
Math 481 crash course
Summer 2024

Disclaimer: The following notes are NOT comprehensive, and are being written to help keep people
on track with the course. You still need to take notes in lecture and read the textbook.

Review of prerequisite materials

Definition 1. A sample space is a set S containing sample points, i.e elements s ∈ S. The sample
points are the possible outcomes of an experiment or measurement process.

Examples of sample spaces

• S = {H,T} for flipping a coin once

• S = {HH,HT, TH, TT} for flipping a coin twice

• S = {1, .., 6} for rolling a dice once

• S = {1, ..., 6} × {1, ..., 6} for rolling two die

• S = [0, 1] for partially filling a volume 1 container with water and recording the total volume

Definition 2. A subset of the sample space E ⊂ S is called an event. Events A and B are mutually
exclusive if A ∩B = ∅.

Example If the sample space is S = {1, ..6}, the events Even = {2, 4, 6} and Odd = {1, 3, 5} are
mutually exclusive

Definition 3. A probability measure on S is a function P : P(S) → [0, 1] satisfying

1. P (S) = 1

2. If {Ai}i∈I is a collection of mutually exclusive events (i.e Ai ∩Aj = ∅ for any i ̸= j), then

P (
⋃
i∈I

Ai) =
∑
i∈I

P (Ai)

The notation P(S) is the powerset of S, i.e the set of all subsets/events of S.

Definition 4. A random variable (RV) X is a function X : S → R. A random variable is a
discrete random variable if the range of X, X(S) consists of finitely many or countably infinitely
many points. Otherwise X is a continuous random variable.



Examples of RV’s

• Flip a coin n times. The sample space is S = {L1...Ln|Li = H or T}, the set of n length
strings made of heads and tails. Let X be the random variable counting the number of heads
of a sample point. More explicitly,

X(L1...Ln) = k

where k is the number of Li = H.

• Roll two die. The sample space is S = {1, ..., 6} × {1, ...6} = {(i, j)|i, j = 1, ..., 6}. Let Y be
the random variable that records the sum of the faces of the die: that is, Y ((i, j)) = i+ j.

A random variableX on a sample space S naturally splits up the sample space into a set of mutually
exclusive events:

S =
⋃
x∈R

X−1(x).

Often times we write X = x as notation for X−1(x) = {s ∈ S|X(s) = x}, so we can rewrite this as

S =
⋃
x∈X

(X = x).

If S is equipped with a probability measure P , then we can record the probabilities of these events
X = x in a function.

Definition 5. If X is a discrete random variable, then f(x) := P (X = x) is the probability
distribution function (PDF) of X. If X is a continuous random variable and f is non-negative
function satisfying

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx

for all real constants a < b, then we say that f(x) is the probability density function (also abbreviated
PDF) of X. Given two discrete random variables X and Y , their joint PDF is f(x, y) = P (X =
x, Y = y). Given two continuous random variables, f(x, y) is the joint PDF of X and Y if for all
subset A ⊂ R2,

P ((X,Y ) ∈ A) =

∫ ∫
A
f(x, y)dxdy.

The joint PDF is defined also for more than two random variables in the obvious way.

Definition 6. If the joint PDF f(x, y) of two random variables X and Y factors into the product of
the individual PDFs f(x, y) = fX(x)fY (y), we say that that the random variables are independent.

Definition 7. The expectation value of a discrete random variable X with PDF f(x) is

E[X] :=
∑

x∈X(S)

xf(x).

The expectation value of a continuous random variable X with PDF f(x) is

E[X] =

∫ ∞

−∞
xf(x)dx.
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If g : R → R is a function, and X : S → R is an RV we can form a new RV g(X) := g ◦X : S → R.
It is not hard to show that

E[g(X)] =
∑

x∈X(s)

g(x)f(x)

in the discrete case or

E[g(x)] =

∫ ∞

−∞
g(x)f(x)dx

in the continuous case.

Definition 8. The rth moment of a random variable X is

µ′
r := E[Xr].

Using the above discussion about expectations of g(X) with g = xr we can compute the moments
of a RV. The first moment µ′

1 is called the mean of X and is denoted µ := µ′
1 = E[X] (notice that

this is also just the expectation value of X – it has way too many names, sorry).

Definition 9. The rth moment about the mean of a random variable X is

µr := E[(X − µ)r].

The second moment about the mean µ2 = E[(X − µ)2] is called the variance of X and is denoted
σ2 = σ2

X = V ar(x).

Simple algebra shows that σ2 = µ′
2 − µ2 = E[X2]− E[X]2.

Definition 10. The moment generating function (MGF) of a RV X is MX(t) := E[etX ].

Moment generating functions are very important because of the theorem that says that if X and
Y are RV’s with equal MGFs, then X and Y also have equal PDFs, and if Xn is a sequence of RVs
such that the MFGs of Xn approaches the MGF of some RV Y , then the PDFs of the Xn approach
the PDF of Y . It is obvious that the converse of this theorem is true, so we can think of this as an
equivalence of MGFs and PDFs.
Now we discuss some special PDFs and the associated means, variances and MFGs of RV’s which
possess such PDFs. Please note that many different random variables can all possess the same PDF,
so when we say that a random variable has (Bernoulli, binomial, poisson, Chi-square, normal, ...)
distribution, we are just saying that we know the PDF of that RV: it is NOT complete information
about that RV, i.e the pdf does not specify the function X : S → R.

Special PDFs

• If X is a discrete random variable with range equal X(S) = {0, 1} and PDF given by f(0) = θ,
f(1) = 1− θ, or more succinctly

f(x) = θx(1− θ)1−x

, then we say that X is a Bernoulli random variable with parameter θ.
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• If X is a discrete random variable with range equal to X(S) = {0, ...n} and PDF given by

b(x, n, θ) =

(
n

x

)
θx(1− θ)n−x ,

then we say that X is a binomial random variable with paramter θ. The mean and variance

are µ = nθ and σ2 = nθ(1− θ) . The MGF of a binomial random variable is

MX(t) = (etθ + 1− θ)n

• If X is a discrete random variable with range equal to X(S) = {0, 1, 2, ...} = Z≥0 and PDF
given by

f(x, λ) =
λx, e−λ

x!

we say that X is a Poisson random variable with parameter λ. The MGF of a Poisson random
variable is

MX(t) = eλ(e
t−1)

• If X is a continuous random variable with PDF

g(x, θ) =
1

θ
e−

x
θ

for x > 0 and 0 elsewhere, then we say that X is an exponential random variable with
parameter θ. The MGF of an exponential random variable is

MX(t) = (1− θt)−1

• If X is a continuous random variable with PDF

f(x, ν) =
1

2
ν
2Γ(ν/2

x
ν−2
2 e−

x
2

for x > 0 and 0 for x ≤ 0 then X is a Chi-square random variable with ν degrees of freedom.
The MFG of a Chi-square random variable is

MX(t) = (1− 2t)−
ν
2

• If X is a continuous random variable with PDF

N (µ, σ)(x) =
1√
2πσ

e−
1
2
(x−µ

σ
)2

then X is a normal random variable with mean µ and variance σ2. For µ = 0, σ = 1, this is
the standard normal distribution. The MGF of a normal random variable is

MX(t) = eµt+
1
2
σ2t2
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If X has standard normal distribution, then X2 has Chi-square distribution with one degree of
freedom. Important strategies for figuring out the PDF of a random variable:

• Calculate the CDF and differentiate. This works for showing that X2 is Chi-square with one
d.o.f for example if X is standard normal with PDF f and CDF F (x): for x ≥ 0 we have

P (X2 ≤ x) = P (−
√
x ≤ X ≤

√
x) = F (

√
x)− F (−

√
x)

and taking derivatives while using the chain rule we see that the PDF of X2 is given by

F (
√
x)′ − F (−

√
x)′ =

1

2
√
x
f(
√
x) +

1

2
√
x
f(−

√
x) =

1

2
√
x
· 1√

2π
e

−1
2

√
x
2

+
1

2
√
x
· 1√

2π
e

−1
2

√
x
2

=
1√
2πx

e−
1
2
x

• The transformation technique in one or multiple variables

• Identifying the MGF of the RV with some well known MGF and concluding that the PDF’s
must be the same by the theorem stated above.

Chapter 8

8.1

Definition 11. The population is our sample space in a statistics problem.

We usually will assume that the population is infinite. In light of various limiting theorems about
discrete random variables, this is actually a pretty useful assumption to make calculations.

Definition 12. A collection of random variables X1, ..., Xn : S → R is identically distributed if all
of the Xi have the same PDF, fX1 = fX2 = ... = fXn .

The definition above along with the definition of independence (suitably generalized to n instead
of just two variables) allows us to define the following fundamental concept.

Definition 13. A random sample is a collection of independent and identically distributed (i.i.d)
random variables X1, ..., Xn.

Given a random sample on our population, we are interested in knowing information about various
statistics associated to it:

Definition 14. Given a random sample X1, ..., Xn, a statistic is a new random variable Y which
is a function of the random sample

Y = u(X1, ..., Xn)
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Famous examples of statistics that we are most concerned with in this course (though we will see
some others) are

Definition 15. The sample mean of a random sample X1, ..., Xn is

X :=
1

n
(X1 + ...+Xn).

Definition 16. The sample variance of a random sample X1, ..., Xn is

S2 :=
1

n− 1
((X1 −X)2 + ...+ (Xn −X)2)

The n − 1 in the definition of sample variance will make more sense after the next chapter. We
also define S =

√
S, the positive square root of the sample variance, to be the sample standard

deviation.

8.2

The mean and variance of the random variable X are easy to compute.

E[X] = E[
1

n
(X1 + ...+Xn)] =

1

n
(E[X1] + ...+ E[Xi]) =

1

n
(µ+ ...+ µ) = µ

where µ = E[X1] = .. = E[Xn] (recall that the Xi, being a random sample, are identically
distributed, hence all of the same PDF, and hence all have the same mean µ).

V ar(X) = V ar(
1

n
(X1 + ...+Xn)) =

1

n2
(V ar(X1) + ...+ V ar(Xn)) =

1

n2
(σ2 + ...+ σ2) =

σ2

n

where σ2 = V ar(X1) = ...V ar(Xn). In the second equality we made use of the formula

V ar(
∑

aiXi) =
∑

a2iV ar(Xi)

if the Xi are independent, which is of course the case for Xi comprising a random sample. There
is a more general formula for the variance of a sum involving covariances that we discussed in class
but have not recorded here. Applying Chebyshev’s theorem (not proved here) to the sample mean
yields the following:

Let c > 0 be any constant. Then

P (|X − µ| ≤ c) ≥ 1− σ2

nc2
.

This is often called the Law of large numbers. Taking the limit as n → ∞ shows us that the sample
mean concentrates about µ more and more as we take larger sample sizes of our population. Now
we recall the Central Limit Theorem, a cornerstone of modern statistics.
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The Central Limit Theorem
Statement: Let X1, ..., Xn be a random sample from a population with mean µ and variance σ2.
As n → ∞, the PDF’s of the sequence of random variables

Zn :=
X − µ

σ√
n

approaches the PDF of a normal distribution.
Proof outline: By the MGF theorem it suffices to show that MZn(t) → MN (0,1)(t) as n → ∞.

We showed this by recalling that MN (0,1)(t) = e
1
2
t2 and hence it suffices to show that ln(MZn(t))

approaches 1
t2
. This was accomplished by Taylor expanding bothMZn(t) and ln(1+x) and grouping

together terms by their power of t before concluding that all besides the t2 term die in the n → ∞
limit. Details in textbook.

Some important terminology: Sometimes, a problem will say that a random sample “comes from a []
population” for [] = normal, exponential, .... All this means is that the PDFs of the random sample
(which, remember, are all the same PDF) are equal to that of a normal, exponential or whatever
else distribution. The CLT isn’t even needed if we take our sample from a normal population; in
this case the sample mean isn’t just approximately normal, it is normal:

If X1, ..., Xn is a random sample from a normal population with mean µ and variance σ2 then X
is normal with parameters µ and σ2

n . This is proved by looking at MGFS.

0.1 8.4

Recall the PDF of a Chi square distributed RV χ2 with ν degrees of freedom: f(x, ν) = 1

2
ν
2 Γ( ν

2
)
x

ν−2
2 e−

x
2

for x > 0 and f(x) = 0 for x ≤ 0. Recall also its MGF:

Mχ2(t) = (1− 2t)−
ν
2 .

At the end of the review section we showed that if X is an RV with standard normal distribution,
then X2 is Chi square with one d.o.f. More generally:

If X1, ..., Xn are independent RV’s with standard normal distribution, then X2
1 + ... +X2

n is Chi-
square distributed with n degrees of freedom.
Proof : If X1, ..., Xn are independent, then X2

1 , ..., X
2
n are also independent (this is more generally

true about g1(X1), ..., gn(Xn) for measurable functions gi; this is again an independent set of RVs
if the Xi are independent). The MGF of a sum of independent RV’s is the product of the MGFs
of those variables, so we get

MX2
1+...+X2

n
(t) = MX2

1
(t)...MX2

n
(t) = (1− 2t)

−n
2 .

The RHS is the MGF of a Chi-square distributed variable with n d.o.f, and hence by the corre-
spondence theorem between MGF’s and PDFS we are done.
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An exercise left for the homework is to show the following mild generalization.

If X1, ..., Xn are Chi-square RVs with ν1, ..., νn d.o.f respectively, then X1 + ...+Xn is Chi-square
with ν1 + ...+ νn d.o.f.

What does this have to do with sample statistics?

If X and S2 are the sample mean and variance of a normal population with mean µ and variance
σ2, then

• X and S2 are independent

• The random variable (n−1)S2

σ2 is Chi square distributed with ν = n− 1 degrees of freedom.

The first part of this theorem is outlined in exercise 31 of the book. I still suggest that you try to
work through it, and will offer substantial extra credit (about 1 quiz worth) to anyone who turns
in a full write up it. Assuming the first part, by taking MGFs of the algebraic identity (another
homework problem)

n∑
i=1

(
Xi − µ

σ
)2 =

(n− 1)S2

σ2
+ n(

X − µ
σ√
n

)2

, we are able to conclude (how? it is worth thinking through this and formalizing it) that (n−1)S2

σ2

is Chi-square with n− 1 d.o.f.

8.5

Definition 17. If Y has Chi-square distribution with ν degrees of freedom, and Z has standard
normal distribution, then

T :=
Z√
Y
ν

is called a t-distribution with ν degrees of freedom.

It is possible to calculate the PDF of a t-distribution using the multivariable change of variables
technique. We just state the result here, but students should be aware that they are responsible
for understanding how to derive such a distribution (calculating appropriate Jacobians and using
the transformation technique). I might fill this in later.

The PDF of T is given by

f(t) =
Γ(ν+1

2 )
√
πνΓ(ν2 )

(1 +
t2

ν
)−

ν+1
2
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Why do we care about the t-distribution? If we take a random sample from a normal population,

we know that X−µ
σ has standard normal distribution, but σ is hard to know precisely. So often

times, statisticians instead try to measure

X − µ√
S2

=
X−µ
σ√
S2

σ2

which – by the above theorem combined with the theorems aboutX being normally distributed with

paramters µ and σ2

n and (n−1)S2

σ2 being Chi-square distributed with n− 1 d.o.f – has t-distribution
with n− 1 degrees of freedom.

8.7

Let ur(x1, ..., xn) be the function that outputs the rth largest xi. Then given any random sample
we can define the following statistics.

Definition 18. The rth order statistic is the random variable defined by

Yi := ui(X1, ..., Xn).

Definition 19. If n = 2m + 1 is odd, Ym+1, the (m + 1)th order statistic is called the sample
median and is denoted X̃ := Ym+1. If n = 2m is even, then X̃ := 1

2(Ym + Ym+1) is instead the
definition of the sample median.

The PDF of the rth order statistic Yr can be derived as follows. Say that f(x) is the PDF of the
Xi, and F (x) =

∫ x
−∞ f(x)dx is the CDF of Xi. Below we use that P (Xi ≥ x) = 1− F (x). To find

the gr(y), the PDF of Yr, we take the derivative of Gr(y), the CDF of Yr.

gr(y) = G′
r(y) =

d

dy
P (Yr ≤ h) =

d

dy

[
P [(Yr ≤ y) ∧ (Yr+1 ≥ y)] + P [(Yr+1 ≤ y) ∧ (Yr+2 ≥ y)]+

...+ P [(Yn−1 ≤ y) ∧ (Yn ≥ y)] + P [Yn ≤ y]
]
=

d

dy

n∑
i=r

(
n

i

)
F (y)i(1− F (y))n−i

=
[ n−1∑

i=r

n!

(i− 1)!(n− i)!
f(y)F (y)i−1(1− F (y))n−i − n!

i!(n− i− 1)!
F (y)if(y)(1− F (y))n−i−1

]
+ f(y)nF (y)n−1 =[ n−1∑
i=r

n!

(i− 1)!(n− i)!
f(y)F (y)i−1(1− F (y))n−i −

n∑
j=r+1

n!

(j − 1)!(n− j)!
f(y)F (y)j−1(1− F (y))n−j

]
+ f(y)nF (y)n−1 =

n!

(r − 1)!(n− r)!
f(y)F (y)r−1(1− F (y))n−r

((((((((((((((((((((

− n!

(n− 1)!0!
f(y)F (y)n−1 + f(y)nF (y)n−1 =

n!

(r − 1)!(n− r)!
f(y)F (y)r−1(1− F (y))n−r
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As an example, let’s compute the PDF of the first and nth order statistics of a random sample
X1, ..., Xn drawn from an exponential population with parameter θ. Recall that this means that

the PDF’s of each Xi are f(x) = 1
θe

−x
θ for x > 0 and f(x) = 0 for x ≤ 0. First let’s compute g1(y),

the PDF of Y1 = min(X1, ..., Xn). For y > 0 we get

g1(y) =
n!

0!(n− 1)!
f(y)[

∫ y

−∞
f(x)dx]0[

∫ ∞

y
f(x)dx]n−1 =

ne−
y
θ

θ
[

∫ ∞

y

1

θ
e−

x
θ dx]n−1 =

ne−
y
θ

θn
(

∫ ∞

y
θ

e−uθdu)n−1 =
n

θ
e−

y
θ (−e−u|∞y

θ
)n−1 =

n

θ
e−

ny
θ

And for y ≤ 0, g1(y) = 0. We leave the computation of gn(y) and gm+1(y), the PDFS of Yn and
the sample median, for n = 2m + 1 as exercises THAT ARE WELL WORTH DOING. They are
quite similar to the computation of g1(y).

Chapter 10

10.1

Definition 20. A population parameter is a variable associated to the pdf of a random sample.

Examples of population parameters

• If the random sample is drawn from a normal population with pdf 1√
2πσ

e−
1

2σ2 (x−µ)2 then σ

and µ are population parameters.

• If the random sample consists of binomial random variables with success rate θ and pdf(
n
x

)
θx(1− θ)n−x, θ is a population parameter.

• If the random sample is drawn from an exponential population with pdf 1
θe

−x
θ , θ is a popu-

lation parameter.

• If the random sample is drawn from a uniform population with pdf 1
β−α for α < x < β and

0 otherwise, then α and β are population parameters.

Definition 21. The process of using a sample statistic Θ̂ to estimate the value of a population
parameter θ is known as point estimation, and the sample statistic Θ̂ used to estimate is called a
point estimator.
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There are various desirable properties that a point estimator might have, and there are a couple
of methods that one can use to produce point estimators – these topics will occupy the rest of this
chapter.

10.2

Definition 22. An unbiased estimator for a population parameter θ is a point estimator Θ̂ for θ
such that E[Θ̂] = θ.

If Θ̂ is an estimator for θ then we can more generally define the bias of Θ̂ to be E[Θ̂]− θ. A weaker
but more widely applicable notion than unbiasedness is asymptotic unbiasedness.

Definition 23. A point estimator Θ for θ is asymptotically unbiased if in the limit as n (the size
of the random sample) goes to infinity, the bias of Θ tends to 0.

Unbiased estimators for uniform populations Consider a random sample drawn from a uni-
form population with α = 0 and β the population parameter being measured. We claim that n+1

n Yn
is an unbiased estimator for β. The pdf of Yn (see 8.7 for the formula we are about to use) is given
by

gn(y) = n · 1
β
(

∫ β

0
yndy)n−1 =

n

βn−1

for 0 < y < β and 0 elsewhere. Hence

E(
n+ 1

n
Yn) =

n+ 1

n
· n

βn

∫ β

0
yndy = β

We can now show why in the definition of sample variance we divided by n − 1 instead of n. It is
because this definition makes S2 into a unbiased estimator of σ2:

E[S2] =
1

n− 1
E[

n∑
i=1

(Xi −X)2)] =
1

n− 1
E[

n∑
i=1

((Xi − µ)− (X − µ))2)] =

1

n− 1
E[

n∑
i=1

(Xi − µ)2]− nE[(X − µ)2] =
1

n− 1
(nσ2 − n · σ

2

n
) = σ2

10.3

Definition 24. If Θ̂ is an unbiased estimator for a population parameter θ such that if Θ̂′ is any
other unbiased estimator for θ, then

V ar(Θ̂) < V ar(Θ̂′)
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then we say that Θ̂ is the minimum variance unbiased estimator for θ or the best estimator for θ.

Since the variance is a measure of how spread an unbiased estimator is away from the mean (which
is the population parameter it is measuring), it is obviously desirable to produce a best estimator for
θ in the sense of the above definition. This seems like a daunting task as there are infinitely many
unbiased estimators for a given population parameter. This situation can sometimes be addressed
through the use of the Cramer-Rao inequality, whose proof we did not cover in this course.

Cramer-Rao inequality Say that the PDF of our random sample is f(x), and that f depends
implicitly on the population parameter θ. Also assume that ∂

∂θ

∫ y
−∞ f(x)dx =

∫ y
−∞

∂
∂θf(x)dx for all

values of y. Then if Θ̂ is an unbiased estimator for θ and X is any of the random variables in the
random sample,

V ar(Θ̂) ≥ 1

n · E[(∂ln(f(X))
∂θ )2]

We can use the Cramer-Rao inequality to demonstrate that certain unbiased estimators are actually
best estimators.

The best estimator for the mean of a normal population Given a random sample from

a normal population with pdf f(x) = 1√
2πσ

e−
1

2σ2 (x−µ)2 , we calculate the right hand side of the

Cramer inequality with θ = µ.

ln(f(x)) = −ln(
√
2πσ)− 1

2σ2
(x− µ)2 =⇒

d

dµ
(ln(f(x)) =

x− µ

σ2
=⇒

E[(
d

dµ
(ln(f(X)))2] =

1

σ2
E[(

X − µ

σ
)2] =

1

σ2
=⇒

1

n · E[(∂ln(f(X))
∂θ )2]

=
σ2

n
= V ar(X)

Since the variance of X is equal to the RHS of the Cramer-Rao inequality and X is an unbiased
estimator for µ, it follows that X has smaller variance than any other unbiased estimator for
µ and hence is a best estimator for µ. Technically we should also check that d

dµ

∫ y
−∞ f(x)dx =∫ y

−∞
d
dµf(x)dx so that the assumptions of Cramer-Rao are met, but we leave this as an exercise.

Given two unbiased estimators Θ̂1 and Θ̂2 for a population parameter θ, we can compare their

relative efficiencies by examining the ratio of their variances: we say that Θ̂2 is relatively V ar(Θ̂1)

V ar(Θ̂2)
·

100% efficient as an estimator for θ as Θ̂1.
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Given a uniform population with α = 0, we showed before that n+1
n Yn is an unbiased estimator of

β. We also have that X is an unbiased estimator of β since E[2X] = 2 · α+β
2 = β. Using the pdf of

Yn derived in 8.7 applied to a uniform population, we can show that

E[Y 2
n ] =

n

n+ 2
β2

and hence
V ar(Yn) = E[Y 2

n ]− E[Yn]
2 =

n

n+ 2
β2 − (

n

n+ 1
β2) =⇒

V ar(
n+ 1

n
Yn) = (

n+ 1

n
)2(

n

n+ 2
β2 − (

n

n+ 1
β2)) =

β2

n(n+ 2)

We also know that if Xi is an element of the random sample then V ar(Xi) =
β2

12 (basic integration

exercise with pdf of uniform population), and hence V ar(2X) = 4
nV ar(Xi) =

β2

3n . Therefore

V ar(n+1
n Yn)

V ar(2X)
=

3

n+ 2

so for e.g n = 10, 2X is 25% efficient as an estimator compared to n+1
n Yn, and as n gets larger this

efficiency gets even lower – we conclude that n+1
n is a much more efficient estimator of β than 2X.

10.4

The next property of estimators that we discussed is called consistency.

Definition 25. An estimator Θ̂ for a parameter θ is called consistent if for any c > 0,

lim
n→∞

P (|X − θ| < c) = 1.

We note that Chebyshev’s theorem implies that an unbiased estimator Θ̂ with the property that
limn→∞ V ar(Θ̂) = 0 then Θ̂ is a consistent estimator. In fact, more is true: if Θ̂ is only asymptot-
ically unbiased with limn→∞ V ar(Θ̂) = 0 then Θ̂ is still a consistent estimator.

Using the fact that (n−1)S2

σ2 is chi-square distributed with n − 1 d.o.f for a random sample from a

normal population, we can calculate that V ar(S2) = 2σ4

n−1 . Since we know that S2 is an unbiased

estimator for σ2 and the variance of S2 (for a random sample from a normal population clearly
goes to 0 by the formula above, we see that S2 is a consistent estimator of σ when we sample from
a normal population.
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10.7

Here we describe a simple method, called the method of moments, to write down an estimate for
a collection of population parameters θ1, ..., θk. First we need a definition

Definition 26. Let x1, ..., xn be the observed values of some random sample X1, ..., Xn. Then the
rth sample moment is

m′
r :=

∑n
i=1 x

r
1

n
.

The method of moments simply consists of equating m′
r with the rth moment µ′

r = E[Xr
i ] for r =

1, ..., k and solving for the population parameters θ1, ..., θk. We illustrate this with two examples.

Let’s use the method of moments to estimate α for a uniform population with β = 1. In this
case we just need to set the first sample moment m′

1 = x̄ = x1+...+xn
n equal to the first moment

µ′
1 =

α+β
2 = α+1

2 ,. Solving for α we see that α̂ = 2x̄− 1 . We put a hat on α to indicate that this
equation is an estimate for α using the observed data x1, ..., xn.

Given a random sample from a Γ population, let’s use the method of moments to estimate both α
and β. Recalling that the MGF of a Γ RV is (1− β)−α, by taking two derivatives we can calculate
that µ′

1 = αβ and µ′
2 = α(α+ 1)β2. Therefore the method of moments consists of solving the two

equations for α and β:
m′

1 = x = αβ

m′
2 = α(α+ 1)β2

. Note that m′
2 − (m1)

′2 = αβ2 and hence
m′

2 − (m′
1)

2

m′
1

= β̂ while
m′2

1

m′
2 − (m′

1)
2
= α̂ .

10.8

Finally we describe a method for producing estimators which are asymptotically unbiased and
sufficient (we didn’t cover sufficiency, but it is another desirable property of an estimator) called
the method of maximum likelihood. The method consists of

1. Thinking of the jpdf of our random sample f(x1, ..., xn) as only a function L(θ1, ..., θk) of
the population parameters θ1, .., θk that we are trying to write down estimators for. THIS IS
JUST A NOTATION SHIFT THERE IS NO NEW FUNCTION. We call this newly notated
function the ”likelihood function.”

2. Find the value of θ that maximizes L in terms of the xi. This can be done using calculus or
some other optimization technique.

3. Promote θk to Θ̂k, the estimator for θk, by promoting the xi to the Xi, the elements of the
random sample.

14



We call Θ̂k the maximum likelihood estimator for θk. Let’s see a couple of examples of this method.

Problem: Given x “successes” in n trials, find the maximum likelihood estimate of the parameter
θ of the corresponding binomial distribution.
Solution In this case the pdf is b(x;n, θ) =

(
n
x

)
θx(1 − θn−x. We rename this pdf the likelihood

function and denote it L(θ). Maximizing L as a function of θ is equivalent to maximizing ln(L(θ))
since ln is monotone, so we work with d

dθ ln(L(θ)) =
x
θ − n−x

1−θ . Setting this equal to 0 and solving

for θ yields θ = x
n . Promoting x to X and θ to Θ̂, we see that that the max likelihood estimator

for θ is Θ̂ = X
n .

Problem: Find the max likelihood estimator of β > 0 when we draw a random sample of size n
from a uniform population with α = O.
Solution: The jpdf of such a random sample is L(β) = f(x1, ..., xn) =

1
βn for 0 ≤ x1, ..., xn ≤ β and

0 otherwise. Clearly making β smaller makes the likelihood function larger so long as β is larger
than the all of the xi. It follows that the largest value the likelihood function can take for fixed
values of the xi is when β = max(x1, ..., xn). Promoting the xi to the RV’s Xi from the random
sample gives max(X1, ..., Xn) = Yn, the nth order statistic, as the maximum likelihood estimator
for β.

Problem: Given a random sample X1, ..., Xn from a normally distributed population with param-
eters µ and σ2, find the max likelihood estimators of µ and σ2.
Solution: The jpdf, which we denote by L(µ, σ2) to indicate that we are thinking of it as our
likelihood function, is

L(µ, σ2) = (
1√
2πσ2

)ne−
1

2σ2

∑n
i=1(xi−µ2

We again use the trick of maximizing the log of L(µ, σ2) instead since ln is an increasing function.
Taking partial derivatives of ln(L(µ, σ2)) with respect to µ and σ2 yields

ln(L(µ, σ2))µ =
1

σ2

n∑
i=1

(xi − µ)

ln(L(µ, σ2))σ2 = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ2).

Setting both of these equations equal to 0 and solving for µ and σ2 in terms of the xi and then
promoting the xi to Xi yields the max likelihood estimators

M̂ :=
1

n
(X1 + ...+Xn) = X

Σ̂2L :=
1

n

n∑
i=1

(Xi −X)2 =
n− 1

n
S2.

Notice that the max likelihood estimator of σ2 is not an unbiased estimator of σ2.
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