z̃}).

An example of a Heegaard diagram thus constructed for D̃n the intravergent diagram (5) of
Figure 6 is shown on the left side of Figure 4.
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Figure 17. The placement of β curves for the Heegaard diagrams H̃(D̃n) and

H̃S(D̃n) near a non-central crossing.

Let Σ be the closed orientable genus g surface obtained by quotienting Σ̃ by τ , and let ℓτ : Σ̃ → Σ

denote the quotient map. Defining z := ℓτ (w̃) = ℓτ (z̃), the restriction of ℓτ to Σ̃\{w̃, z̃} has image

the once punctured genus g surface Σ\{z}. The quotient of H(D̃n) by τ is a genus g singly pointed
Heegaard diagram

H̃(D̃n)/τ := (Σ,α := ℓτ (α̃),β := ℓτ (β̃), z).

For an argument that H̃(D̃n)/τ is a Heegaard diagram for S3 see Remark 3.6.

3.5.2. A triply pointed Heegaard diagram for the singularized n-butterfly link. The first Heegaard

diagram H̃S(D̃n) that we construct for Snb (K̃) will have the same underlying surface Σ̃ and the

same set of α̃ and β̃ curves as the Heegaard diagram H̃(D̃n). The only difference is the number,
placement and labeling of basepoints; near the central singular crossing, we have the corresponding
piece of the Heegaard diagram shown in Figure 18.

Figure 18. The placement of β̃ curves for the Heegaard diagram H̃S(D̃n) near the
central singular crossing.

In summary, we define

H̃S(D̃n) := (Σ̃, α̃ = {α̃1, . . . , α̃2g}, β̃ = {β̃1, . . . , β̃2g}, w̃ = {w̃1, w̃2}, z̃ = {z̃∗1}).
An example of a Heegaard diagram thus constructed for the intravergent diagram (7) of Figure 6

is shown on the right of Figure 4, which we produce again in this Section for the readers convenience.

Remark 3.6. The quotient of H̃S(D̃n) by τ is the doubly pointed Heegaard diagram for the quotient
knotK one would obtain by following the prescription of Proposition 12.1 in [OS04a] for the quotient
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diagram Dn for K. The quotient of H̃(D̃n)/τ is the same quotient Heegaard diagram but with only
one basepoint and hence is a Heegaard diagram for S3.

3.5.3. Spherical grid diagrams. Let G be any m×m grid diagram. We construct the spherical grid
diagram Gsphere in the following way.

• Place (m− 1) α and β curves that intersect in two (m− 2)× (m− 2) grids on the top and
bottom of the sphere.

• The bottom grid contains no markings.
• The top grid is marked with basepoints according to G. More precisely, the markings in
rows and columns 1 and m of G are placed to the left, right, top and bottom of β1, βm−1,
α1 and αm−1 respectively as indicated by the pink shading in Figure 19, and the center

(m− 2)× (m− 2) subgrid of G gets placed in the top (m− 2)× (m− 2) grid of Gsphere
S .

3.5.4. Spherical grid diagrams for links with an axis. In this Subsection ∗ stands for either 0 or −.
Recall the grid diagrams G∗, pictured in the case of 3+1 in Figure 15. Noticing that the grid number
2k + 2 of G∗ is even, let GI

∗, GII
∗ , GIII

∗ and GIV
∗ denote the four quadrants of G∗. To construct

AxGsphere
∗ , place (2k+ 2) α and β curves that interlace in two (2k+ 1)× (2k+ 1) grids on the top

and bottom of the sphere, and decorate these grids as follows. The bottom grid is empty besides
a z marking in the center. The top grid has a w marking in the center, and the remaining grid
formed by removing the central row and column of the top grid is filled in with GI

∗, GII
∗ , GIII

∗ and
GIV

∗ . The result is a Heegaard diagram compatible with the link

Snb (K̃)∗ ∪ Ã =

{
L
n+ 1

2
b (K̃) ∪ Ã when ∗ = 0

Lnb (K̃) ∪ Ã when ∗ = −
.
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Figure 19. The Heegaard diagram Gsphere
S for the singular link consisting of Snb (K̃)

and a separated unknotted component.

Figure 20. The Heegaard diagram AxGsphere
∗ for the link (Snb (K̃))∗ ∪ Ã.
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3.5.5. The action on gradings. The strong inversion τ on K̃ induces Z/2Z actions on the equivariant

Heegaard diagrams H̃(D̃n) and H̃S(D̃n) which in turn induce Z/2Z actions

τ∗ : ĤFK(K̃) → ĤFK(K̃)

and

τ∗ : ĤFK(Snb K̃) → ĤFK(Snb K̃).

Proposition 3.7. The τ∗ action on ĤFK(K̃) has the following properties:

(1) For a homogeneous element x ∈ ĤFK(K̃),

A(τ∗(x)) = −A(x).

(2) If y is a homogeneous τ -equivariant element of ĤFK (K̃) then A(y) = 0.

(3) For a homogeneous element x ∈ ĤFK(K̃) with A(x) = 0,

M(τ∗(x)) =M(x).

Proof. Let x and y be any two homogeneous elements of ĤFK (K̃). Then if ϕ is a Whitney disk
connecting x and y, τ(ϕ) is a Whitney disk connecting τ∗(x) and τ∗(y). Furthermore, since τ

switches the z and w basepoints of H̃(D̃n), we have that

A(x)−A(y) = nz(ϕ)− nw(ϕ) = nw(τ(ϕ))− nz(τ(ϕ)) = A(τ∗(y))−A(τ∗(x))

and therefore

A(x) +A(τ∗(x)) = A(y) +A(τ∗(y)).

ThereforeA(x)+A(τ∗(x)) is a constant independent of the choice of x. The symmetry ĤFK ∗(K̃, A) ∼=
ĤFK (K̃,−A) forces this constant to be equal to 0. The second claim follows immediately from the
first. For the last claim, let y be a τ -equivariant generator, and let ϕ be a Whitney disk from x to
y. Then since A(x) = A(y) = 0,

nz(ϕ) = nw(ϕ) = nz(τ(ϕ)) = nw(τ(ϕ)).

Therefore,

M(x)−M(y) = µ(ϕ)−2nw(ϕ) = µ(τ(ϕ))−2nw(τ(ϕ)) =M(τ∗(x))−M(τ∗(y)) =M(τ∗(x))−M(y)

which proves the third claim. □

We have the analogous proposition for the τ∗ action on ĤFK (Snb (K̃)) which follows because τ

preserves the w and z sets of H̃S(D̃n).

Proposition 3.8. For a homogeneous element x ∈ ĤFK (Snb (K̃)),

A(x) = A(τ∗(x))

and

M(x) =M(τ∗(x)).



22 A. PARIKH

4. Proofs of the main theorems

Section 4.1 lays out hypotheses which, when met, allow for the application of Large’s localiza-
tion theorem for Lagrangian Floer homology, recapped in Theorem 4.4. In Section 4.2, we apply
Theorem 4.4 under the assumption that its technical hypotheses are met to derive Theorems 1.1
and 1.2. Sections 6 and 7 are devoted to demonstrating that the hypotheses of Theorem 4.4 are
met in our setup.

4.1. Polarization data and Large’s localization theorem. The following definitions and the-
orem originate from Section 3.2 of Large’s paper [Lar19].

Definition 4.1. Let (M,L0, L1) be a symplectic manifold equipped with two Lagrangian subman-
ifolds. A set of polarization data for (M,L0, L1) is a triple p = (E,F0, F1) where E ↠ M is a
symplectic vector bundle and Fi is a Lagrangian subbundle of E|Li for i = 0, 1.

Letting C and R denote the trivial dimension 1 complex and real vector bundles overM , we may
stabilize polarization data p = (E,F0, F1) by direct summing with (C,R, iR) to obtain

p⊕ (C,R, iR) := (E ⊕ C, F0 ⊕ R, F1 ⊕ iR).

Definition 4.2. Let p = (E,F0, F1) and p′ = (E′, F ′
0, F

′
1) be two sets of polarization data for

(M,L0, L1). An isomorphism of polarization data is a symplectic vector bundle isomorphism
α : E → E′ such that α(Fi) is homotopic through Lagrangian subbundles to Fp for i = 0, 1.
Equivalently, this is an isomorphism β : π∗E → π∗E′ where π : M × [0, 1] → M is the projec-
tion map onto the first factor and β|Li×i is an isomorphism from Fi → Fp for i = 0, 1. We say

that polarization data p and p′ are stably isomorphic if p⊕ (C,R, iR)⊕k and p′ ⊕ (C,R, iR)⊕k′ are
isomorphic polarization data for some k, k′ ∈ N.

Definition 4.3. Let M be a symplectic manifold equipped with two Lagrangians L0 and L1.
Suppose τ : (M,L0, L1) → (M,L0, L1) is a symplectic involution with τ−invariant sets

(M inv, Linv
0 , Linv

1 ) ⊂ (M,L0, L1).

Define the tangent polarization

(4.1) pT := (TM inv, TLinv
0 , TLinv

1 )

and the normal polarization

(4.2) pN := (NM inv, NLinv
0 , NLinv

1 ).

Then a stable tangent normal isomorphism is a stable isomorphism of the polarization data pT and
pN .

The following theorem is mainly due to Large [Lar19]. The fact that the spectral sequence splits
along components of the path space P (L0, L1) was first observed in [HLL22].

Theorem 4.4. Suppose that

(1) M is an exact symplectic manifold and convex at infinity, and L0, L1 are compact exact
Lagrangians.

(2) There is a symplectic involution τ : (M,L0, L1) → (M,L0, L1) and an associated stable
tangent normal isomorphism from pT to pN .
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Then there is a spectral sequence with E1 page equal to HF (L0, L1) ⊗ F[θ, θ−1] and E∞ page iso-
morphic to HF (Linv

0 , Linv
1 )⊗F[θ, θ−1]. This spectral sequence can be refined as follows. If P (L0, L1)

denotes the space of paths between L0 and L1, ι : P (L
inv
0 , Linv

1 ) ↪→ P (L0, L1) is the inclusion map
and s̃ ∈ π0P (L0, L1) is some component of P (L0, L1) then there is a spectral sequence

(4.3) HF (L0, L1; s̃)⊗F F[θ, θ−1] ⇒
⊕

s∈(ι∗)−1 (̃s)

HF (Linv
0 , Linv

1 ; s)⊗F F[θ, θ−1].

Remark 4.5. The relevance to our paper of the splitting of the spectral sequence over spaces of
paths between Lagrangians is because of the following identifications which allow us to say that
the spectral sequence of Theorem 1.2 splits over Alexander gradings. All of the spaces referenced
below are defined in Section 3.5.

• Given L0 = Tα̃ and L1 = T
β̃
considered as Lagrangians in M = Sym2g(Σ̃\{w̃1, w̃2, z̃

∗}),
π0(P (L0, L1)) is canonically identified with the set Spinc(S3− ν(Snb (K̃)), ∂(S3− ν(Snb (K̃)))

of relative Spinc structures on S3 without a neighborhood of Snb (K̃). There is again a map

sw̃1,w̃2,z̃∗ : Tα̃ ∩ T
β̃
→ Spinc(S3 − ν(Snb (K̃)), ∂(S3 − ν(Snb (K̃)))

but this only a relatively defined map, i.e only the differences sw̃1,w̃2,z̃∗(x) − sw̃1,w̃2,z̃∗(y)
are well defined. This information is, however, enough to determine the relative Alexander
gradings A(x)−A(y) [HO17, Section 6.3].

• Identify the fixed point set

(Sym2g(Σ̃\{w̃1, w̃2, z̃
∗})inv,Tinv

α̃ ,Tinv
α̃ )

with
(Symg(Σ\{z, w}),Tα,Tβ).

This identification is elaborated upon in the proof of Theorem 1.2. Assuming this identifici-
ation, π0(P (L

inv
0 , Linv

1 )) corresponds to π0(P (L
′
0, L

′
1)), which is in turn canonically identified

with the set Spinc(S3−ν(K), ∂(S3−ν(K))). The image sw,z(x) ∈ Spinc(S3−ν(K), ∂(S3−
ν(K))) of a generator x ∈ Tα̃ ∩ T

β̃
determines the Alexander grading A(x).

4.2. Spectral sequences for strongly invertible knots. Let D̃n be a 2g−1 crossing intravergent

diagram for the DSI K̃. Recalling the genus 2g τ -equivariant Heegaard diagrams constructed in
Section 3.5, for ease of notation we set

H̃ := H̃(D̃n) = (Σ̃, α̃, β̃, z̃, w̃) and HS := H̃S(D̃n) = (Σ̃, α̃, β̃, z̃∗1 , {w̃1, w̃2})

for the strongly invertible knot K̃ and the singularized n-butterfly link Snb (K̃) respectively, and we
also set

H := H̃/τ = (Σ,α,β, z) and HS := H̃S/τ = (Σ,α,β, w, z)

for the induced genus g quotient diagrams of S3 and K respectively. The following lemma will be
useful when proving invariance of both spectral sequences.

Lemma 4.6. Let H̃ and H̃′ be τ -equivariant Heegaard diagrams for K̃ with the same number of

basepoints, and which induce intravergent knot diagrams D̃n and D̃′
n. Also let H := H̃/τ and

H′ = H̃′/τ be the induced quotient Heegaard diagrams for S3. Recall from Section 3.5 that qτ
denotes the quotient map Σ̃ ↠ Σ associated to a τ -equivariant Heegaard surface. Then there is a
sequence of Heegaard moves interpolating between H and H′ that avoids basepoints and ℓτ (Fix(τ)).

These Heegaard moves therefore lift to τ -equivariant Heegaard moves interpolating between H̃ and

H̃′.
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Proof. Consider the Heegaard diagrams sH̃ and sH̃′ obtained by

(1) converting H̃ and H̃ ′ into Heegaard diagrams H̃S and H̃ ′
S for Snb (K̃) by adding a new w

basepoint at one of the fixed points of τ and relabeling half of the existing basepoints as
outlined in Section 3.5.

(2) Adding another new w basepoint at the second fixed point of τ .

The diagrams sH = sH̃/τ and sH̃′/τ are Heegaard diagrams for the same singular link. In particu-
lar, sH and sH′ are related by a sequence of Heegaard moves avoiding their basepoints [OSS09, The-
orem 2.4]. The set of basepoints for sH is the same as the set of basepoints for H unioned with
ℓτ (Fix(τ)). □

Remark 4.7. The proof given above also shows that the same sequence of τ -equivariant Heegaard

moves interpolates between H̃S and H̃S
′
.

4.2.1. Proof of Theorem 1.1. We work in the symmetric product

(4.4) M := Sym2g(Σ̃\{z̃, w̃})

equipped with submanifolds

(4.5) L0 := Tα̃ = α̃1 × . . .× α̃2g and L1 := T
β̃
= β̃1 × . . .× β̃2g.

Let τ : (M,L0, L1) → (M,L0, L1) be the involution

(4.6) τ((x1 . . . x2g)) := (τ(x1) . . . τ(x2g)).

The τ on the right hand side of this equation is the involution on the Heegaard surface Σ̃ induced

by the involution τ on (S3, K̃). As explained in Section 3, the work of Perutz shows that M
carries a symplectic form ω′ ∈ Ω2(M) that agrees with the product symplectic form induced by
an area form on Σ\{z} away from the fat diagonal of Symg(Σ\{z}), and with respect to which
L0 and L1 are Lagrangians [Per08]. The techniques of [Hen12, Section 4] – there applied to the
case of symmetric products of multi-punctured spheres corresponding to weakly admissible genus
0 Heegaard diagrams for branched double covers of three manifolds – generalize to show that ω′

can be modified to a τ -equivariant symplectic form ω ∈ Ω2(M) with respect to which M is convex
at infinity and L0 and L1 are still Lagrangians. The proof given in [HLL22, Proposition 4.2] then
shows that there exists a primitive of ω that demonstrates exactness of L0 and L1. These remarks
tell us that (1) of Theorem 4.4 is satisfied for (M,L0, L1, ω, τ). The proof that (2) of Theorem 4.4
is also satisfied in this setup is the subject of Sections 6 and 7. From here, we proceed assuming
that this assumption is satisfied.

In order to better understand the fixed point sets (M inv, Linv
0 , Linv

1 ), we define

(4.7) M ′ = Symg(Σ\{z}),

(4.8) L′
0 := Tα = α1 × . . .× αg and L′

1 := Tβ = β1 × . . .× βg.

Recall the quotient map ℓτ : Σ̃ → Σ defined in Section 3.5. The map ϕ : (M ′, L′
0, L

′
1) →

(M inv, Linv
0 , Linv

1 ) defined by

(4.9) ϕ((ℓτ (x1) . . . ℓτ (xg))) = (x1τ(x1) . . . xgτ(xg))

identifies (M ′, L′
0, L

′
1) with (M inv, Linv

0 , Linv
1 ); specifically, ϕ is a biholomorphic map – see [Hen12, Ap-

pendix 1] for a proof in local charts of this fact. Letting ϕ∗(ω|M inv) be the symplectic form on M ′,
the Lagrangian intersection Floer homologies HF (Linv

0 , Linv
1 ) and HF (L′

0, L
′
1) are isomorphic.
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Applying Theorem 4.4 along with the isomorphisms HF (Linv
0 , Linv

1 ) ∼= HF (L′
0, L

′
1) gives us a

spectral sequence with E1 page equal to

HF (L0, L1)⊗ F[θ, θ−1] = ĤFK (K̃)⊗ F[θ, θ−1]

and E∞ page isomorphic to

HF (L′
0, L

′
1)⊗ F[θ, θ−1] = ĤF (S3)⊗ F[θ, θ−1].

Now we prove that this spectral sequence is independent of the τ -equivariant Heegaard diagram

inducing it, and in particular is independent of the intravergent diagram D̃n for K̃ that we start
with. By [HLS16, Proposition 4.3] along with the identification of Large’s Z/2Z-equivariant Floer
homology with Seidel-Smith’s Z/2Z-equivariant Floer homology, the spectral sequence above is
the same as the spectral sequence induced by CFZ/2(Tα̃,Tβ̃

), the equivariant complex from non-

invariant complex structures defined in Section 3 of [HLS16]. The aforementioned identification
is nicely summarized in the proof of [HLL22, Theorem 2.4]. By Propositions 3.23 and 3.24 of
[HLS16], this spectral sequence is independent of the choices in its construction and is invariant
under equivariant Hamiltonian isotopies of the Lagrangians. Lemma 4.6 shows that the Heegaard

diagrams H̃(D̃n) and H̃(D̃′
n) are related by a sequence of τ -equivariant Heegaard moves. These

moves are realized as equivariant Hamiltonian isotopies in Sym2g(Σg\{w̃, z̃}).
The key observation to reduce the E1 page of this spectral sequence to ĤFK (K, 0) ⊗ F[θ, θ−1]

is that any generator in Alexander grading not equal to 0 must be killed by the d2 differential. In
some more detail, by the invariance proved above we can start with a nice τ -equivariant diagram

for K̃, and the arguments given in [HLS16, Section 5.1] show that for such a diagram the spectral
sequence can be computed from the Leray spectral sequence induced from the vertical filtration of
the double complex

...
...

. . . CF (Tα̃,Tβ̃
) CF (Tα̃,Tβ̃

) . . .

. . . CF (Tα̃,Tβ̃
) CF (Tα̃,Tβ̃

) . . .

...
...

1+τ#

∂

1+τ#

∂

1+τ# 1+τ#

.

In particular, the d2 differential is given by 1 + τ∗ acting on HF (Tα̃,Tβ̃
) = ĤFK (K̃). If x is an

element of ĤFK (K̃) with A(x) ̸= 0, then since A(τ∗(x)) = −A(x) by Proposition 3.7, it must be
the case that x ̸= τ∗(x) and hence if a sum of homology classes x + ... is in the kernel of τ∗, then
τ∗(x) must also appear with a coefficient of 1 in that linear combination. □

From Theorem 1.1 we can define a numerical invariant associated to any strongly invertible knot.

Definition 4.8. Let (K̃, τ) be a strongly invertible knot. The Maslov grading of the Alexander
grading 0 generator that generates the F2 of the E∞ page in the spectral sequence of Theorem 1.1

is an invariant of (K̃, τ) which we denote sτ .
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That sτ thus defined is an invariant of (K̃, τ) follows In a sequel to this paper we hope to return
to the following conjecture along with computations of sτ for non-δ-thin strongly invertible knots.

Conjecture 1. The number sτ is an equivariant concordance invariant.

The most mainstream definition of equivariant concordance is the following:

Definition 4.9. We say that two directed strongly invertible knots (K̃i, τi, hi), i = 0, 1 (where
hi denotes the half-axis), are equivariantly concordant if there exists a smooth properly embedded
annulus C ∼= S1 × [0, 1] ⊂ S3 × [0, 1], invariant with respect to some involution τ of S3 × [0, 1] such
that:

• ∂(S3 × [0, 1], C) = (S3,K0) ∪ −(S3,K1)
• τ is an extension of the strong inversion τi : S

3 × {i} → S3 × {i}
• the orientations of h0 and −h1 induce the same orientation on the annulus Fix(τ), and h0
and h1 are contained in the same component of Fix(τ)\C.

There is a slightly different notion of equivariant concordance where the extension τ is required to
be isotopic to rotation by π along a fixed axis in each slice S3×{t}. Whether these two definitions
of equivariant concordance induce the same equivalence relation on the set of directed strongly
invertible knots is an open question. We expect sτ to be an equivariant concordance invariant with
respect to the second notion, and therefore hope that it may shed some light on the aforementioned
question.

4.2.2. Proof of Theorem 1.2. Now we work in the symmetric product

(4.10) M := Sym2g(Σ̃\{w̃1, w̃2, z̃
∗})

equipped with the same submanifolds

(4.11) L0 := Tα̃ = α̃1 × . . .× α̃2g and L1 := T
β̃
= β̃1 × . . .× β̃2g.

Recall that z̃ = w̃1 and w̃ = w̃2, so that we can think of M as a subset of M . Pulling back the

form ω constructed on M = Sym2g(Σ̃\{w̃, z̃}) to M tells us that (1) of Theorem 4.4 is satisfied for
(M,L0, L1, ω, τ). As mentioned before, the proof that (2) of Theorem 4.4 is also satisfied in this
setup is the subject of Sections 6 and 7, and so we assume for this Section that this assumption is
satisfied.

In order to better understand the fixed point sets (M
inv
, Linv

0 , Linv
1 ), we define

(4.12) M
′
= Symg(Σ\{z, w}),

and define L′
0 and L′

1 as in Equation 4.8.

We again have that the map ϕ : (M
′
, L′

0, L
′
1) → (M

inv
, Linv

0 , Linv
1 ) defined by

(4.13) ϕ((ℓτ (x1) . . . ℓτ (xg))) = (x1τ(x1) . . . xgτ(xg))

is biholomorphic. And, again letting ϕ∗(ω|
M

inv) be the symplectic form on M
′
, the Lagrangian

intersection Floer homologies HF (Linv
0 , Linv

1 ) and HF (L′
0, L

′
1) are isomorphic.

Applying Theorem 4.4 along with the isomorphism HF (Linv
0 , Linv

1 ) ∼= HF (L′
0, L

′
1) gives us a

spectral sequence with E1 page equal to HF (L0, L1) ⊗ F[θ, θ−1] = ĤFK (Snb (K̃)) and E∞ page

isomorphic to HF (L′
0, L

′
1)⊗ F[θ, θ−1] = ĤFK (K)⊗ F[θ, θ−1].

That this spectral sequence is invariant under choice of τ -equivariant Heegaard diagram for

Snb (K̃), and in particular under the choice of the intravergently singularized diagram ISc(D̃n) for
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Snb (K̃), is an identical argument to the invariance proof of the spectral sequence of Theorem 1.1
given in the last Subsection with Remark 4.7 in place of Lemma 4.6.

By the same argument given in [HLS16, Section 5.3], if a τ -equivariant Heegaard diagram for

Snb (K̃) with more basepoints (such as Gsphere
S ) was used to construct a spectral sequence, the

resulting spectral sequence would be the same as the aforementioned spectral sequence arising
from the triply pointed Heegaard diagram tensored with the complex X = {xx, yy, xy, yx} with τ
action τ(xx) = xx, τ(yy) = yy, τ(xy) = yx and τ(yx) = xy. In particular, if we can determine

the relation between the Alexander grading of a τ -equivariant generator for C̃FL(Gsphere
S ) with the

Alexander grading of its projection to a generator in C̃FL(Gsphere
S /τ) this will be the same relation

between the Alexander gradings of a τ -equivariant generator in ĈFK(H̃S(D̃n)) and its projection

to a generator in ĈFK(H̃S(D̃n)/τ).

Consider a τ -equivariant generator x̃ ∈ Gsphere
S and its projection x ∈ Gsphere

S /τ (c.f Section 3.5).
According to Propositions A.6 and A.7 we have the following commutative diagram

C̃FL(Gsphere
S ) C̃FL(AxGsphere

0 , ∂
Ã
)

C̃FL(Gsphere
S /τ) C̃FL(AxGsphere

0 /τ, ∂A)

Φ

− 1
2

π π

P
0

where Φ and P have associated Alexander grading shifts of −1
2 and 0 respectively. The proof of

[Hen15, Theorem 1.3] shows that if λ = lk(L
n+ 1

2
b (K̃), Ã) and A(x̃) = 2a + 1−λ

2 , then A(π(x)) =

a+ 1−λ
2 . The grading shifts associated to Φ and P then tell us that if y is a τ -equivariant generator

in C̃FL(Gsphere
S ) with Alexander grading A(y) = 2a + 2−λ

2 , then A(π(y)) = a + 1−λ
2 . To recover

the grading statement in the statement of Theorem 1.2 in terms of l̃k(K̃), specialize this argument
to n = 0 and apply Equation (2.1). □Theorem 1.2 is demonstrated in the case of 3+1 in Example
5.0.1, 3−1 (the directed strong inversion on the trefoil with trefoil quotient) in Example 5.0.2 and
in the case of 4−1 (the directed strong inversion on the figure 8 knot with cinquefoil quotient) in
Example 5.0.3. In this last example, while we do not compute the full spectral sequence, we argue
that the spectral sequence of Theorem 1.2 has the property that E2 ̸= E∞.

Remark 4.10. The value of n associated to the diagram D̃n only changes the resulting spectral
sequence

ĤFK (Snb (K̃))⊗ F[θ, θ−1] ⇒ ĤFK (K)⊗ F[θ, θ−1]

by an overall shift of Alexander grading. This follows from the fact (c.f Remark 2.15) that the

transverse spatial graph associated to Snb (K̃) is independent of n, and the equivalence (modulo
absolute Alexander gradings) via sutured Floer homology of singular knot Floer homology with the
Heegaard Floer homology of the associated spatial graph. See [HO17, Section 6], [Ali22, Section 2]
for discussions of this equivalence. The effect on Floer homology of applying RV from [HO17, Figure

4] to the singularity of Snb (K̃) to obtain Sn±
1
2 (K̃) is to shift the absolute Alexander grading up or

down by 1
2 by [BW20, Theorem 4.1].

5. Examples

Before analyzing specific examples, we first record some general facts about the behavior of the
spectral sequences of Theorem 1.1 and 1.2. A knot K is said to be Floer δ-thin if the difference
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δ :=M −A between the Maslov and Alexander gradings of any homogeneous element of ĤFK(K)
is a constant δ.We remind the reader that for a Floer δ-thin knot, δ is equal to equivalently (suitably
normalized versions of) the classical knot signature, Ozsvath-Szabo’s concordance homomorphism
τ [OS03], or Manolescu-Owens’ concordance homomorphism δ [MO05]:

δ = −σ(K)

2
= −τ(K)

2
= δ(K).

By a similar token, we will say that a singular knot S is Floer δ-thin if the same condition holds

on ĤFK(S).

Proposition 5.1. If (K̃, τ) is a Floer δ-thin or L-space strongly invertible knot, then E2 = E∞ for
the spectral sequence of Theorem 1.1. Furthermore, in this case the invariant sτ is equal to δ.

Proof. The assumptions that K̃ is Floer δ-thin or L-space both imply that ĤFK (K̃) has exactly
one occupied Maslov grading in Alexander grading 0. Every differential dk for k ≥ 2 does not
preserve the Maslov grading because ∂, the vertical differential, lowers the Maslov grading by one,
and 1 + τ#, the horizontal differential, preserves the Maslov grading by Proposition 3.7. Hence
by the assumption, these higher differentials must be identically 0. The unique occupied Maslov
grading in Alexander grading 0 is clearly δ, and so the generator that survives the spectral sequence
must have Maslov grading δ. □

There is an analogous statement for the spectral sequence of Theorem 1.2 which follows by the
same proof using Proposition 3.8 in place of Proposition 3.7.

Proposition 5.2. If (K̃, τ) is a strongly invertible knot such that Snb (K̃) is Floer δ-thin, then
E2 = E∞ for the spectral sequence of Theorem 1.2.

Remark 5.3. Using Proposition 5.1, computations of ĤFK from [BG07], computations of the
CFK∞ type of non-δ-thin strongly invertible knots from [AP23], and properties of the map τ

K̃
on

CFK∞(K̃) from [DMS22, Theorem 1.7], the author was able to conclude that the spectral sequence
of Theorem 1.1 collapses on the E2 page for all strongly invertible knots with at most 11 crossings.

Despite this, we state the following conjecture:

Conjecture 2. There exists a strongly invertible knot K̃ such that the spectral sequence of Theorem
1.1 collapses on the Ek page for some k ≥ 3.

In the examples below we content ourselves with analyzing the spectral sequence associated to

Snb (K̃) for n associated to any convenient intravergent diagram D̃n of K̃ in light of Remark 4.10;
to obtain the spectral sequence of Theorem 1.2, just perform an overall Alexander grading shift of
n.

5.0.1. The trefoil with unknotted quotient. The spectral sequence of Theorem 1.1 collapses on the

E1 page as dim(ĤFK (31, 0)) = 1 = dim(ĤF (S3)). The singular skein triple associated to S1
b (3

+
1 )

includes the positive Hopf link and the unknot, and completely determines the singular knot Floer
homology of S1

b (3
+
1 ):

ĤFK (S1
b (3

+
1 ))

∼= F(0, 1
2
) ⊕ F2

(−1,− 1
2
)
.

The linking number of (S1
b (3

+
1 ))0 = L

3
2
b (3

+
1 ) = 01 with the reversed symmetry axis is

λ = lk(L
3
2
b (3

+
1 ), Ã) = 1.
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Figure 21. An intravergent diagram D̃3 for 3−1

Therefore, the proof of Theorem 1.2 implies that Alexander grading 2a+2−1
2 = 2a+1

2 of ĤFK (S1
b (3

+
1 ))

gets sent under the spectral sequence to Alexander grading a+ 1−1
2 = a of ĤFK (01) ∼= F(0,0). The

only occupied Alexander grading in the knot Floer homology of the quotient unknot is a = 0 which
corresponds to Alexander grading 2 · 0 + 1

2 = 1
2 in the singular knot Floer homology of S1

b (3
+
1 ).

This tells us that the two generators in grading (−1,−1
2) must be swapped by τ∗ so that the 1+ τ∗

differential on the E1 page kills both of them, and the generator in grading (0, 12) survives the
spectral sequence and gets sent to the non-zero element of the E∞ = E2 page. This can all be seen
explicitly from the Heegaard diagrams of Figure 4 as well.

5.0.2. The trefoil with trefoil quotient. If we consider the same strong inversion on the trefoil but
with the opposite choice of half-axis, we obtain a DSI that we denote 3−1 ; it is pictured in Figure 21.
Notice that 3−1 is a right handed trefoil with quotient equal to a left handed trefoil, while 3+1 was
a left handed trefoil with unknotted quotient. We choose to use the right hand trefoil for 3−1 so as
to have a convenient intravergent diagram with negative central crossing. The spectral sequence of
Theorem 1.1 does not depend on the choice of half axis and will therefore be the same as described

in the last example up to mirroring. The singular skein triple associated to D̃3 consists of S3
b (3

−
1 ),

L3
b(3

−
1 ) = T (2, 6) and L

7
2
b (3

−
1 ) = (31)L#(31)L, where the subscript L’s denote that we are taking a

connect sum of left hand trefoils. The skein exact triangle associated to this triple along with the
Alexander polynomial ∆S3

b (3
−
1 ) completely determine the singular knot Floer homology of S3

b (3
−
1 ) :

ĤFK (S3
b (3

−
1 ))

∼= F(5, 5
2
) ⊕ F(2, 1

2
) ⊕ F2

(1,− 1
2
)
⊕ F(0,− 3

2
).

This singular knot is not Floer δ-thin, but nonetheless we will see that the spectral sequence of

Theorem 1.2 dies on the E2 page. From the diagram obtained by doing a resolution to D̃3 it can

be see that λ = lk(L
7
2
b (3

−
1 ), Ã) = −1 which means that

• Alexander grading 2 · 2 + −1−2
2 = 5

2 of ĤFK (S3
b (3

−
1 )) gets sent to Alexander grading 2 +

−1−1
2 = 1 of ĤFK ((31)L) ∼= F(2,1) ⊕ F(1,0) ⊕ F(0,−1)

• Alexander grading 2 · 1 + −1−2
2 = 3

2 of ĤFK (S3
b (3

−
1 )) gets sent to Alexander grading 1 +

−1−1
2 = 0 of ĤFK ((31)L)

• Alexander grading 2 · 0 + −1−2
2 = 5

2 of ĤFK (S3
b (3

−
1 )) gets sent to Alexander grading 0 +

−1−1
2 = −1 of ĤFK ((31)L)

• Alexander grading 3
2 of ĤFK (S3

b (3
−
1 )) is not of the form 2a + λ−2

2 and hence dies in the
spectral sequence.
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Figure 22. An intravergent diagram D̃n for 4−1

These observations together tell us that three generators in Alexander grading not equal to −1
2 of

of ĤFK (S3
b (3

−
1 )) abut to the generators of the quotient left hand trefoil homology in the spectral

sequence, while the two generators in Alexander grading −1
2 must be swapped by the τ∗ action so

that they cancel each other out in homology on the E2 page.

5.0.3. The figure 8 with cinquefoil quotient. The unique strong inversion on 41 yields quotient knot
equal to the unknot or the cinquefoil 52 depending on which half axis is chosen. Here we analyze
the choice of half axis that yields a 52 quotient, denoted by 4−1 . This is displayed as a transvergent
symmetry in Figure 22. We have no need to determine the number n and so we will leave it as an
abstract label.

While we do not attempt to discern the precise behavior of the spectral sequence of Theorem
1.2 for this DSI, we can argue that E2 ̸= E∞, thus demonstrating an answer in the affirmative to
the analog of Conjecture 2 for Theorem 1.2. The two other members of the negative skein triple

associated to the diagram D̃ are the knot 12n725, found using Miller’s Knotfol.io website [kno],
and the link pictured in Figure 23 which we shall just denote Snb (4

−
1 )0. We used the knot Floer

homology calculations in [BG07] along the formula for the knot Floer homology of a mirror knot

to find ĤFK (12n725), and a modification of the grid homology program from that paper to find

ĤFK (Snb (4
−
1 )0). These computations lead us to the following skein exact triangle:

F(10,5)⊕F2
(9,4)

⊕F(9,3)⊕F(8,3)⊕
F4
(8,2)

⊕F6
(7,1)

⊕F6
(6,0)

⊕F6
(5,−1)

⊕
F4
(4,−2)

⊕F(3,−3)⊕F(2,−3)⊕F2
(1,−4)

⊕F(0,−5)

F(10,5)⊕F2
(9,4)

⊕F(8,3)⊕F(6,2)⊕
F3
(5,1)

⊕F5
(4,0)

⊕F5
(3,−1)

⊕F3
(2,−2)

⊕
F(1,−4)⊕F(1,−3)⊕F2

(0,−5)
⊕F(−1,−6)

(ĤFK (Snb (4
−
1 ))⊗ V )[[0,−1

2 ]]

(0, 0)

(0, 0) (−1, 0)

Observe that F(9,3) ⊕F4
(8,2) necessarily maps to 0 under the top horizontal map since that map has

bidegree (0, 0) and there are not generators in gradings (9, 3) or (8, 2) on the top right. Therefore
F(9,3) ⊕ F4

(8,2) is in the image of the right diagonal arrow of bidegree (0, 0) which implies that

ĤFK (Snb (4
−
1 )) ⊗ V )[[0,−1

2 ]] contains a F(9,3) ⊕ F4
(8,2) direct summand. Notice also that there is

no generator in grading (10, 4) in the top left or in grading (11, 4) in the top right, and hence
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Figure 23. The two component two periodic butterfly link Snb (4
−
1 )0

there is no (10, 4) graded generator in ĤFK (Snb (4
−
1 )) ⊗ V )[[0,−1

2 ]]. This implies that there is a

generator in grading (9, 3) in ĤFK (Snb (4
−
1 ))[[0,−1

2 ]]. Similarly, we see that one of the four F(8,2)

summands in ĤFK (Snb (4
−
1 ))⊗V )[[0,−1

2 ]] comes from the F(9,3)⊗F(−1,−1) tensor product occurring

in ĤFK (Snb (4
−
1 )) ⊗ V )[[0,−1

2 ]], while the other three must belong to ĤFK (Snb (4
−
1 ))[[0,−1

2 ]. We

have shown there is exactly one generator in grading (9, 72) and three generators in grading (8, 52)

in ĤFK (Snb (4
−
1 )). Taking homology under the 1 + τ∗ differential, which preserves both Alexander

and Maslov gradings by Proposition 3.8, must leave an odd (and in particular positive) number of
generators in gradings (9, 72) and (8, 52) on the E2 page. By Theorem 1.2, generators that survive
the spectral sequence must have an even difference in Alexander gradings, and hence not both of
these generators persist to the E∞ page.

6. Geometry of the symmetric product

In analogy to the subspace X = (Linv
0 × {0}) ∪ (Linv

1 × {1}) of M inv × [0, 1] define

(6.1) X ′ := (L′
0 × {0}) ∪ (L′

1 × {1}) ⊂M ′ × [0, 1].

In this Section we analyze the (co)homology of the spaces M ′ × [0, 1], X ′ and M ′ × [0, 1]/X ′. The
goal is to prove the following proposition.

Proposition 6.1. The reduced cohomology H̃∗(M ′× [0, 1]/X ′) is a free abelian group of finite rank.

Let ν1, . . . , ν2g : [0, 1] → Σ\{z} be parameterizations of simple closed curves with the following
properties.

(1) The νi all start at the same point, which we think of as their wedge point:

ν1(0) = ... = ν2g(0).

(2) The νi are disjoint besides at the wedge point: for t1, t2 > 0 and i ̸= j

νi(t1) ̸= νj(t2).

(3) The νi generate the first homology of Σ\{z}:

H1(Σ\{z}) = Z⟨[ν1], . . . , [ν2g]⟩.

(4) The punctured surface Σ\{z} deformation retracts onto the wedge product
∨2g
j=1 νj .
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Taking symmetric products preserves homotopy equivalence, and so M ′ = Symg(Σ\{z}) defor-

mation retracts onto Symg(
∨2g
j=1 νj). The following lemma of Ong, proved in detail in [Hen12],

describes the homotopy type of this space.

Lemma 6.2. [Hen12, Lemma 5.1] The rth symmetric product of a wedge of k circles Symr(
∨k
j=1 S

1
j )

is homotopy equivalent to the r-skeleton of the k torus
∏k
j=1 S

1
j , where each circle is given a CW

structure consisting of the wedge point and a single one-cell, and the torus has the natural product
CW structure.

To understand this homotopy equivalence

F : Symr(

k∨
j=1

S1
j ) → r-skeleton of

k∏
j=1

S1
j ,

define coordinates S1
j = {zj ∈ C||zj | = 1} on each S1

j in such a way that the wedge point of each

S1
j is zj = 1. Then the jth coordinate Fj of the homotopy equivalence F is defined on the tuple

(zj1 . . . zjr) ∈ Symr(
∨k
j=1 S

j
1) by

Fj((zj1 . . . zjr)) :=
∏
ji=j

zji ∈ S1
j .

The image of F is {(z1, . . . , zk)|at most r of the zj ̸= 1} ⊂
∏k
j=1 S

1
i which is indeed the r-skeleton

of
∏k
j=1 S

1
j .

Composing the homotopy equivalence of Lemma 6.2 with the deformation retraction M ′ ≈
Symg(

∨2g
i=1 νi) gives a homotopy equivalence G of M ′ with the g-skeleton of

∏2g
i=1 νi. Define

ν̄i = G−1
∗ ([t→ (1, . . . , νi(t), . . . , 1)]) ∈ H1(M

′).

Then the first homology of M ′ is

(6.2) H1(M
′) = Z⟨ν̄1, ..., ν̄2g⟩.

Applying the Kunneth theorem and the fact that M ′ is homotopy equivalent to the g-skeleton of∏2g
i=1 νi, for m = 1, ..., g the homology group Hm(M

′) is spanned by m-tensors of the ν̄i with no
repeated indices; we will write this as

(6.3) Hm(M
′) ∼= ΛmH1(M) = ΛmZ⟨ν̄1, ..., ν̄2g⟩.

The first homology of M ′ has an alternative description [OS04c, Lemma 2.6]

(6.4) H1(Σ\{z}) ∼= H1(Sym
g(Σ\{z})) = H1(M

′).

The homology classes of the attaching curves

α ∪ β = {α1, ..., αg, β1, ..., βg}
form a basis for H1(Σ\{z}) since they specify a Heegaard decomposition for S3. Let ᾱi and β̄i
denote the images in H1(M

′) of [αi] and [βi] under the isomorphism of Equation 6.4. Explicitly,
letting αi(t) be a parameterization of αi, then ᾱi = [t→ (αi(t)x...x)] where x is any point in Σ\{z}.
We recast Equation (6.3) as

(6.5) Hm(M
′ × [0, 1]) ∼= Hm(M

′) ∼= ΛmZ⟨ᾱ1, ..., ᾱg, β̄1, ..., β̄g⟩ for m = 1, . . . , g,

and

(6.6) Hm(M
′ × [0, 1]) = 0 for m > g.
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Next we consider the homology of the tori L′
0 = Tα = α1 × . . .× αg and L′

1 = Tβ = β1 × . . .× βg.
Choosing basepoints xi on each αi and yi on each βi for i = 1, . . . , g, and defining

α̂i = [t→ (x1 . . . xi−1αi(t)xi+1 . . . xg)] ∈ H1(L
′
0) and(6.7)

β̂i = [t→ (y1 . . . yi−1βi(t)yi+1 . . . yg)] ∈ H1(L
′
1),(6.8)

the homology groups of L′
0 and L′

1 for m = 1, . . . , g are

Hm(L
′
0) = ΛmZ⟨α̂1, . . . , α̂g⟩,(6.9)

Hm(L
′
1) = ΛmZ⟨β̂1, . . . , β̂g⟩,(6.10)

and are zero form > g. Abusing notation, we then write the homology ofX ′ = (L′
0×{0})∪(L′

1×{1})
as

Hm(X
′) = ΛmZ⟨α̂1, . . . , α̂g⟩ ⊕ ΛmZ⟨β̂1, . . . , β̂g⟩ for m = 1, . . . , g and(6.11)

Hm(X
′) = 0 for m > g.(6.12)

Letting I : X ′ ↪→ M ′ × [0, 1] denote the inclusion map (lowercase i is reserved for a different
inclusion map in Section 7), then the homology pushforward

I∗ : Hm(X
′) → Hm(M

′ × [0, 1])

admits the following description:

(6.13) I∗(Λ
m
t=1α̂jt ⊕ Λmt=1β̂j′t) = Λmt=1ᾱjt + Λmt=1β̄j′t

where (j1, ..., jk) and (j′1, ..., j
′
k) are any collection of distinct integers between 1 and g inclusive.

Notice that Λmt=1ᾱjt = Λmt=1ᾱpt if and only if (j1, ..., jt) = (p1, ..., pt), and similarly for wedges of

the β̂i. Since Λ
m
t=1α̂jt ⊕Λmt=1β̂j′t is a generic basis element of Hm(X

′), and Λmt=1ᾱjt , and Λmt=1β̄j′t are

basis elements of H1(M
′ × [0, 1]) we have showed the following.

Lemma 6.3. The homology push-forward map I∗ : Hm(X
′) → Hm(M

′ × [0, 1]) is an injection for
m ≥ 1.

We have also showed thatH∗(X
′) andH∗(M

′×[0, 1]) are free abelian of finite rank becauseX ′ is a
disjoint union of tori andM ′×[0, 1] has the homotopy type of a skeleton of a torus. Every homology
and cohomology group in sight will have finite rank from these observations combined with universal
coefficients and the (co)homology long exact sequence, so from now on we do not mention rank.
From the universal coefficient theorem the cohomology groups H∗(X ′) and H∗(M ′× [0, 1]) are free
abelian as well. These observations tell us that in the commutative square

Hm(M ′ × [0, 1]) Hom(Hm(M
′ × [0, 1]),Z)

Hm(X ′) Hom(Hm(X
′),Z)

I∗ (I∗)T

the horizontal arrows are isomorphisms. The fact that the homology groups are free abelian further
tells us that injectivity of p∗ implies surjectivity of (I∗)

T . Surjectivity of (I∗)
T along with the fact

that the above commutative square has isomorphisms for horizontal arrows yields the following
lemma.

Lemma 6.4. The cohomology pullback map induced by inclusion

I∗ : Hm(M ′ × [0, 1]) → Hm(X ′)

is a surjection for m ≥ 1.
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Lemma 6.4 is of course equivalent to the same statement for reduced cohomology: the map

I∗ : H̃m(M ′ × [0, 1]) → H̃m(X ′) for m ≥ 1 is a surjection.
We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1. In the following we use Q instead of q, again because the lowercase letter
is reserved for Section 7. Surjectivity of I∗ for m ≥ 1 tells us that the cohomology long exact
sequence of the pair (M ′ × [0, 1], X ′)

. . .→ H̃m(M ′ × [0, 1]/X ′)
Q∗
−−→ H̃m(M ′ × [0, 1])

I∗−→ H̃m(X ′)
∂−→ H̃m+1((M ′ × [0, 1]/X ′) → . . .

breaks up into short exact sequences

0 → H̃m(M ′ × [0, 1]/X ′) ↪−→ H̃m(M ′ × [0, 1]) ↠ H̃m(X ′) → 0

for m ≥ 2. So, for m ≥ 2, H̃m(M ′ × [0, 1]/X ′) injects into the free abelian group H̃m(M ′ × [0, 1]),

and hence is free abelian itself. All that is left is to analyze H̃1(M ′ × [0, 1]/X ′). To do this, we
look at the beginning of the cohomology long exact sequence

. . .→ 0 = H̃0(M ′ × [0, 1])
p∗−→ H̃0(X ′)

∂−→ H̃1(M ′ × [0, 1]/X ′)
Q∗
−−→ H̃1(M ′ × [0, 1]) → . . .

and use it to write the short exact sequence

0 → H̃0(X ′) ↪−→ H̃1(M ′ × [0, 1]/X) ↠ im(Q∗) → 0.

Now H̃0(X ′) ∼= Z since X ′ has two connected components, and im(Q∗) is free abelian since it is a

subgroup of H̃m(M ′× [0, 1]). Since the abelian group H̃1(M ′× [0, 1]/X ′) admits a homomorphism
with free kernel and image, it must be free itself. We remind the reader that the finite rank condition
was verified earlier. □

7. Stable tangent normal isomorphism

In order to make use of Theorem 4.4, we need some method of producing stable tangent normal
isomorphisms. If π :M inv × [0, 1] →M inv is the projection map, define

(7.1) EN := π∗(NM inv) = N(M inv)× [0, 1]

(7.2) ET := π∗(TM inv) = T (M inv)× [0, 1]

(7.3) X := (Linv
0 × {0}) ∪ (Linv

1 × {1}) ⊂M inv × [0, 1]

and let J denote the complex structure on M inv. We prove for later convenience the following
proposition which is an analog of a result alluded to in [SS10, Section 3d] and proven in detail in
[Hen12, Proposition 7.1].

Proposition 7.1. Let
fN , fT : (M inv × [0, 1], X) → (BU,BO)

be the classifying maps of the (complex bundle ξ over M inv × [0, 1], real subbundle of ξ|X) pairs

(EN , (N(Linv
0 )× {0}) ∪ (JN(Linv

1 )× {1})) ↠ (M inv, X)

and
(ET , (T (L

inv
0 )× {0}) ∪ (JT (Linv

1 )× {1})) ↠ (M inv, X)

respectively. Then a homotopy between fN and fT implies the existence of a stable tangent normal
isomorphism. That is, to demonstrate a stable tangent normal isomorphism it suffices to produce
a stable complex isomorphism between EN and ET that restricts to a stable real isomorphism of
(N(Linv

0 )× {0}) ∪ (JN(Linv
1 )× {1}) and (T (Linv

0 )× {0}) ∪ (JT (Linv
1 )× {1}) over X.
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The following proof is identical to the one given in Proposition 7.1 of [Hen12] except neces-
sary modifications to talk about a stable tangent normal isomorphism instead of a stable normal
trivialization.

Proof. The structure group of complex vector bundles GL(n,C) deformation retracts onto the
unitary group U(n). The unitary group can be written as an intersection

U(n) = O(2n) ∩ Sp(2n,R) ⊂ GL(n,C)

of the orthogonal and symplectic groups, and hence every complex vector bundle acquires in partic-
ular a symplectic structure. In addition, a symplectic vector bundle has a unique up to homotopy
compatible complex structure. Moreover, two symplectic vector bundles are isomorphic if and only
if their underlying complex vector bundles are isomorphic, and isomorphisms of symplectic vector
bundles map Lagrangian subbundles to Lagrangian subbundles (see McDuff and Salamon [MD95,
Theorem 2.62]). Let ωN and ωT be the natural symplectic structures on N(M inv) and T (M inv)
coming from the symplectic structure on TM . Let the dimension N(M inv) and T (M inv) be k ∈ N,
and let

ζk : EUk → BUk

be the complex k–dimensional universal bundle, and similarly take

ηk : EOk → BOk

to be the real k–dimensional universal bundle. Equip EUk with a symplectic structure ωζ such
that ηk ⊂ ζk is a Lagrangian subbundle. Then the bundles (EN , ω̃M := π∗(ωN )) and (EN , f

∗
N (ωζ))

are equal as complex vector bundles, so there is a symplectic vector bundle isomorphism

χ̃N : (EN , ω̃M ) → (EN , f
∗
N (ωζ)),

Similarly we have a symplectic vector bundle isomorphism

χ̃T : (ET , ω̃T ) → (ET , f
∗
T (ωζ)),

The symplectic forms are the pullbacks of the original symplectic forms on N(M inv) or T (M inv) to
EN or ET , and therefore constant with respect to the interval [0, 1], as are the maps χ̃N and χ̃T .
From now on assume that we have first applied isomorphisms of this form to EN and ET so that
the maps fN : EN → BU and fT : ET → BU are symplectic classifying maps. We can if necessary
pre- and post compose the resulting stable tangent normal isomorphism with χ̃T and χ̃−1

N .
Consider a homotopy H of between fN and fT

H : (M inv × [0, 1], Linv
0 × {0} ∪ Linv

1 × {1})× [0, 1] → (BU,BO)

(x, t, s) 7→ hs(x, t)

Here the map h0 is equal to fN and the map h1 is equal to fT .
Since M inv is homotopy equivalent to a compact subspace of itself, we may assume there is some

K > 0 such that if s = k +K, the image of H lies inside (BUs, BOs). Let ζs : EUs → BUs be the
complex s–dimensional universal bundle with subbundle ηs : EOs → BOs the real s–dimensional
universal bundle. Consider the following pullbacks of ζs and ηs along h1 and h0.

h∗0(ζs) = (EN ⊕ CK , h∗0ωζ)

h∗1(ζs) = (ET ⊕ CK , h∗1ωζ)

(h0|Linv
0 ×{0})

∗(ηs) = ((N(Linv
0 )× {0})⊕ RK

(h0|Linv
1 ×{1})

∗(ηs) = (J(N(Linv
1 )× {1})⊕ RK
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(h1|Linv
0 ×{0})

∗(ηs) = ((T (Linv
0 )× {0})⊕ RK

(h1|Linv
1 ×{1})

∗(ηs) = (J(T (Linv
1 ))× {1})⊕ RK

Here RK is the canonical real subspace in CK .
Since H is a homotopy, it induces a stable isomorphism ψ of EN with ET . Write an arbitrary

vector in EN ⊕CK as (x, t, v) where (x, t) ∈M inv× [0, 1] and v is an element of the fiber over (x, t):

ψ : EN ⊕ CK = h∗0(ζs)
∼−→ h∗1(ζs) = ET ⊕ CK

(x, t, v) 7→ ψ(x, t, v).

The restrictions of ψ to N(Linv
0 )× {0} ⊕ RK and J(N(Linv

1 )× {1})⊕ RK ,

ψ|N(Linv
0 )×{0}⊕RK : ((N(Linv

0 )× {0})⊕ RK) → ((T (Linv
0 )× {0})⊕ RK)

and
ψ|J(N(Linv

1 ))×{1}⊕RK : ((J(N(Linv
1 ))× {1})⊕ RK) → (J(T (Linv

1 )× {1})⊕ RK),

are isomorphisms of trivial real bundles.
Since EN is the pullback of N(M inv) to M inv × [0, 1], the map h0 = fN is constant with respect

to the interval [0, 1]. That is, h0(x, t1) = h0(x, t2) for all x ∈ M inv and t1, t2 ∈ [0, 1]. Then each
ψt = ψ|M inv×{t} is a stable isomorphism ofN(M inv)×{t} = N(M inv) with T (M inv)×{t} = T (M inv).
More concretely, we have symplectic isomorphisms

ψt : N(M inv)⊕ CK → T (M inv)⊕ CK

(x, v) 7→ ψ(x, t, v).

Consider a map ϕ

ϕ : EN ⊕ CK → ET ⊕ CK

(x, t, v) 7→ ψ0((x, v)) = ψ(x, 0, v).

This is a stable isomorphism of EN with ET . Because the symplectic structures on EN and ET
are constant with respect to the interval [0, 1], ϕ is a symplectic isomorphism of vector bundles.
Consider the following Lagrangian subbundles of EN |Linv

0 ×[0,1] and EN |Linv
1 ×[0,1]

Λ0|Linv
0 ×{t} := (N(Linv

0 )× {t})⊕ RK

Λ1|Linv
1 ×{t} := ψ−1

0 ◦ ψt(N(Linv
1 )× {t} ⊕ iRK).

Since the maps ψt form a homotopy, Λ1 is a smooth subbundle. Both subbundles are Lagrangian
since their restriction to each Linv

i ×{t} is Lagrangian. The restriction of Λi to L
inv
i ×{0} for i = 0, 1

is

Λ0|Linv
0 ×{0} = (N(Linv

0 )× {0})⊕ RK(7.4)

Λ1|Linv
1 ×{0} = ψ−1

0 ◦ ψ0((N(Linv
1 )× {0})⊕ iRK) = (N(Linv

1 )× {0})⊕ iRK .(7.5)

Also notice that

ϕ(Λ0|Linv
0 ×{1}) = ψ0((N(Linv

0 )× {0})⊕ RK)(7.6)

= ψ((N(Linv
0 )× {0})⊕ RK)

= T (Linv
0 )⊕ RK ⊂ ET ⊕ CK

ϕ(Λ1|Linv
1 ×{1}) = ψ0(ψ

−1
0 ◦ ψ1((N(Linv

1 )× {1})⊕ iRK)(7.7)
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= ψ1(J(J((N(Linv
1 )× {1})⊕ iRK)))

= J(ψ1(J(N(Linv
1 )× {1})⊕ Rk))

= J(J(T (Linv
1 )× {1})⊕ RK) = (T (Linv

1 )× {1})⊕ i(RK) ⊂ ET ⊕ CK

It follows from Equations (7.4), (7.5), (7.6) and (7.7) that applying ϕ to each slice of these sub-
bundles Λi|Linv

i ×{t} yields homotopies through Lagrangians of ϕ(N(Linv
0 )⊕RK) with T (Linv

0 )⊕RK

and ϕ(N(Linv
1 )⊕ i(RK)) with T (Linv

1 )⊕ i(RK). □

We show that the stable tangent normal isomorphism hypothesis of Theorem 4.4 is met for
(M,L0, L1, τ) defined as in Section 4 by using Proposition 7.1; it will suffice to find a stable
complex isomorphism of EN with ET that restricts to a stable real isomorphism of

(N(Linv
0 )× {0}) ∪ J(N(Linv

1 )× {1})
with

(T (Linv
0 )× {0}) ∪ J(T (Linv

1 )× {1}).
These are trivializable totally real subbundles of EN |X and ET |X respectively; see [Hen12, Lemma
7.3] for a proof. After picking real trivializations, we may tensor with C to obtain complex trivial-
izations

ϕN : EN |X → Ck

and

ϕT : ET |X → Ck.
The composition

f := ϕ−1
T ◦ ϕN : EN |X → ET |X

is then an isomorphism of complex bundles over X. We will show that f can be stably extended
to all of EN and ET , which in particular implies that Proposition 7.1 is satisfied. The strategy for
showing that such an extension exists will be to show equality of relative K-theory classes

(7.8) [EN ]rel = [ET ]rel ∈ K̃0(M inv × [0, 1], X).

7.1. K-theory. In this Section we recall some results about complex K-theory. Let VectC(B) be
the set of all complex finite dimensional vector bundles over a space B. For our purposes it suffices
to take B to be a compact manifold, although the following remarks and theorems apply to vector
bundles over compact Hausdorff topological spaces. We refer the reader to [Hat03] for a complete
treatment of this subject.

Definition 7.2. A stable isomorphism of complex vector bundles E,E′ ∈ VectC(B) is a complex
vector bundle isomorphism of E ⊕ Cm ∼= E′ ⊕ Cn for some (m,n) ∈ Z2. Stable isomorphism is an
equivalence relation on VectC(B) which we denote by ∼.

Definition 7.3. The 0th (reduced) complex K-theory group of a space B is the set of complex
vector bundles on B modulo stable isomorphism:

(7.9) K̃0(B) = VectC(B)/ ∼ .

The operations of tensor product ⊗ and direct sum ⊕ on VectC(B) descend to a multiplication

and addition on K̃0(B), giving it a ring structure. Complex K-theory can be made into a reduced
cohomology theory by defining the higher K theory groups

K̃i(B) := K̃0(Σi(B))
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where Σi(B) is the reduced suspension functor applied i times to B (to see that this definition

actually yields a reduced cohomology theory Bott periodicity, K̃0(B) ∼= K̃0(Σ2(B)), is employed),
and the relative K-theory groups of a pair X ⊂ B

K̃i(B,X) := K̃i(B/X)

where X is a closed subspace of B. The Brown Representability Theorem then implies that each
reduced complex K-theory group can be represented by homotopy classes of maps from X into a
classifying space; in particular if BU is the classifying space of the infinite unitary group then

Proposition 7.4. There is an isomorphism

(7.10) K̃0(B) ∼= [B,BU ].

This image of the (equivalence class of a) vector bundle under this isomorphism is called the clas-
sifying map of the vector bundle

The following two propositions relate K-theory to ordinary (singular) cohomology.

Proposition 7.5 (Chern character). There is a homomorphism

(7.11) c̃h : K̃0(B) → H̃even(B,Q)

called the reduced Chern character between reduced complex K theory and reduced singular coho-
mology with rational coefficients that enjoys the following properties:

• tensoring with Q makes c̃h into an isomorphism (which we will also call c̃h)

c̃h : K̃0(B)⊗Z Q ∼−→ H̃even(B,Q),

and
• the reduced Chern character c̃h([E]) is a polynomial in the Chern classes of the (stable
equivalence class of) the vector bundle E.

Proposition 7.6. If H∗(B,Z) is torsion free and of finite rank, then so is K̃0(B).

Given a closed subspace X of the compact space B, the K-theory of a quotient space K̃0(B/X)
can be thought of as the set of isomorphism classes of vector bundles over B which restrict to a

trivial bundle over X. We also denote this space by K̃0(B,X).

Propositions 7.5 and 7.6 along with the fact that the H̃∗(M inv× [0, 1], X) is torsion free and finite
rank (c.f Proposition 6.1) tell us that demonstrating equality of relative Chern classes c((ET )rel) =
c((EN )rel) would in particular imply Equation (7.8), and hence demonstrate the existence of a
stable tangent normal isomorphism. This proof is the subject of the next Subsection.

7.2. Algebraic topology of symmetric products. Here we show

Proposition 7.7. The relative Chern classes c((ET )rel) and c((EN )rel) ∈ H̃∗(M inv × [0, 1], X)
coincide:

(7.12) c((ET )rel) = c((EN )rel) ∈ H̃∗(M inv × [0, 1], X).

The lemmas and corollaries necessary to prove Proposition 7.7 are collected below.

Lemma 7.8. The pullback of the total Chern class of M along i :M inv ↪−→M is the square of the
total Chern class of M inv :

(7.13) c(TM inv)2 = i∗(c(TM)) = c(i∗(TM)) ∈ H̃∗(M inv).

We prove Lemma 7.8 later in this Section. Assuming it, note the following corollary.
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Corollary 7.9. The Chern classes of the tangent and normal bundles of M inv ⊂M coincide:

(7.14) c(TM inv) = c(NM inv) ∈ H̃∗(M inv).

Proof of Corollary 7.9. The vector bundle isomorphism TM inv ⊕NM inv ∼= i∗(TM) implies

c(TM inv)c(NM inv) = c(i∗(TM)) ∈ H̃∗(M inv).

From Lemma 7.8 we then get

c(TM inv)c(NM inv) = c(TM inv)2 =⇒ c(TM inv) = c(NM inv).

We can cancel a factor of c(TM inv) on both sides as there is no torsion in H̃∗(M inv). □

Lemma 7.10. The even degree cohomology map q∗ : H̃even(M inv× [0, 1], X) → H̃even(M inv× [0, 1])
is an injection:

q∗ : H̃even(M inv × [0, 1], X) ↪−→ H̃even(M inv × [0, 1]).

Proof. Looking at the cohomology long exact sequence for the pair (M inv × [0, 1], X)

. . .→ H̃2r−1(M inv × [0, 1])
ι∗−→ H̃2r−1(X)

δ∗−→ H̃2r(M inv × [0, 1]/X)
q∗−→ H̃2r(M inv × [0, 1]) → . . .

we see that

q∗ : H̃2r(M inv × [0, 1]/X) → H̃2r(M inv × [0, 1])

is an injection iff

ι∗ : H̃2r−1(M inv × [0, 1]) → H̃2r−1(X)

is a surjection. Recall the biholomorphism ϕ : (M ′, L′
0, L

′
1) → (M inv, Linv

0 , Linv
1 ); clearly it induces

a biholomorphism

Φ : (M ′ × [0, 1], X ′) → (M inv × [0, 1], X).

Naturality of the cohomology long exact sequence and Lemma 6.4 then tell us that ι∗ is a surjection

so long as r ≥ 1. This argument also proves injectivity of q∗ on H̃2r+1 for r ≥ 1 as well, but we
don’t have any need for this result. For r = 0 injectivity of q∗ is immediate since the 0th reduced
cohomology of both M inv × [0, 1] and M inv × [0, 1]/X is zero. □

Assuming Lemma 7.8 we prove Proposition 7.7.

Proof of Proposition 7.7. From functoriality of Chern classes

q∗(c((ET )rel)) = c(ET ) and q
∗(c((ET )rel)) = c(ET ).

By definition, ET = π∗(TM inv) and EN = π∗(NM inv) and so

(π∗)−1 ◦ q∗(c((ET )rel)) = (π∗)−1(c(ET )) = (π∗)−1c(π∗TM inv) = c(TM inv)

and

(π∗)−1 ◦ q∗(c((EN )rel)) = (π∗)−1(c(EN )) = (π∗)−1c(π∗NM inv) = c(NM inv).

From Corollary 7.9 we know that

c(TM inv) = c(NM inv)

and therefore by injectivity of (π∗)−1 ◦ q∗ (Lemma 7.10) we conclude

c((ET )rel) = c((EN )rel).

□
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In order to establish Proposition 7.7, what remains is to prove Lemma 7.8. To this end, we first
record notation for and relations amongst the homology, cohomology and Chern classes of the M

and M ′ in the below proposition. For more about the cohomology ring H∗(Sym2g(Σ̃)) see [Mac62].

We set R = Σ̃\{z, w} for conciseness.

Proposition 7.11. Let s̃1, . . . , s̃2g, m̃1, . . . , m̃2g ∈ H1(R) be homology classes forming a symplectic
basis of H1(R)

s̃i ∪ s̃j = m̃i ∪ m̃j = 0 and s̃i ∪ m̃j = δij

labeled so that if we take indices modulo 2g,

τ∗(s̃i) = s̃i+g

and

τ∗(m̃i) = m̃i+g.

Let r̃ ∈ H1(R) be the homology class of a small loop about z ∈ Σ̃. Then the relevant homology and
cohomology groups of R, R/τ , M and M ′ are summarized in the table below

Space Homology Cohomology

R = Σ̃\{z, w} Hi(R) =


Z i = 0

Z⟨r̃⟩ ⊕
⊕2g

k=1 Z⟨s̃i⟩ ⊕ Z⟨m̃i⟩ i = 1

0 i > 1

H i(R) =


Z i = 0

Z⟨ρ̃⟩ ⊕
⊕2g

k=1 Z⟨σ̃i⟩ ⊕ Z⟨µ̃i⟩ i = 1

0 i > 1

R/τ Hi(R/τ) =


Z i = 0⊕g

k=1 Z⟨si⟩ ⊕ Z⟨mi⟩ i = 1

0 i > 1

H i(R/τ) =


Z i = 0⊕g

k=1 Z⟨σi⟩ ⊕ Z⟨µi⟩ i = 1

0 i > 1

M = Sym2g(R) −
H∗(M) ∼= (H∗(R)⊗2g)S2g =

Z[γ̃]⊕
⊕

I,J⊂{1,...,2g}

Z

[∏
i∈I

ϵ̃i
∏
j∈J

χ̃j

]

M ′ = Symg(R/τ) −
H∗(M ′) ∼= (H∗(R/τ)⊗g)Sg =⊕
I,J⊂{1,...,g}

Z

[∏
i∈I

ϵi
∏
j∈J

χj

]

where

(1) The cohomology classes σ̃i, µ̃i and ρ̃ are the algebraic duals of s̃i, m̃i and r̃ respectively under
the isomorphism H1(R;Z) ∼= Hom(H1(R),Z).

(2) The homology classes si and mi for 1 ≤ i ≤ g are defined by

si := ℓ∗(s̃i) = ℓ∗(s̃i+g)

and

mi := ℓ∗(m̃i) = ℓ∗(m̃i+g)

(3) The cohomology classes σi and µi are the algebraic duals of si and mi respectively under
the isomorphism H1(R/τ ;Z) ∼= Hom(H1(R/τ),Z).

(4) The notation (H∗(R)⊗2g)S2g means the subring of (H∗(R)⊗2g) that is invariant under the
permutation action of the symmetric group S2g on the tensor factors.



LOCALIZATION AND THE FLOER HOMOLOGY OF STRONGLY INVERTIBLE KNOTS 41

(5) The cohomology class γ̃ is defined as

γ̃ :=

2g∑
k=1

1⊗ . . .⊗ ρ̃︸︷︷︸
kth slot

⊗ . . .⊗ 1,

ϵ̃i is defined as

ϵ̃i :=

2g∑
k=1

= 1⊗ . . .⊗ σ̃i︸︷︷︸
kth slot

⊗ . . .⊗ 1,

and χ̃j is defined as

χ̃i :=

2g∑
k=1

= 1⊗ . . .⊗ σ̃i︸︷︷︸
kth slot

⊗ . . .⊗ 1.

(6) Similarly for (H∗(R/τ)⊗g)Sg and the cohomology classes ϵi and χj.

Furthermore the total Chern classes c(TM) and c(TM ′) are given by the following formulae.

(7.15) c(TM) =

2g∏
i=1

(1− ϵ̃iχ̃i) ∈ Heven(M)

and

(7.16) c(TM ′) =

g∏
i=1

(1− ϵiχi) ∈ Heven(M ′).

Proof. The claims about R and R/τ follow from basic algebraic topology. For the cohomology of
M , (1.2) of [Mac62] gives an isomorphism

H∗(Sym2g(R)) ∼= (H∗(R))S2g .

This isomorphism is stated with cohomology coefficients in a characteristic 0 field K, but it also
applies with Z coefficients so long as the space in question has torsion free cohomology. Using
the description of H∗(R) in the table it is then a simple exercise to determine that γ̃, ϵ̃i and χ̃i
(1 ≤ i ≤ 2g) form a basis for the S2g invariant tensors in H∗(R)⊗2g.

In order to establish Equation (7.15), we appeal to [Mac62, (14.5)] which states the following

formula for the total Chern class of Sym2g(Σ̃):

c(TSym2g(Σ̃)) = (1 + η)n−2g+1
2g∏
i=1

(1 + η − ξiξp)

where ξi, ξp ∈ H1(Sym2g(Σ̃)) for 1 ≤ i ≤ 2g and η ∈ H2(Sym2g(Σ̃)) generate H∗(Sym2g(Σ̃)) ∼=
(H∗(Σ̃))⊗2g. Let f : Σ̃\{z, w} ↪→ Σ̃ denote inclusion; then the induced map Sym2g(f)∗ : H∗(Sym2g(Σ̃)) →
H∗(M) sends ξi to ϵ̃i, ξp to χ̃i and η to 0. Naturality of Chern classes then yields 7.15. The claims
about M ′ follow identically. □

We are now ready to prove Lemma 7.8, thereby establishing Equation (7.12) and verifying the
existence of a stable tangent normal isomorphism.

Proof of Lemma 7.8. Pullback along i ◦ ϕ :M ′ ↪−→M acts on the generators of H̃∗(M) as follows.

• Pullback kills γ̃,
(i ◦ ϕ)∗(γ̃) = 0.
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• For 1 ≤ i ≤ g we have

(i ◦ ϕ)∗(ϵ̃i) = (i ◦ ϕ)∗(ϵ̃i+g) = ϵi

and
(i ◦ ϕ)∗(χ̃i) = (i ◦ ϕ)∗(χ̃i+g) = χi.

Therefore, from equations 7.15 and 7.16 we see that pullback of the total Chern class of M along
i ◦ ϕ is given by

ϕ∗i∗(c(TM)) = c((i ◦ ϕ)∗TM) = c(TM ′)2 = ϕ∗c(TM inv)2.

The result i∗(c(TM)) = c(TM inv)2 then follows because ϕ∗ is invertible. □

Appendix A. Grid homology and Alexander gradings

In this Appendix we review a grid homology based proof of Proposition 3.4, along the way
providing a formula for the absolute Alexander grading in a grid diagram for a singular knot. We
then modify this proof to provide the analogous result for the spherical grid diagrams of Section
3.5.

Proof of Proposition 3.4. Recall the setup from Section 3.4; we have a grid diagram GS for a
singular knot S with one singular crossing, and induced grid diagrams G0 and G− for the knots S0
and S− obtained by making the local modifications seen in Figure 13. Let S− and S0 denote the

set of generators/grid states of G̃C(G−) and G̃C(G0) respectively. Partition G̃C(G−) and G̃C(G0)

as follows: G̃C(G−) = I− ∪ N− and G̃C(G0) = I0 ∪ N0 where I− and I0 are generated by those
states containing the center point c (marked in blue in Figure 13 and 15), and N− and N0 are
generated by those states not containing c. The subspaces I− and N0 are subcomplexes while the
subspaces I0 and N− are quotient complexes, and hence all of these subspaces inherit differentials

from the complexes G̃C(G−) and G̃C(G0); we write the resulting complexes as (I−, ∂
I−
I−

), (N−, ∂
N−
N−

),

(I0, ∂
I0
I0
), and (N0, ∂

N0
N0

). Consider also the three chain maps

∂N0
I0

: (I0, ∂
I0
I0
) → (N0, ∂

N0
N0

)

∂
I−
N−

: (N−, ∂
N−
N−

) → (I−, ∂
I−
I−

)

ψ : (N0, ∂
N0
N0

) → (N−, ∂
N−
N−

)

where the first two are induced by the differentials on G̃C(G−) and G̃C(G0) respectively while ψ

is the map identifying grid states missing c in G̃C(G0) with grid states missing c in G̃C(G−). Now
compose these chain maps:

(A.1) (I0, ∂
I0
I0
)

∂
N0
I0−−−−→

(−1,0)
(N0, ∂

N0
N0

)
ψ−−−→

(0,0)
(N−, ∂

N−
N−

)
∂
I−
N−−−−−→

(−1,0)
(I−, ∂

I−
I−

)

The tuples under the arrows indicate the bigraded degree of each chain map. The degree shift

associated to ∂N0
I0

and ∂
I−
N−

is (−1, 0) because both of these differentials are induced from the

standard differential on the grid chain complex which has bi-degree (−1, 0). We use the grid
Maslov and Alexander grading formulas, Equations 3.22 and 3.23, to prove the bi-degree of ψ is
(0, 0). Let xNWX

− and xNWX
0 be the grid states with markings on the Northwest corner of the X

markings in G− and G0 respectively. Notice that xNWX
− is an element of N0 and N− because it

contains the center point c. Comparing the Alexander and Maslov gradings of xNWX
− considered

as an element of S0 and S− will therefore tell us the bi-degree of ψ. Firstly notice that G− and
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G0 have the same O sets and hence MO,− and MO,0 (the extra subscript labels the domain of the

function, either S(G−) or S(G0)) take the same value on xNWX
− . This verifies the claim that the

Maslov grading shift of ψ is 0. Next, using equations 3.19, 3.21 and the fact that the 1× 1 square
NWc to the Northwest of c is a rectangle going from xNWX

− to xNWX
0 , we see that

(A.2) −MX,−(x
NWX
0 ) =MX,−(x

NWX
− )−MX,−(x

NWX
0 ) = 1− 0 + 0 = 1 =⇒ MX,−(x

NWX
0 ) = −1

since NWc in G− contains no X marking, and

(A.3) MX,0(x
NWX
− ) =MX,0(x

NWX
− )−MX,0(x

NWX
0 ) = 1− 2 · 1 + 0 = −1.

since NWc in G0 contains one X marking. We only need Equation (A.3) to compute the Alexander
grading shift of ψ, but Equation (A.2) will be used later in this proof. Now we may compare the
Alexander gradings of xNWX

− in S(G−) and S(G0) by using Equation (3.23).

(A.4) A0(x
NWX
− ) =

1

2
(MO,0(x

NWX
− )−MX,0(x

NWX
− ))− (m+ 1)− 1

2

(A.5) A−(x
NWX
− ) =

1

2
(MO,−(x

NWX
− )−MX,−(x

NWX
− ))− (m+ 1)− 2

2

Recalling Equations 3.19 and A.3 along with the fact that MO,0(x
NWX
− ) =MO,−(x

NWX
− ), we have

shown AX,0(x
NWX
− ) = AX,0(x

NWX
− ). The Alexander grading shift of ψ is 0 as claimed.

To produce the skein triangle, we now make use of the following lemma. A singly graded version
of this lemma is stated in [OSS15, Lemma A.3.10], but the proof is easily adapted to the bigraded
setting.

Lemma A.1. Suppose that C,C ′ , and C ′′ are three bigraded chain complexes, and f : C ′ → C ′′

and g : C → C ′ are chain maps that are homogeneous of degrees (a, p) and (b, q) respectively.
Then, there is a chain map Φ : Cone(f) → Cone(g) which is homogeneous of degree (−a − 1,−p)
and whose induced map on homology fits into the following exact triangle with bidegrees as indicated

H(Cone(f)) H(Cone(g))

H(Cone(f ◦ g))

(−a− 1,−p)

(0, 0) (a, p)

In Lemma A.1, let f = ∂
I−
N−

and g = ψ ◦ ∂N0
I0

. Then we have deg(f) = (−1, 0), and hence the

following exact triangle is established:

H(Cone(∂
I−
N−

)) H(Cone(ψ ◦ ∂N0
I0

))

H(Cone(∂
I−
N−

◦ ψ ◦ ∂N0
I0

))

(0, 0)

(0, 0) (−1, 0)

There are isomorphisms

(A.6) H(Cone(ψ ◦ ∂N0
I0

)) ∼= H(Cone(∂N0
I0

)) ∼= G̃H(G0)
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where the first follows because ψ is an isomorphism of bi-degree (0, 0), and the second follows

because the differential on Cone(∂N0
I0

) is by definition

[
∂I0I0 0

∂I0N0
∂N0
N0

]
which is the full differential on

G̃H(G0) = I0 ⊕N0 since N0 is a subcomplex (∂N0
I0

= 0). Similarly there is an isomorphism

(A.7) H(Cone(∂
I−
N−

)) ∼= G̃H(G−).

Also notice that ∂
I−
N−

◦ ψ ◦ ∂N0
I0

: (I0, ∂
I0
I0
) → ∂

I−
N−

(I−, ∂
I−
I−

) is the zero map and has degree (−2, 0).

We have the following equalities and isomorphisms of chain complexes:
(A.8)

Cone(∂
I−
N−

◦ ψ ◦ ∂N0
I0

)(d,s) = (I0)(d+1,s) ⊕ (I−)(d,s) ∼= (I0)(d+1,s) ⊕ (I0)(d,s−1) = (I0 ⊗ V )[[0,−1]](d,s)

For a bigraded chain complex C, the notation C[[a, b]] denotes the grading shifted complex C[[a, b]](d,s) :=
Cd+a,b+s. The bidegree of the isomorphism (I−)(d,s) ∼= (I0)(d,s−1) follows from our previous obser-
vation that the O sets of G− and G0 being identical implies MO,− = MO,0, and from Equation
(A.2). Putting these identifications into the exact triangle yields

G̃H(G−) G̃H(G0)

(H(I0)⊗ V )[[0,−1]]

(0, 0)

(0, 0) (−1, 0)

Taking bi-graded Euler characteristics (which we denote by the symbol χ) of this exact triangle
we get

(A.9) χ(G̃H(G−)) = χ(G̃H(G0)) + χ((H(I0)⊗ V )[[0,−1]]).

Equations 3.6 and 3.9 tell us that

χ(G̃H(G−)) = χ(ĤFK (S−)⊗ V (m+1)−2) = ∆S−(t)(t
1
2 − t−

1
2 )(1− t−1)m−1

and similarly

χ(G̃H(G0)) = χ(ĤFK (S0)⊗ V (m+1)−1) = ∆S0(t)(1− t−1)m.

In addition,
χ((H(I0)⊗ V )[[0,−1]]) = χ(H(I0))(1− t−1) · t.

Making these replacements in Equation (A.9) and dividing through by t
1
2 (1− t−1)m yields

(A.10) ∆S−(t) =
t
1
2χ(H(I0))

(1− t)m−1
+ t−

1
2∆S0(t).

Comparing Equation (A.10) to Equation (3.15) shows that

(A.11)
t
1
2χ(H(I0))

(1− t)m−1
= ∆S .

Substituting t
1
2χ(H(I0)) = χ(H(I0)[[0,−1

2 ]]) and χ(G̃H(GS)) = ∆S(t)(1− t−1)m−1 into Equation
(A.11) we conclude

(A.12) χ(H(I0)[[0,−
1

2
]]) = χ(G̃H(GS)).
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The complex G̃C(GS) is, up to a bidegree shift, isomorphic to the complex I0 through an isomor-
phism

F : G̃C(GS) → I0

taking a generator in G̃C(GS) and mapping it to the corresponding generator in I0 that contains
the center point c. More explicitly, we have

F ({(1, x1), . . . ,(m,xm)}) =

{(1, x1), . . . , (
m− 1

2
, xm−1

2
), (

m+ 1

2
,
m+ 1

2
), (

m+ 3

2
, xm+1

2
), . . . , (m+ 1, xm)}.

By Equation (A.12) F increases Alexander grading by 1
2 and changes Maslov grading by some even

integer 2j. Making the replacement H(I0) ∼= G̃H(GS)[[2j,
1
2 ]] in the exact triangle gives us

G̃H(G−) G̃H(G0)

(G̃H(GS)⊗ V )[[2j,−1
2 ]]

(0, 0)

(0, 0) (−1, 0)

which is the exact triangle (3.18) upon identifying grid homology with (singular) knot Floer ho-
mology.

□

Remark A.2. With a more careful analysis we could show that j = 0 but this is unnecessary for
our purposes.

The main reason that we gave a proof of Proposition 3.4 was the following corollary that was
shown along the way:

Corollary A.3. Let GS and I0 be as in the proof of Proposition 3.4. Then there is an isomorphism
of chain complexes

(A.13) I0 ∼= G̃C(GS)[[2j,
1

2
]].

Now we modify the above proof to work for the spherical grid diagrams of Section 3.5. Performing

the construction of Section 3.5.3 three times we obtain spherical grid diagrams Gsphere
S , Gsphere

0 and

Gsphere
− for Snb (K̃), L

n+ 1
2

b (K̃) and Lnb (K̃) respectively. Just as in the proof of Proposition 3.4, let c

denote the center point of the top grid of Gsphere
0 and Gsphere

− . Define sub-complexes I− generated

by those states in C̃FL(Gsphere
− ) that contain c, and N0 generated those states in C̃FL(Gsphere

0 ) that

don’t contain c. Also define quotient complexes I0 generated by those states in C̃FL(Gsphere
− ) that

don’t contain c, and N− generated by those states in C̃FL(Gsphere
0 ) that contain c. We can prove

the following analog of Corollary A.3 for spherical diagrams, using almost the same argument.

Proposition A.4. The map F (x) = x ∪ c is a chain isomorphism

(A.14) F : C̃FL(Gsphere
S )[[2j,

1

2
]] ∼= I0

for some integer j.
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Remark A.5. In the proof below of Proposition A.4, we reuse the notation of the proof of Proposition
3.4 to facilitate a direct comparison between the proofs.

Proof. There is an isomorphism ψ : N0 → N− defined as the identity map on tuples of grid intersec-

tion points, and isomorphisms C̃FL(Gsphere
S ) ∼= I0 defined by taking a generator in C̃FK(Gsphere

S )
and mapping it to the corresponding generator in I0 containing c. Consider the composition of
chain maps

(A.15) (I0, ∂
I0
I0
)

∂
N0
I0−−−−→

(−1,0)
(N0, ∂

N0
N0

)
ψ−→ (N−, ∂

N−
N−

)
∂
I−
N−−−−−→

(−1,0)
(I−, ∂

I−
I−

)

If we can show that the bidegree of ψ is (0, 0) and that the map ξ : I0 → I− defined as the
identity on tuples of grid states containing c has bidegree (0, 1), then the argument given in the
proof of Proposition 3.4 applies verbatim to prove this proposition as well. In what follows we will
make use of the gradings M = grw and grz which are the direct analogs of MO and MX for more
general Heegaard diagrams. We see that grw is preserved by both ψ and ξ since both spherical
diagrams have the same w basepoints. We imitate the grading pinning procedure demonstrated in
of [MOS07, Lemma 3.2, Figure 8] to determine for the grz grading shift associated to ψ. Consider

a state y ∈ C̃FL(Gsphere
− ) and a state x ∈ C̃FK(Gsphere

0 ) that differ only in that they contain the
intersection points Southwest of the two central z’s on their respective diagrams. Then x and y
must in fact have the same grz grading since upon forgetting about w′s and handle-sliding all but
one of the β curves to become small loops about z’s, these two states correspond through empty
Maslov index 1 triangles to the same bottom-most grz state in the complex used to pin down the
grz grading. This is illustrated in Figure 24. So we see that

grz(x)− grz(ψ(x)) = grz(y)− grz(ψ(x)) = −1.

The last equality follows from applying the relative grz grading formula, which states that grz(y)−
grz(ψ(x)) = µ(ϕ)− 2nz(ϕ) with ϕ equal to the one by one square containing a z and connecting x

and y in Gsphere
− . The Alexander grading is A = grw−grz

2 −m−ℓ
2 where m is the number of basepoints

on the Heegaard diagram and ℓ is the number of link components. Therefore we see that

A(x) =
grw(x)− grz(x)

2
− (k + 1)− 1

2
=
grw(ψ(x))− (grz(ψ(x))− 1))

2
− (k + 1)− 1

2
=

grw(ψ(x))− grz(ψ(x)))

2
− (k + 1)− 2

2
= A(ψ(x))

and hence deg(ψ) = (0, 0). A very similar computation shows that deg(ξ) = (0, 0). □

Let a and b denote the Northeast and Southwest intersection points of the square containing the

central w, and let AxI0 be the quotient complex of C̃FL(AxGsphere
0 ) generated by states containing

both a and b. The following proposition follows from a similar argument to the one given in the
proof of Proposition A.4.

Proposition A.6. Then map Φ(x) := x ∪ a ∪ b is a chain isomorphism

(A.16) C̃FL(Gsphere
S )[[2j,

1

2
]] ∼= AxI0.

In Figure 25, we show the quotient diagram AxGsphere
0 /τ , which is a Heegaard diagram for the

quotient knot K along with the orientation reversed axis A. Figure 26 shows the same Heegaard
diagram after isotopies of αk+1 and βk+1 that go over the rightmost z. Such isotopies do not affect
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Figure 24. Top: The top halves of the diagrams Gsphere
− and Gsphere

0 . Bottom: Both
diagrams are the same up to isotopy after deleting w basepoints and performing the
displayed handleslides amongst the β curves.

the homology of the complex (C̃FL(AxGsphere
∗ /τ), ∂A). This isotoped diagram B is the quotient

diagram Gsphere
S /τ except for the addition of

• the isotoped αk+1 and βk+1 curves that now meet only each other in the two points p and
q,

• the leftmost w basepoint contained in the central bigon formed by αk+1 and βk+1, and
• the rightmost z that the differential ∂A does not see.

With these observations and notation in place, we can state and prove the following proposition

Proposition A.7. The map

P : C̃FL(Gsphere
S /τ) → C̃FL(AxGsphere

0 /τ)

defined by P(x) = x ∪ p preserves Alexander gradings.

Proof. Since the region that αk+1 ∪ βk+1 is contained in also contains a z marking, namely the top
left corner of GIV

0 , we obtain a grading preserving isomorphism of chain complexes

(C̃FL(B), ∂A) ∼= C̃FL(Gsphere
S /τ)⊗W.

The gradings on the tensor factor of W = F(0,0) ⊕ F(1,0) (the two summands correspond to

those generators in C̃FL(B) containing either p or q) are fixed by the homology of the complex

(C̃FL(B), ∂A) ∼= (C̃FL(Gsphere
0 /τ), ∂A). In particular,

P : C̃FL(Gsphere
S /τ) → C̃FL(B, ∂A)
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defined on a generator x ∈ C̃FL(Gsphere
S /τ) by P (x) = x ∪ p is an Alexander grading preserving

map. The map P ′ sending a generator containing p in C̃FL(B) to the corresponding generator

containing p in C̃FL(AxGsphere
0 /τ), ∂A) is also Alexander grading preserving. Finally we have that

P = P ′ ◦ P. □

Figure 25. The quotient diagram Gsphere
0 /τ .
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Figure 26. The diagram B obtained by isotoping αk+1 over the rightmost z and
all of the β curves besides βk+1 and then isotoping βk+1 over the rightmost z and
over all the α curves besides αk+1.
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