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1 Basics of conformal symmetry in two dimensions

1.1 Conformal transformations and holomorphic functions

Definition 1.1 A conformal transformation between (pseudo)-Riemannian manifolds (M, g)
and (N, g′) is a map f : M → N such that there exists Λ : M → R>0 so that for all x ∈ M ,
[f∗g′](x) = Λ(x)g(x)

Let us specialize to the case of M = N = R2 = C with the Euclidean metric g = g′ = dx2+dy2. Then
for f : R2 → R2 to be a conformal transformation we must have (writing the metric components in
matrix notation): [

Λ 0
0 Λ

]
= Λg = f∗g′ =

[
(∂f

0

∂x )2 + (∂f
0

∂y )2 ∂f0

∂x
∂f1

∂x + ∂f0

∂y
∂f1

∂y
∂f0

∂x
∂f1

∂x + ∂f0

∂y
∂f1

∂y (∂f
1

∂x )2 + (∂f
1

∂y )2

]
The diagonal elements of this matrix equation tell us that

(
∂f0

∂x
)2 + (

∂f0

∂y
)2 = Λ = (

∂f1

∂x
)2 + (

∂f1

∂y
)2 (1)

and the off diagonal elements tell us that

∂f0

∂x

∂f1

∂x
+
∂f0

∂y

∂f1

∂y
= 0 (2)

If we do some algebra now, making liberal use of (1) and (2) we get the following:[
(
∂f1

∂x
− ∂f0

∂y
)2 + (

∂f0

∂x
+
∂f1

∂y
)2

][
(
∂f1

∂x
+
∂f0

∂y
)2 + (

∂f0

∂x
− ∂f1

∂y
)2

]
= 0 (3)

The first of these factors being 0 is equivalent to the Cauchy-Riemann equations for f, and the
second factor being 0 is equivalent to the equations defining an anti-holomorphic function. So we
have found that f being conformal is the same as f being either holomorphic or anti-holomorphic.
Because of this, we move to complex coordinates z = x+iy, z̄ = x−iy. Associated to this coordinate
transformation are these usual corresponding transformations and definitions:

∂ := ∂z =
1

2
(∂x − i∂y) (4)

∂̄ := ∂z̄ =
1

2
(∂x + i∂y) (5)

gµν =

[
0 1

2
1
2 0

]
, gµν =

[
0 2
2 0

]
(6)

Remark 1 In (6), the indices µ and ν run over z, z̄

Remark 2 We will be interested in theories invariant under local conformal transformations. Local
refers to invariance of our theory under any meromorphic function on C, i.e we allow for poles.
Indeed, the invertible/holomorphic transformations on the Riemann sphere are just those of the
form f(z) = az+b

cz+d where ad − bc = 1 (the so called Mobius transformations) which comprise a
small subset of all possible local conformal maps from the Riemann sphere to itself.

1.2 The Witt algebra

From basic complex analysis, we recall that any meromorphic function is equal to its Laurent se-
ries on a punctured neighborhood of 0. Therefore we have that the algebra of local conformal
transformations is generated by {`n}n∈Z ∪ { ¯̀

n}n∈Z where

Definition 1.2
`n = −zn+1∂ (7)

`n = −z̄n+1∂̄ (8)

The collection of these `n span the Lie algebra of infinitesimal conformal transformations called the
Witt algebra. Clearly the ¯̀

n span an isomorphic algebra.

Remark 3 Easy computations yield

[`n, `m] = (m− n)`m+n (9)

[`n, `m] = (m− n)`m+n (10)

[`n, `m] = 0 (11)

Remark 4 The symmetry algebra of the theory is the direct sum of two copies of the Witt algebra,
one for the `n’s and one for the ¯̀

n’s. Because of this splitting we will often focus our attention
on the `′ns (the holomorphic part of the theory) and identical considerations will apply to the
anti-holomorphic ¯̀

n’s. Furthermore we will think of z and z̄ as independent complex coordinates,
imposing the reality condition z∗ = z̄ when it is convenient.

If we consider the singular behavior of some vector field
∑
an`n as z → 0 and z → ∞ what we

find is that the only globally well defined elements of the Witt algebra are {`±1, `0}. Indeed these
generate the aforementioned Mobius tranformations from Remark 1.
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1.3 The Virasoro algebra

When we move from a classical theory to a quantum one, we must consider projective representations
of the symmetry algebra which in turn are equivalent to true representations of central extensions
of that algebra. The Witt algebra has a unique central extension, as one can check by computing
its second cohomology.

Definition 1.3 The Virasoro algebra with central charge c is the central extension of the Witt
algebra given by the relations

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (12)

[Ln, c] = 0 (13)

c here is an operator in the center of the Lie algebra, and it can take specific values on representations
(it will necessarily take a fixed value on an irreducible representation by Schur’s lemma).

We expect that two dimensional conformal field theory should be all about representations of this
algebra.

2 Fields and correlation Functions

In this section we establish some of the basics of the formalism in 2 dimensional conformal field
theories.

2.1 Conformal dimension and (quasi)-primary fields

Definition 2.1 A field φ(z, z̄) has conformal weight/dimension (h, h̄) if under scale transfor-
mation z → λz, z̄ → λ̄z̄ it transforms as

φ(z, z̄)→ φ′(z, z̄) = λhλ̄h̄φ(λz, λz̄) (14)

Equivalently, L0φ = hφ and L̄0φ = h̄φ.

Definition 2.2 A quasi-primary field with conformal weight (h, h̄) is a field φ(z, z̄) such that
for any global conformal transformation z → f(z) = az+b

cz+d (ab− cd = 1)

φ(z, z̄)→ φ′(z, z̄) = (
∂f

∂z
)h(

∂f̄

∂z̄
)h̄φ(f(z), f̄(z̄)) (15)

Definition 2.3 A primary field with conformal weight (h, h̄) is a field φ transforming under
the same law (15) for all (local in addition to global) transformations z → f(z).

Remark 5 From path integral methods and the transformation property (15), we know that if z →
f(z) is a global conformal transformation and φi are quasi primary fields of conformal weight (hi, h̄i)
then

〈φ1(z1, z̄1)...φn(zn, z̄n)〉 = [

n∏
i=1

(
∂f

∂z
)hi
∣∣∣
z=zi

(
∂f̄

∂z̄
)h̄i
∣∣∣
z̄=z̄i

]〈φ1(f(z1), f̄(z̄1))...φn(f(zn), f̄(z̄n))〉 (16)

The same equation applies to primary fields with arbitrary (i.e local in addition to global) conformal
transformations f .

2.2 Correlation functions of quasi-primary fields

In a quantum field theory, the objects of interest are the correlation functions 〈φ1(z1, z̄1)...φi(zi, z̄i)〉
which are defined as either vacuum expectation values of time ordered products of operators in the
operator/canonical formalism, or as path integrals (specifically functional derivatives of the source-
dependent partition function of the theory) in the path integral formalism. These definitions are
equivalent, but in conformal field theory it is useful to work in the operator formalism while drawing
upon things like Ward identities that most naturally are seen from the path integral perspective
when they are necessary.

Let’s take a first look at how constraining it is for a field theory to be invariant under confor-
mal transformations by looking at 2 and 3 point functions of quasi-primary fields. If we define
g(z, z̄, w, w̄) = 〈φ1(z, z̄)φ2(w, w̄)〉 for quasi-primary fields φi of conformal weight (hi, h̄i) then using
(16) with f(z) = z − b (and f̄(z̄) = z̄ − b̄) we get

g(z, z̄, w, w̄) = g(z − b, z̄ − b̄, w − b, w̄ − b̄)

Specializing to b = w this tells us that g only depends on the differences z − w and z̄ − w̄: we may
write g(z − w, z̄ − w̄). Now if we consider f(z) = λz, f̄(z̄) = λ̄z̄ we get that

g(z − w, z̄ − w̄) = λh1+h2 λ̄h̄1+h̄2g(λ(z − w), λ̄(z̄ − w̄))

3



Picking z − w = z̄ − w̄ = 1 shows us that

g(λ, λ̄) =
d12

λh1+h2 λ̄h̄1+h̄2

Here d12 := g(1, 1) (we just use this notation to emphasize that g depends on/is defined in terms of
φ1 and φ2). Of course λ and λ̄ are arbitrary so this tells us that

〈φ1(z, z̄)φ2(w, w̄)〉 = g(z − w, z̄ − w̄) =
d12

(z − w)h1+h2(z̄ − w̄)h̄1+h̄2
(17)

We can apply one more Mobius tranform to our coordinates, namely f(z) = −1
z , f̄(z̄) = −1

z̄ to obtain
the equation

d12

(z − w)h1+h2(z̄ − w̄)h̄1+h̄2
= z−2h1w−2h2 z̄−2h̄1w̄−2h̄1

d12

(−1
z −

−1
w )h1+h2(−1

z̄ −
−1
w̄ )h̄1+h̄2

If d12 6= 0 then using −1
z −

−1
w = z−w

zw it is simple to see that the above is only satisfied when h1 = h2

and h̄1 = h̄2. So up to some constant d12 that vanishes unless conformal weights are equal, we have
found the form of all two point functions of quasi-primary fields. We can normalize our fields by
some constants to guarantee that d12 = 1 when the conformal weights agree (and is, like we just
noted, 0 when they don’t).
We may employ a similar process to conclude that 3 point correlation functions of quasi-primary
fields φi of conformal weights (hi, h̄i) take the following form:

〈φ1(z1, z̄1), φ2(z2, z̄2), φ3(z3, z̄3)〉 =
C123

zh1+h2−h3
12 z̄h̄1+h̄2−h̄3

12 zh1+h3−h2
13 z̄h̄1+h̄3−h̄2

13 zh2+h3−h1
23 z̄h̄2+h̄3−h̄1

23
(18)

Where we are using the notation zij := zi − zj and z̄ij := z̄i − z̄j . N-point functions for N > 3 are
not constrained to such a particular form, but conformal invariance does impose some conditions on
them.

3 Radial quantization and the operator formalism

3.1 ‘Isomorphism’ between the theory on the cylinder and on the Rie-
mann sphere

Consider the cylinder R× S1 with coordinates σ0 and σ1 (so σ1 takes values in [0, 2π)). The map

f : R× S1 → C∗, (σ0, σ1)
f→ eσ0+iσ1 (19)

is a well defined conformal map between the cylinder and the punctured complex plane C∗. In fact,
if we adjoin points at σ0 = ±∞ to the cylinder, we get the suspension of a circle (in the sense
of algebraic topology) and the standard relation SS1 ∼= S2 then gives an extension of f from this
‘elongated’ cylinder to the Riemann sphere.
If we think of σ0 as the time direction on the cylinder, the circles centered about the origin in C
correspond to constant time slices on the cylinder under f . We will shift perspectives and think of
the cylinder as the fundamental object of study, so that the basic physical notions in our theory are
derived from the geometry of the cylinder and then are translated via f to C. For example

• equal time slices on the cylinder (σ0 constant) correspond to circles centered about the origin
in the complex plane

• integrals over all of space now become integrals over a circle centered about the origin

• time translations along the cylinder σ0 → σ0 + a correspond to dilations z → eaz

• The Hamiltonian, being the generator of time translations on the cylinder, becomes the gen-
erator of dilations on C. But it is easy to see that the generator of coordinate dilations on C
is `0 + ¯̀

0, so the Hamiltonian is (some multiple of) L0 + L̄0

3.2 Stress energy tensor and currents of arbitrary conformal transforma-
tions

The second bullet point above is crucial in constructing Noether charge’s from conserved currents.
Usually if we have a conserved current jµ in some d+ 1 dimensional classical field theory, we get a
charge Q =

∫
ddxj0 whose conservation is guaranteed by using Gauss’s law and ∂µj

µ = 0. Now the
prescription above tells us that such charges will be constructed with the use of contour integrals
around a circle centered about the origin:

Q =

∮
0

dθjr(θ) (20)
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One familiar conserved current is the stress energy tensor Tµν that corresponds to translation symme-
tries. When we move to complex coordinates, Tµν now has components Tzz, Tzz̄, Tz̄z, Tz̄z̄. Although
the stress energy tensor obtained from the Noether method may not be manifestly symmetric,
we may add to it the divergence of an appropriate antisymmetric tensor to make it symmetric;
such a modification is called the Belinfante tensor. There is another important example of a
conserved current in a conformal field theory: Dilations form a continuous family of conformal
maps, and the current that we get from them (after maybe adding the divergence of an antisym-
metric tensor) is jµ = Tµνx

ν . Conservation of this current tells us that we have the equation
0 = ∂µ(Tµνx

ν) = Tµνδµν + [∂µTµν ]xν = Tµµ + 0. In this last equality we used that ∂µTµν = 0 since
Tµν is itself a conserved current. So we see that the stress energy tensor is traceless. Therefore
the components Tzz̄, Tz̄z are both 0 since they are equal to 1

4T
µ
µ. For notational ease, in complex

coordinates we define

Definition 3.1
T = Tzz (21)

T̄ = Tz̄z̄ (22)

Since the other components vanish, T and T̄ capture all aspects of the stress energy tensor. Fur-
thermore, translating the conservation law ∂µTµν into complex coordinates, and using Tzz̄, Tz̄z = 0
we get the equations ∂̄T = 0 and ∂T̄ = 0 so we see that T only depends on z (‘T (z, z̄) = T (z) is
holomorphic’) and T̄ only depends on z̄ (‘T̄ (z, z̄) = T̄ (z̄) is anti-holomorphic’). Actually there are
many more currents that we can form in a conformal field theory using the fact that arbitrary holo-
morphic maps are conformal. The current associated to an infinitesimal conformal transformation
xµ → xµ+εµ (εµ a function of x) can be computed and the result is Tµνε

ν . Once we shift to complex
coordinates, combining this result with (19) gives us that the conserved charge associated to an
infinitesimal conformal transformation z → z + ε(z), z̄ → z̄ + ε̄(z̄) is

Qε,ε̄ :=
1

2πi

∮
0

dzT (z)ε(z) + dz̄T̄ (z̄)ε̄(z̄) (23)

In a QFT we have a relation δεA = [Qε, A] for any field A that tells us how A varies under an
infinitesimal symmetry. Therefore from (23) we find the equation

δε,ε̄φ(w, w̄) =
1

2πi

∮
0

dz[T (z)ε(z), φ(w, w̄)] + dz̄[T̄ (z̄)ε̄(z̄), φ(w, w̄)] (24)

The correlation functions that we consider in QFT are usually time ordered. The analog of this in
radial quantization is the following:

Definition 3.2 The radially ordered product of two fields A and B is defined

R(A(z)B(w)) =

{
A(z)B(w) |z| > |w|
B(w)A(z) |w| < |z|

(25)

Now if we go back to (23), we may use this definition to write it in a more concise form. Let’s just
focus on the holomorphic part, since identical considerations apply to the anti-holomorphic part.

1

2πi

∮
0

dz[T (z), A(w)] =
1

2πi

∮
0

dzT (z)A(w)−A(w)T (z) =

1

2πi

∮
|z|=R>w

dzT (z)A(w)− 1

2πi

∮
|z|=r<w

dzA(w)T (z) =

1

2πi

∮
|z|=R>w

dzR(T (z)A(w))− 1

2πi

∮
|z|=r<w

dzR(A(w)T (z)) =

1

2πi

∮
w

dzR(A(w)T (z)) (26)

In the second equality we used Cauchy’s theorem to choose the radius of the circle along which we
integrate, and then the third equality is recognizing that along these radii R and r, the integrands
both are equal to the radially ordered product. Applying this to the antiholomorphic part as well,
we obtain

δε,ε̄φ(w, w̄) =
1

2πi

∮
w,w̄

dzε(z)R(T (z)φ(w, w̄)) + dz̄ε̄(z̄)R(T̄ (z̄)φ(w, w̄)) (27)

We can use this expression along with the transformation law (15) to obtain an expression for the
singular part of R(T (z), φ(w, w̄)) for φ a primary field of conformal weight (h, h̄) as follows. If we
have some infinitesimal transformation w → f(w) = w + ε(w), w̄ → f̄(w) = w̄ + ε̄(w̄) then we can
compute using binomial expansion that (∂f∂z )h = (1+∂ε(w))h = 1+h∂ε(w)+���O(ε2) and similarly for
f̄ . Taylor expanding we also get φ(f(w), f̄(w̄)) = φ(w+ ε(w), w̄+ ε̄(w̄)) = φ(w, w̄) +∂φ(w, w̄)ε(w) +
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∂̄φ(w, w̄)ε̄(w̄) +�
��O(ε2). Hence going back to (15) we see that the new field after the transformation

is equal to

φ′(w, w̄) =(1 + h∂ε(w))(1 + h̄∂ε̄(w̄))(φ(w, w̄) + ∂φ(w, w̄)ε(w) + ∂̄φ(w, w̄)ε̄(w̄)) =

φ(w, w̄) + ∂φ(w, w̄)ε(w) + ∂̄φ(w, w̄)ε̄(w̄) + hφ(w, w̄)∂ε(w) + h̄φ(w, w̄)∂̄ε̄(w̄) (28)

Therefore we compute that

δε,ε̄φ = φ′(w, w̄)− φ(w, w̄) = ∂φ(w, w̄)ε(w) + ∂̄φ(w, w̄)ε̄(w̄) + hφ(w, w̄)∂ε(w) + h̄φ(w, w̄)∂̄ε̄(w̄) (29)

Now using Cauchy’s integral formula, we can write ε(w) = 1
2πi

∮
w
dz ε(z)z−w , ∂ε(w) = 1

2πi

∮
w
dz ε(z)

(z−w)2

and similarly for ε̄(w̄) and ∂̄ε̄(w̄). Plugging this into (29) gives

δε,ε̄φ(w, w̄) =
1

2πi

∮
w,w̄

dzε(z)[
hφ(w, w̄)

(z − w)2
+
∂φ(w, w̄)

z − w
] + dz̄ε̄(z̄)[

h̄φ(w, w̄)

(z̄ − w̄)2
+
∂̄φ(w, w̄)

z̄ − w̄
] (30)

Comparing (27) and (30) and then tells us that

R(T (z)φ(w, w̄)) =
hφ(w, w̄)

(z − w)2
+
∂φ(w, w̄)

z − w
+ ... (31)

R(T̄ (z̄))φ(w, w̄) =
h̄φ(w, w̄)

(z̄ − w̄)2
+
∂̄φ(w, w̄)

z̄ − w̄
+ ... (32)

where the ...′s are standard notation for a regular/homolorphic function (no poles). In fact, (31)
and (32) could have been taken as the defining property of primary fields instead of (15). Expansions
of a product of local fields like this are commonly referred to as Operator Product Expansions
(OPEs).

Remark 6 We could repeat this analysis with the weaker assumption that φ is a field with conformal

dimension (h, h̄). The result is that the (z−w)−2 term in the Tφ OPE is hφ(w,w̄)
(z−w)2 , and the (z − w)−1

term is ∂φ(w,w̄)
z−w but there can be more singular terms.

Remark 7 We shall stop writing R to denote radial ordering and instead have an implicit under-
standing that all products of operators that we write are radially ordered.

3.3 OPE of stress energy tensor with itself

Let’s expand the chiral part of the energy momentum tensor as follows:

T (z) =
∑
m∈Z

z−m−2Tm (33)

What are these Tm? Picking ε(z) = zm+1 in (23) we see that Tm is equal to the conserved charge
associated to the local conformal transformation z → z + ε(z), which is nothing other than the
Virasoro algebra element Lm. Hence we have

T (z) =
∑
m∈Z

Lmz
−m−2 (34)

This realization of the energy momentum tensor along with the defining relations of the Virasoro
algebra (12) allows us to compute the OPE of T with itself. The idea is to express [Ln, Lm] in two
ways, one of them being

[Ln, Lm] = (
1

2πi
)2

∮
0

dw

∮
w

dzwm+1zn+1T (w)T (z) (35)

and the other obtained in a similar fashion by writing

[Ln, Lm] =(n−m)Ln+m +
c

12
δn,−m(n3 − n) =

1

2πi

∮
0

dwwm+1[
1

12
c(n3 − n)wn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w)] (36)

Since this holds for every value of m we must have

1

2πi

∮
w

zn+1T (w)T (z) =
1

12
c(n3 − n)wn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w) (37)

Finally we notice that for n 6= −1, 0, 1

1

2πi

∮
w

dzzn+1 c

2(z − w)4
=

1

12
c(n3 − n)wn−2 (38)

1

2πi

∮
w

dzzn+1 2T (w)

(z − w)2
= 2(n+ 1)wnT (w) (39)

1

2πi

∮
w

dzzn+1 ∂T (w)

z − w
= wn+1∂T (w) (40)
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Using Cauchy’s theorem and (37)− (40) we conclude that

T (w)T (z) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ ... (41)

where we must allow for the ...′s because of the n 6= −1, 0, 1 condition.

Remark 8 In accordance with remark 6, we conclude that T has conformal dimension (2, 0).

Actually (41) gives us more than just the conformal dimension of T . With some work, we can extract
from it the fact that T is a quasi-primary field. Let’s outline how this follows. First we use (27)
with φ = T , (41) and Cauchy’s integral theorem to say that

δεT (w) =
1

2πi

∮
w

ε(z)T (z)T (w) =
c

12
∂3ε(w) + 2T (w)∂ε(w) + ε(w)∂T (w) (42)

We won’t go into the details, but (42) may be exponentiated to give

T ′(z) = (
∂f

∂z
)2T (f(z)) +

c

12
S(f(z), z) (43)

where f is any conformal transformation and S is defined to be the Schwarzian derivative:

Definition 3.3

S(w, z) :=
1

(∂zw)2
((∂zw)(∂3

zw)− 3

2
(∂2
zw)2) (44)

Remark 9 It is easy to check that S(f(z), z) vanishes when f(z) = az+b
cz+d is a Mobius transformation.

Hence for f a global conformal transformation, (43) reduces to

T ′(z) = (
∂f

∂z
)2T (f(z)) (45)

which is the defining property of a quasi primary field of conformal dimension (2, 0).

3.4 Mode expansions and commutators

We can generalize the calculation on the last page to an arbitrary field as follows.

Definition 3.4 The mode expansion of a field φ(z, z̄) of conformal dimension (h, h̄) is a Laurent
series

φ(z, z̄) =
∑
n,m∈Z

z−m−hz̄−n−h̄φm,n (46)

The φm,n are called the modes of φ and they are operators with no z dependency.

Remark 10 We can take a contour integral of (32) to pop out any particular mode we want:

(
1

2πi
)2

∮
0

dz

∮
0

dz̄φ(z, z̄)zm+h−1z̄n+h̄−1 = φm,n (47)

Knowing the singular part of the OPE of two fields is equivalent to knowing the commutation
relations between the modes of the two fields. We saw one direction of this biconditional above
with the calculation of the TT OPE using the commutation relations of the Virasoro modes, and
now we will demonstrate the other direction by using (31), the OPE of Tφ where φ is primary of
conformal dimensions (h, h̄), to calculate [Lm, φn]. For simplicity of notation we will assume that
φ(w, w̄) = φ(w) is holomorphic so that in particular h̄ = 0 and φ(w) =

∑
k∈Z w

−k−hφk. Then we
can calculate

[Lm, φn] =
1

(2πi)2

∮
0

dw

∮
w

dz[zm+1wn+h−1T (z)φ(w)] =

1

(2πi)2

∮
0

dw

∮
w

dz[zm+1wn+h−1 hφ(w)

(z − w)2
+
∂φ(w)

z − w
]

1

2πi

∮
0

dw[wn+h−1hφ(w)(m+ 1)wm + wn+h−1∂φ(w)wm+1] =

1

2πi

∮
0

dw[(m+ 1)h
∑
k∈Z

wn+h−1−k−h+mφk +
∑
k∈Z

(−k − h)wn+h−1−k−h−1+m+1φk] =

(m+ 1)hφn+m + (−m− n− h)φn+m = (m(h− 1)− n)φn+m (48)

We can define a slightly more general mode expansion that is centered around some arbitrary point
w instead of 0 as

Definition 3.5
φ(z, z̄) =:

∑
n,m∈Z

(z − w)−m−h(z̄ − w̄)−n−h̄φm,n(w, w̄) (49)
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3.5 Conformal Ward identity

In the literature I have seen a couple of things referred to as the conformal Ward identity. The first
is (27). The second is obtained by considering the following expression:

1

2πi

∮
C

dzε(z)〈T (z)φ1(w1, w̄1)...φn(wn, w̄n)〉 (50)

where the φi are primary and the contour C is some circle large enough to contain all of the points
wi. By a contour deformation, (50) is equal to

n∑
i=1

〈φ1(w1, w̄1)...

∮
wi

dz[
1

2πi
ε(z)T (z)φi(wi, w̄i)]...φn(wn, w̄n)〉 =

n∑
i=1

〈φ1(w1, w̄1)...δεφ(wi, w̄i)...φn(wn, w̄n)〉 =

n∑
i=1

〈φ1(w1, w̄1)...(ε(wi)∂wi + h∂wiε(wi))φ(wi, w̄i)...φn(wn, w̄n)〉 = (51)

n∑
i=1

〈φ1(w1, w̄1)...

∮
wi

dzε(z)
[
(

hi
(z − wi)2

+
∂wi

z − wi
)φi(wi, w̄i)

]
...φn(wn, w̄n)〉 =

∮
C

dzε(z)

n∑
i=1

[ hi
(z − wi)2

+
∂wi

z − wi

]
〈φ1(w1, w̄1)...φi(wi, w̄i)...φn(wn, w̄n)〉 (52)

The first three lines are just using the various expressions that we have come up with for δεφ(w, w̄)
on page 5. The third to the fourth line is a simple application of Cauchy’s integral theorem, in
fact the same application that got us the Tφ OPE in the first place. The fourth to the fifth line is
a contour deformation to change an integral about wi to an integral about C (allowed to do this
because the only poles of the thing being integrated in the ith term is at wi). Comparing (50) and
(52) and realizing that they must hold for all ε(z), we get

〈T (z)φ1(w1, w̄1)...φn(wn, w̄n)〉 =

n∑
i=1

[ hi
(z − wi)2

+
∂wi

z − wi

]
〈φ1(w1, w̄1)...φi(wi, w̄i)...φn(wn, w̄n)〉

(53)
Equation (53) is the second thing that I have seen called the conformal Ward identity. The last
thing that I have seen called the conformal Ward identity is derived by starting with with the
equality of (50) and (51), noticing that (50) is δε〈φ1(w1, w̄1)...φn(wn, w̄n)〉, and then using the fact
that this quantity must vanish for ε corresponding to an infinitesimal global conformal symmetry
ε(z) = β+2αz−γz2 (this is the first order approximation of the infinitesimal Mobius transformation
(1+α)z+β
γz+1−α ). Accordingly, taking ε constant, linear and quadratic in (51) yields

0 = δε〈φ1(w1, w̄1)...φn(wn, w̄n)〉 =

n∑
i=1

∂wi〈φ1(w1, w̄1)...φn(wn, w̄n)〉 (54)

0 = δε〈φ1(w1, w̄1)...φn(wn, w̄n)〉 =

n∑
i=1

(wi∂wi + hi)〈φ1(w1, w̄1)...φn(wn, w̄n)〉 (55)

0 = δε〈φ1(w1, w̄1)...φn(wn, w̄n)〉 =

n∑
i=1

(w2
i ∂wi + 2wihi)〈φ1(w1, w̄1)...φn(wn, w̄n)〉 (56)

These are the third set of equations that I have seen referred to as the conformal Ward identity. In
some sense they are all consequences of (27) so I suppose that this is the ‘master’ Ward identity.

4 Conformal families and Verma Modules

4.1 The Hilbert space

We are currently in a strange situation where we are mainly working in the canonical/operator
formalism to make most of our calculations and definitions, and yet the calculation of the correlation
functions and identities that they satisfy (e.g the conformal Ward identity) follow from our path
integral intution. It is time to remedy this by going into some detail about the Hilbert space of our
theory. First, an axiom. We assume that our Hilbert space has a vacuum vector |0〉 such that if φ is
a primary field of conformal dimension (h, h̄), then φm,n |0〉 = 0 if −h < m or −h̄ < n. In addition,
we require that Ln |0〉 = 0, L̄n |0〉 = 0 for n ≥ −1. Because of this axiom we may write

Definition 4.1 The primary state |h, h̄〉 associated to a primary field φ of conformal weight (h, h̄)
is

lim
z,z̄→0

φ(z, z̄) |0〉 = lim
z,z̄→0

∑
m,n∈Z

z−m−hz̄−n−h̄φm,n |0〉 = φ−h,−h̄ |0〉 (57)
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Remark 11 The last equality in the above definition follows because for (m,n) 6= (−h,−h̄), either

φm,n |0〉 = 0

by our axiom or
lim
z,z̄→0

z−m−hz̄−n−h̄ = 0

because −m− h,−n− h̄ > 0.

Let’s check that these states deserve the label |h, h̄〉 by acting on them with L0. Using equation (48)
with m = 0 and n = −h, we get the following:

L0 |h, h̄〉 = L0φ−h,−h̄ |0〉 = [L0, φ−h,−h̄] |0〉 = −(−h)φ−h,−h̄ |0〉 = h |h, h̄〉 (58)

and similarly for the action of L̄0. The second equality in (58) follows from axioms since L0 |0〉 = 0.
Now let’s recall equation (12), the defining commutation relation of the Virasoro algebra. It tells us
that

[L0, L−m] = mL−m (59)

Similarly, (48) tells us that
[L0, φ−m] = mφ−m (60)

Taking m to be positive in either (59) or (60) tells us then that the action on |h, h̄〉 with L−m or
φ−m increases the L0 eigenvalue (which, in anticipation of the state operator correspondence, we
will refer to as the conformal dimension of the state) by m:

L0L−m |h,−h̄〉 = L0L−mφ−h,h |0〉 = [L0, L−m]φ−h,−h̄ |0〉+ L−mL0φ−h,−h̄ |0〉 =

mL−mφ−h,−h̄ |0〉+ L−mhφ−h,−h̄ = (m+ h)L−m |h,−h̄〉 (61)

L0φ−m |h,−h̄〉 = L0φ−mφ−h,h |0〉 = [L0, φ−m]φ−h,−h̄ |0〉+ φ−mL0φ−h,−h̄ |0〉 =

mφ−mφ−h,−h̄ |0〉+ φ−mhφ−h,−h̄ = (m+ h)φ−m |h,−h̄〉 (62)

Definition 4.2 We can repeatedly apply negative Virasoro (or primary field) modes to |h, h̄〉 to
obtain descendent states

LK |h, h̄〉 := L−k1 ...L−kn |h, h̄〉 (63)

By the same calculation we did in (61) and some induction we obtain that the conformal dimension
of a descendent state is h+ k1 + ...+ kn. We make the assumption that 0 ≤ k1 ≤ ... ≤ kn.

We will take the collection of primary states and their descendents to be a basis for our Hilbert
space. This explains the k1 ≤ ... ≤ kn condition that we have imposed on descendent states; a
primary state acted on by negative Virasoro modes in an arbitrary order can always be written as
a linear combination of these ordered descendent states by making use of the Virasoro algebra. If a
primary state is acted on by a positive Virasoro mode, it is annhilated. In this manner we ensure
that each primary state is the lowest weight state of the subrepresentation that it generates.

Definition 4.3 V(h,h̄) = span{L−k1 ...L−kn |h, h〉 |0 ≤ k1 ≤ ... ≤ kn} is called the Verma module

associated to |h, h̄〉

Finally we make note that we just have an vector space so far; we haven’t defined an inner product
on it yet, so it is not a Hilbert space. We delay this construction to the next section after we talk
about descendent fields.

4.2 Normal ordering, descendent fields and state operator correspon-
dence

We now talk about normal ordering which will be useful in section 5 when we deal with explicit
examples of conformal field theories, and also connects to the notion of descendent fields that we
will define later in this subsection. Normal ordering is usually first seen in the context of free fields
in QFT where it manifests as the prescription of putting annhilation operators on the right. This
normal ordering will be more general in the sense that it applies to arbitrary field theories, not just
free ones, but it will be less general in the sense that it only defines the normal ordering for fields
inserted at the same point. Let’s give a definition (we assume holomorphic fields for simplicity):

Definition 4.4 We define the normal ordering of two fields φ1(z) and φ2(w) as

: φ1φ2 : (w) = N (φ1φ2)(w) = (φ1φ2)(w) ≡ 1

2πi

∮
w

dz
φ1(z)φ2(w)

z − w
(64)

If we write the OPE of φ1 and φ2 as

φ1(z)φ2(w) =

N∑
n=−∞

(z − w)−n{φ1φ2}n(w) (65)

then plugging this into the definition of normal ordering gives us

N (φ1φ2)(w) = {φ1φ2}0(w) (66)
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Remark 12 By mode expanding φ1 and φ2 in (64) we can obtain

N (φ1φ2)m(w) =
∑

n≤−h1

(φ1)n(w)(φ2)m−n(w) +
∑
n>h1

(φ2)m−n(w)(φ1)n(w) (67)

Using (64) and (65) we can calculate

(∂kφ1φ2)(w) =
1

2πi

∮
w

dz
∂kzφ1(z)φ2(w)

z − w
=

1

2πi

∮
w

dz
∂kz
∑N
n=−∞(z − w)−n{φ1φ2}n(w)

z − w
=

1

2πi

∮
w

dz
k!{φ1φ2}−k(w)

z − w
= k!{φ1φ2}−k(w) (68)

Therefore we can write the OPE of φ1 and φ2 as

φ1(z)φ2(w) =

N∑
n=1

(z − w)−n{φ1φ2}n(w) +

∞∑
n=0

(z − w)n

n!
(∂nφ1φ2)(w) (69)

Definition 4.5 We define

φ(−n)(w) = (L−nφ)(w) = {Tφ}−n+2(w) (70)

Remark 13 This last equality in Definition 4.5 is true, but it is not a definition - it needs to be
derived.

We can iterate the construction of φ(−n) to get descendent fields

φ(−k1,...,−kn) ≡ (φ(−k2,...,−kn))(−k1) (71)

Let’s show that the descendent fields deserve their names. We will show by induction that

φ(−k1,...,−kn)(0) |0〉 = L−k1 ...L−kn |h〉 (72)

Assuming that it is true for the descendent field φ(−k1,...,−kn−1), we get that

φ(−k1,...,−kn)(0) |0〉 = {Tφ(−k2,...,−kn)}−k1+2(0) |0〉 =
1

2πi

∮
dzz1−k1T (z)φ(−k2,...,−kn)(0) |0〉 =

1

2πi

∮
dzz1−k1T (z)L−k2

...Lkn |h〉 = L−k1
...L−kn |h〉 (73)

So we have proved (72) which tells us that the descendent fields create the descendent states.
In section 2, it may have seemed strangely restrictive that we calculated correlation functions for
quasi primary fields only. Now we will demonstrate how a correlator involving descendant fields
can be expressed in terms of correlators of primaries. For example, say that φi (1 ≤ i ≤ n) are
primaries of weight hi (assume holomorphic for simplicity) and we want to know the correlator

〈φ(−k)
1 (w1)φ2(w2)...φn(wn)〉. We can calculate

〈φ(−k)
1 (w1)φ2(w2)...φn(wn)〉 =

1

2πi

∮
w1

dz(z − w1)1−k〈T (z)φ1(w1)φ2(w2)...φn(wn)〉

−1

2πi

n∑
i=2

∮
wi

dz(z − w1)1−k〈φ1(w1)...T (z)φi(wi)...φn(wn)〉

−1

2πi

n∑
i=2

dz(z − w1)1−k〈φ1(w1)...[
hiφi(wi)

(z − wi)2
+
∂wiφi(wi)

z − wi
]...φn(wn)〉

−1

2πi

n∑
i=2

∮
wi

dz(z − w1)1−k[
hi

(z − wi)2
+

∂wi
z − wi

]〈φ1(w1)...φn(wn)〉

−
n∑
i=2

[
(1− k)hi(wi − w1)−k + (wi − w1)1−k∂wi

]
〈φ1(w1)...φn(wn)〉 (74)

The first line is inserting (70) into the correlator. The second line is viewing the contour tightly
wound around w1 instead as a contour going the other way around wound around the complement
of a neighborhood of w1. The third line is inserting the Tφi OPE into the equation, and then we
just do residue calculus to get the final result. For simplicty of notation we define

Definition 4.6 Let L−k be the differential operator appearing in (74) :

L−k =

n∑
i=2

(k − 1)hi(wi − w1)−k − (wi − w1)1−k∂wi (75)
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Taking k = 1 in (75), we see that the first term vanishes and the second term is −
∑n
i=2 ∂wi . By

translation invariance of correlators ((16) with f = z − b) we know that
∑n
i=1 ∂wi annhilates any

correlator of n fields inserted at the wi, and hence when acting on correlators we have that the
action of L−1 is the same as the action of ∂w1

. We can also iterate the procedure (74) to derive
more correlators of more complicated descendents such as

〈φ(−k1,...,−kp)
1 (w1)...φn(wn)〉 = L−k1 ...L−kp〈φ1(w1)...φn(wn)〉 (76)

Definition 4.7 The map L−k1
...L−kn |hφ〉 → φ(−k1,...,−kn) is called the state operator corre-

spondence and is an injective linear map when extended to the vector spaces that these elements
span.

We define

Definition 4.8 The Hermitean conjugate of a quasi-primary field φ(z, z̄) is

φ† = z̄−2hz−2h̄φ(
1

z̄
,

1

z
) (77)

The factor z̄−2hz−2h̄ is present to ensure that the following quantity is well defined. One can check
using the mode expansion of a field that this condition is equivalent to imposing φ†m,n = φ−m,−n.

Definition 4.9 The inner product of two vectors L−k1
...L−kn |h1, h̄1〉 and L−s1 ...L−sr |h2, h̄2〉 is

defined by
〈h1, h̄1|Lkn ...Lk1

L−s1 ...L−sr |h2, h̄2〉 (78)

which is evaluated by

• using the Virasoro algebra repeatedly to put the positive modes on the right and negative modes
on the left

• imposing Ln |h〉 = 0 for n > 0, 〈h|Lm = 0 for m < 0, and L0 |h〉 = h |h〉

• using

〈h1, h̄1| |h2, h̄2〉 = lim
z,z̄,w,w̄→0

〈0|w−2h̄1w̄−2h1φ1(
1

w̄
,

1

w
)φ2(z, z̄) |0〉 (79)

Plugging the two point function (17) in the last bullet point shows that the limit is well defined.

Remark 14 We are calling the above an inner product, but all that we really know about it right
now is that it is a Hermitean bilinear form. We need states to have non-negative norms with respect
to this form in order for the theory to be unitary.

4.3 Kac determinant and restrictions imposed by unitarity

Now we turn our attention to the Verma modules Vc,h and see what restrictions are imposed on h
and c in order for the theory to be unitary. The primary state in a Verma module is labeled |h〉,
and we described how to take inner products between all of its descendants LK |h〉 in Definition 4.8.
Recall that the conformal dimension (a.k.a L0 eigenvalue) of a descendent state L−k1 ....L−kn |h〉 is
h+ k1 + ...+ kn.

Definition 4.10 The level of the descendent state L−k1 ....L−kn |h〉 is defined to be k1 + ...+ kn.

Remark 15 A level N descendent of |h〉 has conformal dimension h+N .

If N 6= M , a level N and level M descendent of |h〉 will be orthogonal. This follows from an inductive
argument, passing positive modes in the inner product formula (78) to the right until we get a sum
of terms which all vanish:

• Base case:

〈h|Lkn ...Lk1L−1 |h〉 = 〈h|Lkn ...Lk2

(
L−1Lk1 + [Lk1 , L−1]

)
|h〉 =

〈h|Lkn ...Lk2

(
(k1 + 1)Lk1−1 + ((−1)3 − (−1))

c

12
δk1,1

)
|h〉 =

(k1 + 1) 〈h|Lkn ...Lk2
Lk1−1 |h〉 (80)

The second equality follows since Lk1 |h〉 = 0 and using (12), the definition of the Virasoro
algebra. This last expression vanishes because if k1 > 1 then Lk1−1 is a positive mode, and
if k1 = 1 then since by assumption k1 + ... + kn 6= 1 (we are proving the claim for inner
products of vectors at different levels) we must have n > 1 so the first term vanishes because
it is 〈h|Lkn ...Lk2

(k1 + 1)h |h〉.

• Assume that the claim has been proved for all descendents of level N and below, and say that
we have states L−j1 ...L−jd |h〉 with j1 + ...+jd = N+1 and L−k1

...L−kn |h〉 with k1 + ...+kn =
M 6= N + 1
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• We calculate

〈h|Lkn ...Lk1L−j1 ...L−jd |h〉 =

〈h|Lkn ...Lk2
[(k1 + j1)Lk1−j1 + (k3

1 − k1)
c

12
δk1,j1 ]L−j2 ...Ljd |h〉

(k1 + j1) 〈h|Lkn ...Lk2Lk1−j1L−j2 ...Ljd |h〉+ (k3
1 − k1)

c

12
δk1,j1 〈h|Lkn ...Lk2L−j2 ...Ljd |h〉

(81)

If k1 = j1, then the first and second terms are proportional to 〈h|Lkn ...Lk2
L−j2 ...L−jd |h〉

which vanishes by the induction hypothesis. If k1 6= j1 then the second term automatically
vanishes, and the first term vanishes by the induction hypothesis since we can lump Lk1−j1
with the positive or negative modes depending on the sign of k1 − j1.

Therefore if we make a basis for the (infinite dimensional) Verma module Vc,h consisting of vectors
with well defined levels, the ‘Gram’ matrix - the matrix of all inner products between basis elements
- will be block diagonal with blocks corresponding to the levels. We put quotes around Gram,
because returning to remark 14 we just have a Hermitean bilinear form and not necessarily an inner
product. In order for our theory to be unitary, it is necessary that this form be a true inner product,
i.e it cannot admit negative norm states. Technically 0 norm states are not allowed either, but if the
Hermitean bilinear form is positive semi-definite there is the obvious construction of a new vector
space with a positive definite bilinear form by quotienting by the span of all zero norm vectors. From
basic linear algebra, it is easy to see that the ‘Gram’ matrix of some Hermitean bilinear form on a
vector space tells us information about whether the Hermitean bilinear form is an inner product or
not; if the eigenvalues of the Gram matrix are all positive, it is an inner product, if the eigenvalues
are all non-negative it is positive semi-definite, and if there are negative eigenvalues then there
are negative norm states and unitarity is spoiled. So we would like to know something about the
determinant of the Gram matrix (we will stop putting quotes around it now), since this would tell
us about the product of all the eigenvalues . Actually, this discussion applies to finite dimensional
matrices which our matrix is not, but each of the blocks comprising it are so we will examine the
determinants of these level blocks.

Definition 4.11 There is a formula that tells us everything we want to know about the determinant
of the level N block M (N) of the Gram matrix, which is termed the Kac determinant.

det(M (N)) = αN
∏

r,s≥1,rs≤N

[h− hr,s(c)]p(N−rs) (82)

where hr,s(c) satisfies the following defining set of equations:

c = 1− 6

m(m+ 1)
(83)

hr,s(c) =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
(84)

p is the partition counting function of an integer, and αN is a positive constant whose particular
value doesn’t matter to us.

We won’t go into the details, but here are some results that can be derived from (82)− (84) and/or
other more basic considerations.

• V(c,h) has negative norm states if c and h are not both non-negative.

• If c ≥ 1 and (h ≥ 0) then V(c,h) is unitary.

• If c < 1 and c 6= 1− 6
m(m+1) for any integer m then V(c,h) contains negative norm states.

• If c = 1 − 6
m(m+1) < 1 for an integer m but h 6= hr,s(c) for some integers r, s such that

1 ≤ r < m and 1 ≤ s < r then V(c,h) contains negative norm states.

• The last remaining possibility is that c = 1 − 6
m(m+1) < 1 for an integer m and h = hr,s(c)

for some integers r, s such that 1 ≤ r < m and 1 ≤ s < r. It is indeed true in this case that
V(c,h) will not contain negative norm states, although this does not follow from (82)− (84) or
elementary considerations. Of course having h = hr,s(c) implies the existence of zero norm
states by the formula for the Kac determinant (82), so V(c,h) will not be unitary in this case,
but like we mentioned above we can mod out by the span of the zero norm states to obtain a
unitary representation. We call this quotientied representation space Mc,h.

4.4 Fusion rules

As was mentioned twice in the last section, it is a possibility that we obtain states with zero norm
in a Verma module V(c,h). In fact we know that this happens exactly when the Kac determinant
(82) vanishes. Looking more closely at (82), we notice that it tells us not only which values of h
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will yield a representation with zero norm states, but also which level these states first appear at
since p(N − rs) = 0 for rs > N . Hence V(c,hr,s(c)) contains its first zero norm state at level N = rs.
Furthermore, since p(0) = 1 there is exactly 1 zero eigenvalue at this level so there is 1 zero norm
state of level rs.

Definition 4.12 If h = hr,s(c) then the unique (up to scaling) vector |χ〉 at level rs with zero norm
in Vc,h is called the singular vector or null vector.

The existence of null vectors in a Verma module has significant consequences because it can be
shown that the null vector is itself a primary state and hence generates a sub representation inside
of the Verma module: for n > 0 and |χ〉 a null vector we have

Ln |χ〉 = 0 (85)

Of course a null vector, being a state at level rs, is itself a (linear combination of) descendent states
of the primary state |h〉 that generates the whole Verma module V(c,h). Let’s see this in action with
a simple example. Writing the most general possible level 2 state (L−2 + aL2

−1) |h〉 and using the
Virasoro algebra to write

L1(L−2 + aL2
−1) |h〉 = (3 + 2a+ 2ha)L−1 |h〉

L2(L−2 + aL2
−1) |h〉 = (

c

2
+ 4h+ 6ha) |h〉 (86)

Ln(L−2 + aL2
−1) |h〉 = 0 for n ≥ 3

we find that the condition for (L−2 + aL2
−1) |h〉 to be a primary state amounts to 3 + 2a+ 2ha = 0

and c
2 + 4h+ 6ha = 0. The solution of these equations, assuming c is just some fixed number is

h =
5− c±

√
(c− 1)(c− 25)

16
(87)

a =
−3

2(2h+ 1)
(88)

If we compare (87) with (83) + (84) we find that these values of h correspond to h = h1,2(c) and
h = h2,1(c) which is a good consistency check: we have found explicit null vectors at level 2 promised
by the vanishing of the level 2 Kac determinant. Now that we have explicit forms for the singular
vectors, we can use the state operator correspondence (Definition 4.7) and the fact that |χ〉 being
primary means that it is orthogonal to the whole Verma module Vc,h to get

0 = 〈χ(z)X〉 = 〈[φ(−2)(z)− 3

2(2h+ 1)
φ(−1,−1)(z)]X〉 = [L−2 −

3

2(2h+ 1)
L2
−1]〈φ(z)X〉 (89)

where X is a string of quasi-primary fields. This is the simplest example of a BPZ equation. BPZ
equations are differential equations obeyed by correlators involving a degenerate field, and they all
arise in this same manner. Taking X to be a single quasi-primary field so that 〈φ(z)X〉 is a 2
point function does not yield anything interesting since the formula (17) automatically satisfies (89).
However if we take X = φ1(z1)φ2(z2) for quasi primary (holomorphic, for simplicity) φ1 and φ2 with
conformal weight h1 and h2, we get a non-trivial equation for the 3 point correlation function (18).
When all is said and done, the solution can be written as follows. We define

h(α) :=
c− 1

24
+

1

4
α2 (90)

Then say h2,1(c) = h(α2,1), h1,2(c) = h(α1,2), h1 = h(α1) and h2 = h(α2). Requiring (89) to hold
(if 〈φ(z)φ1(z1)φ2(z2)〉 does not vanish) we must have α2 = α1 ± α1,2 or α2 = α1 ± α2,1 (depending
on whether we chose h = h1,2 or h = h2,1 for our Verma module). Let’s see what this requirement
can tell us about OPE’s of primary fields. Say that

φ(z, z̄)φ1(z1, z̄1) =
∑

p,{k,k̄}

C
φp{k,k̄}
φφ1

(z − z1)hp−h−h1+K(z̄ − z̄1)h̄p−h̄−h̄1+K̄φ{k,k̄}p (z1, z̄1) (91)

is the OPE of φ with φ1. At first glance (91) seems like an arbitrary expression, but it is simply the
most general possible sum of fields that could occur in the OPE of these fields multiplied by factors
that make them scale correctly. {k, k̄} is a label where k and k̄ are strings of integers that dictate
which descendant of the primary field φp we are talking about, and K and K̄ denote the level of
that descendant. Now we can look at the 3 point function 〈φ(z)φ1(z1)φ2(z2)〉 using the RHS and
the LHS of (91). Looking at the LHS and remembering our discussion that we just had after (90),
we get that

〈φ(z)φ1(z1)φ2(z2)〉 ∼ δα2,α1±α1,2/2,1
(92)

Looking that the RHS and recalling that the two point functions 〈φ{k,k̄}p (z2)φ2(z)〉 of φ2 with descen-

dants of primaries φ
{k,k̄}
p can be expressed as linear differential operators acting on 〈φp(z1)φ2(z2)〉,

we conclude that φ
{k,k̄}
p can only occur in the OPE of φ with φ1 if αp (h(αp) = hp) satisfies
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αp = α2 = α1 ± α1,2/2,1. So if we write φ(α) for a primary field of conformal weight h(α) then we
get the following

φ2,1 × φ1 = φ(α1+α2,1) + φ(α1−α2,1) (93)

φ1,2 × φ1 = φ(α1+α1,2) + φ(α1−α1,2) (94)

Some explanation is in order of the notation in (93) and (94). The products on the LHS are known
as fusion products and the RHS denotes which conformal families are allowed to appear in the
OPE of the two LHS fields.
The process employed here to come up with the fusion rules of φ1,2 and φ2,1 with other primary fields
may be replicated for other values of h = hr,s(c). This particular value of h will yield a null vector
|χ〉 and a corresponding null field χ(z) which is a descendant of the primary field φr,s. Imposing
that the correlator of χ(z) with any other string of fields vanishes gives us differential equations for
n−point functions that can be solved to give constraints on which fields may appear in the OPE of
φr,s with other fields. The result is that

φr,s × φ(α) =

k=r−1∑
k=1−r

k+r=1mod2

`=s−1∑
`=1−s

`+s=1mod2

φ(α+kα2,1+`α1,2) (95)

By taking φ(α) to be in the conformal family of a primary field φr2,s2 associated to hr,s(c), relabeling
r, s as r1, s1 and using commutativity of the OPE along with (95) we get

φr1,s1 × φr2,s2 =

k=r1+r2−1∑
k=1+|r1−r2|

k+r1+r2=1mod2

`=s1+s2−1∑
`=1+|s1−s2|

`+s1+s2=1mod2

φk,` (96)

which is fewer conformal families than we get by blindly applying (95). For example, (95) in the
case of (r1, s1) = (1, 2) and (r2, s2) = (2, 1) gives us

φ1,2 × φ2,1 = φ2,0 + φ2,2 (97)

but (96) gives us
φ1,2 × φ2,1 = φ2,2 (98)

There is no contradiction between these equations because the RHS of these fusion equations simply
denote which conformal families are ALLOWED to appear in the OPE, not which ones are required
to.

4.5 Unitary Minimal Models - The Ising Model

Since we are thinking about unitary CFTs, we know from section 4.3 that we must have Verma
modules Vc,h with c = 1 − 6

m(m+1) (m ∈ N), h = hr,s(c). We would like to have some examples

of unitary CFTs where there are only a finite number of conformal families. Looking at (96) this
hope seems far off because if we have one conformal family, we automatically get conformal families
with primaries of conformal dimension hr,s(c) with r, s arbitrarily large by using the fusion rules.
The way around this is to have more of the truncation phenomenon like (95) − (98) occur where
differential equations arising from null vectors of the theory give rise to restrictions in the form of
fusion rules. Let’s take a look at why this might happen. From equation (84) we can calculate with
a bit of algebra

hr,s = hm−r,m+1−s (99)

hm+r,m+1−s = hr,s + rs = hm−r,m+1+s (100)

hr,s + (m− r)(m+ 1− s) = hr,2m+2−s = h2m−r,s (101)

These equations tell us something interesting - the null vectors themselves are the cyclic vectors of
degenerate Verma modules i.e there exist descendants of the null vectors that are null themselves.
The result of this is that when we have a Verma module Vc,hr,s(c) there is automatically an infinite
number of null vectors. For example, from equation (100) we obtain that there are null vectors at
levels krs for all integers k, and there are more from equation (101). In chapter 8 of diFrancesco it
is shown that the analysis of the differential equations that arise from the vanishing of correlators
involving the fields corresponding to these vectors yield a finite number of conformal families that
close under fusion. Specifically

Definition 4.13 The unitary minimal modelM(m+1,m) is a conformal field theory with fields
φr,s of conformal weight hr,s(c) for 1 ≤ r < m and 1 ≤ s < r. It has fusion rules

φr1,s1 × φr2,s2 =

r1+r2−1∑
k=1+|r1−r2|

k+r1+r2=1mod2

s1+s2−1∑
`=1+|s1−s2|

`+s1+s2=1mod2

φk,` (102)
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Equation (102) may make it seem like we don’t get the promised closure under fusion for the specified
r and s values, but this issue is dealt with by employing (99)− (101).

Remark 16 The notation M(m+ 1,m) has to do with the fact that there are non-unitary minimal
models indexed by coprime integers p and p′ (choosing p = m + 1 and p′ = m is the only way that
these are unitary).

Remark 17 We haven’t showed that such a conformal field theory actually exists, all of this analysis
was just at the level of representations of the Virasoro algebra. These theories do exist, though, and
they may be realized through the coset construction that we will review later in these notes.

As a simple example, lets look at M(4, 3) which is termed the Ising Model. From the restrictions
1 ≤ r < 3 and 1 ≤ s < r we get that the primary fields of this model will be

φ1,1 =: 1 (103)

φ2,1 =: ε (104)

φ2,2 =: σ (105)

From the formula c = 1 − 6
m(m+1) we calculate c = 1 − 6

12 = 1
2 , and from the formula hr,s =

[(m+1)r−ms]2−1
4m(m+1) we can calculate that the conformal dimensions of the fields (103)− (105): for 1 we

get 0, for ε we get 1
16 and for σ we get 1

2 . Applying (102) to M(4, 3) we see that

1× 1 = 1 (106)

1× σ = σ (107)

1× ε = ε (108)

ε× ε = 1 (109)

ε× σ = σ (110)

σ × σ = 1 + ε (111)

Notice that the full symmetry algebra of a CFT is the direct sum of two commuting copies of the
Virasoro algebra, and since the analysis in this section was for the representation theory of a single
copy of the Virasoro algebra we expect that our CFT Hilbert space will decompose into a sum of
tensor products of these representations.

5 Examples of CFTs

Now we go through some basic examples of CFT’s. These CFT’s and the ones that we will consider
in the WZW model section arise from a Lagrangian, but this need not be the case. For example,
when we do the coset construction it will not be the case that there is a readily avaliable Lagrangian
description at hand.

5.1 Free boson

Consider the theory of a massless free boson on the plane with action S = 1
4π`2s

∫
d2σ∂αX∂

αX.

When we move to complex coordinates this action becomes

S =
1

2π`2s

∫
d2z∂zX∂z̄X (112)

At a classical level, we see that the equations of motion are ∂̄∂X = 0 and hence X is a sum of a
holomorphic function and and anti holomorphic function. From standard QFT procedures, in the
canonical formalism it is simple to obtain the following results:

〈X(z, z̄)X(w, w̄)〉 = −`
2
s

2
[ln(z − w) + ln(z̄ − w̄)] (113)

T (z) = − 1

`2s
: ∂X∂X : (z) (114)

T̄ (z̄) = − 1

`2s
: ∂̄X∂̄X : (z̄) (115)

We can take derivatives with respect to z and w of (113) to obtain

〈∂X(z)∂X(w)〉 = −`
2
s

2

1

(z − w)2
(116)

(116) is in the correct form (17) for a correlation function of a quasi-primary field of conformal
weight (1, 0), so we start to suspect that ∂X might be quasi-primary or primary. We can verify this
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suspicion by find its OPE with T (z) and seeing that it is of the form (31):

T (z)∂X(w) = − 1

`2s
: ∂X∂X : (z)∂X(w) =

−2

`2s
〈∂X(z)∂X(w)〉∂X(z)

=
∂X(z)

(z − w)2
=
∂X(w) + ∂∂X(w)(z − w) +O(z − w)2

(z − w)2
=

∂X(w)

(z − w)2
+
∂∂X(w)

z − w
+ ... (117)

On the first line we used the fact that Wick’s theorem works on a time ordered product of a
normal ordered field and another field by contracting the fields inside the normal ordering with the
field outside the normal ordering, but not between themselves. On the second line we just Taylor
expanded. So we have verified that ∂X is a primary field of conformal weight (1, 0). A similar
analysis goes through for ∂̄X to show that it is primary of conformal weight (0, 1). Another way
to make this conclusion starting from (116) would be as follows. First note that ∂X has classical
dimension (1, 0) which is clear from dimensional analysis of the action (112). We are working with
a free theory so these are also the conformal dimensions of ∂X in the quantum theory. We could
therefore mode expand j(z) := i∂X(z) as

j(z) =
∑
n∈Z

z−n−1jn (118)

Using equation (67) which expresses the modes of a normal ordered product N (AB) in terms of the
modes of the fields A and B we obtain

Lm =
1

`2s
N (jj)m =

1

`2s

∑
n≤−1

jkjm−k +
1

`2s

∑
n>1

jm−kjk (119)

Now using (116) we can calculate

[jm, jn] =
`2s
2
mδm,−n (120)

This calculation goes through in the same way that we calculated the mode algebra from the singular
part of an OPE before. Using (119) and (120) we obtain after some calculation

[Lm, jn] = −njm+n (121)

which is (48) with h = 1, in agreement with the fact that j (and hence ∂X) is primary of weight
(1, 0). Using (119) we can also verify that the modes of T in this theory satisfy the Virasoro algebra
with central charge c = 1. We can define a continuous family of primary fields in the free boson
theory as follows

Definition 5.1 The vertex operator Vα(z, z̄) is defined as

Vα(z, z̄) = N (eiαX(z,z̄)) =
∑
i=0∞

(iα)n

n!
: Xn : (z, z̄) (122)

After doing a couple of Wick contractions and Taylor expansions we can obtain

T (z)Vα(w, w̄) =
α2`2sVα(w, w̄)

4(z − w)2
+
iα∂Vα(w, w̄)

z − w
+ ...

T̄ (z̄)Vα(w, w̄) =
α2`2sVα(w, w̄)

4(z̄ − w̄)2
+
iα∂̄Vα(w, w̄)

z̄ − w̄
+ ... (123)

So we see that Vα is a primary field of conformal weight (
α2`2s

4 ,
α2`2s

4 ). It is customary to label the
states that these vertex operators create as

|α〉 = lim
z,z̄→0

Vα(z, z̄) |0〉 (124)

instead of |α
2`2s
4 〉. The latter notation would of course be more consistent with how we labeled the

state created by a primary field of conformal weight h by |h〉 .
Notice that the action (112) is invariant under translations X → X + ε since it only depends on
derivatives of X. From Noether we get that the associated conserved current of this continuous
family of symmetries is (up to some normalization constant) simply the current j(z) = i∂X(z)
defined above.

5.2 Free fermion

Here we will be brief and summarize some relevant formulae for the theory of a free fermion. These
can be derived analogously from an action as in section 5.1, but we will just state the field content
and the relevant OPE’s. For the theory of a free fermion we have Grassman fields ψ(z) and ψ̄(z̄)
that satisfy

ψ(z)ψ(w) =
−1

z − w
(125)

ψ̄(z̄)ψ̄(w̄) =
−1

z̄ − w̄
(126)
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The holomorphic component of the stress energy tensor is given by

T (z) =
1

2
N (ψ∂ψ)(z) (127)

and using Wick’s theorem (the version for Grassman fields) we get

T (z)ψ(w) =
ψ(w)

2(z − w)2
+
∂wψ(w)

z − w
+ ... (128)

which tells us that ψ is primary and has holomorphic conformal weight h = 1
2 . The corresponding

results hold for T̄ and ψ̄. ψ does not have to be single valued on the plane; it can satisfy either
ψ(e2πiz) = ψ(z) (called the Neveu-Schwarz [NS] sector) or ψ(e2πiz) = −ψ(z) (called the Ra-
mond [R] sector). Which sector we are in affects whether the mode expansion of ψ goes over
integer or half integers.

6 Extended symmetry, duality and modular invariance

This section will develop some formal aspects of CFTs that will be useful when we come to WZW
models. This section follows the CFT notes of Fuchs, as well as those of Luis Alvarez Gaume.

6.1 Chiral symmetry algebra

It is often the case that the full symmetry algebra of a conformal field theory is actually larger
than just the direct sum of two Virasoro algebras. On general grounds we expect that this maximal
symmetry algebra Wtotal has the following properties:

1. Wtotal is a Lie algebra.

2. Wtotal splits into the sum of a a holomorphic and anti holomorphic Lie subalgebras,

Wtotal =W ⊕ W̄ ′ (129)

each of which contain a copy of the Virasoro algebra. We will focus our attention on W which
we call the chiral symmetry algebra of our theory.

3. There is a countable basis for W

W = span({W i
n|i ∈ Z≥0 ∧ n ∈ Z} ∪ {C`‖` ∈ N}) (130)

where the C` are central, and the subscripts provide a Z-grading for W (the subscripts on
the W ’s; the central terms are all grade 0). This grading condition tells us that many of the
structure constants of the algebra must vanish.

4. The Virasoro modes are a part of the basis from 3.:

Ln = W 0
n (131)

and we have the relation for m = 0,±1

[Lm,W
i
n] = ((∆i − 1)m− n)W i

m+n (132)

where ∆i is a positive integer. Compare to (48). Notice that this relation respects the grading
condition from 3.

We take the above list of properties as axioms. If we take m = 0 in (132) we get the relation

[L0,W
i
n] = −nW i

n (133)

The Z grading on W gives us a decomposition

W =W+ ⊕W0 ⊕W− (134)

Where W+ (W−) contains all of the positive (negative) sub-scripted W i
n’s and, W0 contains all of

the central terms and the W i
0’s. If we let W0 be the maximal abelian subalgebra of W0 containing

L0 (generically smaller than all of W0) then we can find subalgebras W± ⊂W 0⊕W± such that we
get a triangular decomposition of W :

W =W+ ⊕W0 ⊕W− (135)

[W±,W0 ⊕W±] ⊂W± (136)

[W,W−] ⊂ W0 (137)
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6.2 State space (Highest weight reps and Verma modules)

Denote the state space of our theory by H. Obviously H carries a representation of Wtotal (and
hence of W) for this is what it means for Wtotal to be a symmetry algebra of the theory. We
continue the tradition of not using any special notation for the image of an element of W under the
representation homomorphism. We also assume that H has an inner product ( , ) and that W is a
∗ algebra such that the representation of W on H is unitary: for all W ∈ W, (v′,Wv) = (W ∗v′, v).

In fact, we assume that ∗ takes the form (W i
n)∗ = W

π(i)
−n for some involution π : Z≥0 → Z≥0. Lastly

we assume that (Ln)∗ = L−n (so that π(0) = 0) and L0 is diagonalizable with eigenvalues bounded
below. Let’s examine the consequences of this last assumption. Firstly, (133) tells us that if v ∈ H
is an eigenvector of L0 (say L0v = hv) then

L0(W i
nv) = (h− n)W i

nv (138)

and hence for n sufficiently large we must have W i
nv = 0 because otherwise we would get arbitrarily

large (in magnitude) negative L0 eigenvalues. Also, for any positive n, there exists N > 0 such that
(W i

n)Nv = 0 for the same reason. A particular instance of this that we will need later is that LN1
annhilates v.
The triangular decomposition (135)− (137) of W allows us to define special types of representations
of W.

Definition 6.1 A highest weight module for W is a representation space V for W such that

• V ⊂ U(W−)v where U(W−) is the universal enveloping algebra of W− (a.k.a the tensor algebra
on W− modulo the ideal generated by elements of the form a⊗ b− b⊗ a− [a, b]), and U(W−)v
means the set of all symbols Wv for W ∈ U(W−) (so, as a vector space, isomorphic to U(W−)).

• All of the elements in W ′ ∈ W− act in the obvious way on elements Wv ∈ U(W−)v:

W ′(Wv) := (W ′ ⊗W )v (139)

For this to make sense, it is clear that the subspace V of U(W−) needs to be an ideal of the
universal enveloping algebra.

• W+v = 0

• v is a simultaneous eigenvector for W0: there exists λv :W0 → C such that for all W0 ∈ W0

W0v = λ(W0)v (140)

Because v is an eigenvector of L0 ∈W0 and we know that the only operators that lower the eigenvalue
of a given eigenvector are in W+. But W+ annhilates the highest weight module, and therefore we
do have that the set of L0 eigenvalues of a highest weight representation is bounded below. We did
not make mention of any bilinear product on our highest weight module. This is because once we
specify the value (v, v) (normally just taken to be 1 for simplicity), all of the other products on a
highest weight rep follow immediately from the ∗ structure on W along with the condition that W+

annhilates the v. It is possible that this product as defined does not constitute an inner product.
It could give rise to either null vectors (vectors w of zero norm (w,w) = 0) or vectors with negative
norm. If the highest weight rep only contains null vectors and not negative norm vectors, we can
quotient out by the submodule formed by these states to obtain a representation with a true inner
product, i.e a unitary representation. Notice that this whole process of declaring what the adjoints
of the operators are by using the ∗ structure of W, and then after-the-fact deciding whether the
induced norm is an inner product is backwards compared to what we normally do. We normally
have a given inner product on a vector space and use it to define the adjoint operators.

Definition 6.2 If in definition 6.1 we take V to be the entire space U(W−)v, we obtain a Verma
module. Notice then that as a vector space, all Verma modules for W are the same object and that
it is really only the function λv : W0 → C that distinguishes different Verma modules from each
other.

Remark 18 These Verma modules are more general than the Verma modules that we considered in
earlier sections which corresponded to the case of W being the Virasoro algebra.

In fact any highest weight rep can be obtained as a quotient of a Verma module, so the Verma
modules are in some sense the most fundamental highest weight reps. The state space H of our
theory decomposes as a sum of unitary irreducible highest weight reps.

H =
⊕
A

HA (141)

This decomposition was an assumption that we were implicitly working with for the first 5 sections -
the state space was a sum of highest weight reps with generating vectors given by the states created
by primary fields. In addition, one of these so called sectors HA is distinguished; we denote this
sector by H0 = U(W−)v0 and call it the vacuum sector. In earlier sections we used the notation
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v0 = |0〉 . H0 satisfies λ0 = 0, i.e it is annhilated by the entire zero mode algebra W0 (there was
a one step argument to get from λ0 = 0 to W0 annhilates v0 since the domain of λ0 is W0, but
it is an easy argument: the rest of W0 belongs to W+ which already annhilates v0). In addition,
v0 is annhilated by Ln = W 0

n for n ≥ 1, and will also generally be annhilated by any operators
W i
n so long as this annhilation is compatible with the bracket structure of W. For a generic sector
HA = U(W−)vA we define ∆A = λA(L0) to be the conformal weight of vA.
When W was just the Virasoro algebra, we were able to use the Kac determinant formula to put
constraints on h and c necessary for unitarity of the highest weight representations. In principle
we could do a similar analysis of W by systematically computing the the norms of states. For
example, we can show that the conformal weights ∆A must be non-negative for unitarity to be
achieved. Earlier we noted that for any vector v ∈ H there is some N such that LN1 v = 0. Let
NA be the smallest such integer for which LN1 vA = 0. Then LNA−1

1 vA 6= 0 but L1(LNA−1
1 vA) = 0.

The conformal dimension of the descendant LNA−1vA is ∆
L
NA−1

1 vA
= ∆A − (N − 1), and hence if

∆A < 0, we have ∆
L
NA−1

1 vA
< 0. This is impossible however:

0 ≤ ||L−1L
NA−1
1 vA|| =(L−1L

NA−1
1 vA, L−1L

NA−1
1 vA) = (L1L−1L

NA−1
1 vA, L

NA−1
1 vA)

(������
L−1L

NA
1 vA + [L1, L−1]LNA−1

1 v, LNA−1
1 vA) = (2L0L

NA−1
1 v, LNA−1

1 v) =

2∆
L
NA−1

1 v
||LNA−1

1 v||2 (142)

So we have demonstrated that indeed ∆A ≥ 0.

Definition 6.3 Any state that is annhilated by L1 is called quasi-primary. LNA−1
1 vA for example

is quasi-primary.

Earlier in the notes we did not have a notion of quasi-primary states, but we did have a notion of quasi
primary fields. Every field, including quasi-primary fields, is a (linear combination of) descendant
fields of primaries. Therefore we could have defined quasi-primary states as the descendant states
corresponding to these descendant fields, and we would have seen then that the action of L1 on them
vanished.
The state-operator correspondence from previous sections applies equally well to these conformal
field theories. However, there are particularly interesting fields that we can get from our extended
chiral symmetry algebra.

Definition 6.4 We define the generating field

W i(z) =
∑
n∈Z

z−n−∆iW i
n (143)

As an example, when we take i = 0 we recover the energy momentum tensor T :

T (z) =
∑
n∈Z

z−n−2Ln =
∑
n∈Z

z−n−∆0W 0
n = W 0(z) (144)

We actually have a way to generalize the notion of primary and fields now. The notion of primary
from the previous sections will now be known instead as Virasoro-primary so that we can define

Definition 6.5 A W-primary field φ(z, z̄) is one that creates a state vφ = limz,z̄→0 φ(z, z̄)v0 such
that vφ is the cyclic vector of one of the sectors HA. Therefore W+vφ = 0.

This explains why quasi-primary fields are sometimes called sl(2)-primaries, since they are primaries
for the sl(2) algebra generated by {L0, L±1}.

6.3 Conformal blocks

Let’s recall (91), the OPE between two primary fields (reindexed to be useful below):

φn(z, z̄)φm(0, 0) =
∑

p,{k,k̄}

Cp{k,k̄}nm zhp−hn−hm+K z̄h̄p−h̄n−h̄m+K̄φ{k,k̄}p (0, 0) (145)

If we use the LHS and RHS to compute the 3 point function 〈φn(z1, z̄1)φm(z2, z̄2)φp(z3, z̄3)〉, we

will obtain that C
p,{0,0}
nm = Cnmp, i.e the non-descendant structure constants of the OPE’s are

precisely the same constants that appear in the 3 point functions (18). Furthermore, the coefficients

C
p{k,k̄}
nm for the descendants are completely determined by Cnmp, c and the conformal dimensions

of φn, φm and φp. Therefore knowing the 3 point function coefficients of primary field is equivalent
to knowing the OPE’s of all fields in the theory (the OPE’s of descendants follow from those of
the primaries), and in turn this is equivalent to knowing all of the correlators of the theory (we
can use the OPE’s to reduce any correlator to 2-point functions). So we would like to know these
3 point function coefficients. In fact, it turns out to be useful to study the 4 point functions of
primary fields 〈φk(z1, z̄2)φl(z2, z̄2)φn(z3, z̄3)φm(z4, z̄4)〉 in order to derive restrictive equations that
these Cijk’s must satisfy. The first thing that we do is use Mobius transformations to fix 3 out of 4
of the points in our function to be 1,∞ and 0: we get
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Definition 6.6

G(z, z̄) := 〈φk(∞,∞)φl(1, 1)φn(z, z̄), φm(0, 0)〉 = 〈k|φl(1, 1)φn(z, z̄) |m〉 (146)

Using (145) + (146) we obtain

G(z, z̄) =
∑

p,{k,k̄}

Cp{k,k̄}nm zhp−hn−hm+K z̄h̄p−h̄n−h̄m+K̄ 〈k|φl(1, 1)φ{k,k̄}p (0, 0) |0〉 =

∑
p

CpnmCklpF lknm(p|z)F lknm(p|z) (147)

This last line requires some explanation. As mentioned above, each C
p{k,k̄}
nm is determined by Cnmp,

c and the conformal dimensions of φn, φm and φp. We write

Cp{k,k̄}nm = Cnmpβ
p{k}
nm βp{k̄}nm (148)

Inserting this expression into the first line of (147), we then perform the sum over all descendant
states for each p, divide by Cklp = 〈k|φl(1, 1) |p〉 and get

Definition 6.7 A chiral conformal block is

F lknm(p|z) :=
∑
{k}

βp{k}nm

〈k|φl(1, 1)L{k} |p〉
〈k|φl(1, 1) |p〉

zhp−hn−hm+K (149)

where L{k} |p〉 is the descendant state associated to the descendant field φ
{k}
p

Remark 19 I am unsure why everyone writes the denominator like this instead of as Cklp. Perhaps
it has something to do with the fact that the blocks are ‘universal’ data of CFTs and can be calculated
without reference to the three point structure constants, and this is somehow more apparent when
the denominator is written as is.

Remark 20 Conformal blocks must obey the same differential equations that the correlation func-
tions do. For example, they must obey the Ward identities (54)-(56), and if one of the fields are
degenerate, they must obey the corresponding BPZ equation. In fact, the conformal blocks form a
basis for the space of solutions to these equations.

The corresponding definition of course holds for the anti-chiral conformal block F . The conformal
blocks are not functions on spacetime, but rather sections of some vector bundle over spacetime.
However G(z, z̄) is a genuine single valued function, and so we already have a restriction imposed
on the 3 point structure constants - they need to make the expression (147) single valued. There are
other restrictions that get imposed on both the three point structure constants and the conformal
blocks; the so called crossing symmetry equations that follow from associativity and commuta-
tivity of the OPE which are quadratic and linear equations for the three point constants, and the
fact that the conformal blocks need to carry a representation of the braid group which give rises to
the so-called polynomial equations for the fusing and braiding matrices that represent the action
of the braid group.

Fusion rules, modular transformations and the Verlinde formula

(Equations in this section are not numbered yet because I wrote it later and haven’t had the time
to number these equations and shift back all the numbers in the subsequent sections).
We studied a simple version of the fusion ring when we talked about unitary minimal models. These
were equations in the formal symbols Φi associated to primary fields φi that told us which other
conformal families were allowed to appear in the OPE between φi and φj . For a generic rational
CFT (finitely many sectors and hence finitely many W−primaries), the fusion rules can take the
following general form:

ΦA ? ΦB =
∑
C

NC
ABΦC

The symbols NC
AB are zero if theW−family of ΦC does not appear in the OPE of ΦA with ΦB , and is

a positive integer if ΦC does appear. Which positive integer does appear can be figured out from the

OPE as follows. Ward identities for OPE’s gives us formulas for the coefficients C
C{k,k̂}
AB of descendant

fields in terms of the coefficients of their ancestors. We pick the field in the conformal family of φC
appearing in the φAφB OPE of lowest grade (i.e a descendant field W i1

−n1
...W ik

−nkφC with n1 + ...+nk
minimized), and subtract off the contributions to the OPE φAφB of W i1

−n1
...W ik

−nkφC and all of the
contributions from its descendants that follow from Ward identities. After this subtraction process,
if there are still contributions from the φC family, then we repeat this process, finding the next lowest
grade descendant appearing and subtracting off its contributions. The number of times we need to
do this to remove the φC family completely from the OPE is NC

AB . The ring (called the fusion ring)
of these symbols Φi is a commutative (from commutativity of the OPE) ring with identity. The
identity is the symbol Φ0 associated to the W family of the identity field (which includes the stress
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energy tensor). It is an assumption that the N0
AB = δA+,B where + is an involution of the set of

primary field labels called conjugation. So the W−family of the identity field only appears in the
OPE between φA and φA+ . Technically we do not need our theory to be rational for the fusion ring
to make sense, i.e there can be infinitely many sectors (and therefore infinitely many W-primaries).
Rather, we just need only finitely many families to appear in the OPE between any two given fields.
Such a CFT is termed quasi rational. We can take the formal symbols ΦA to be basis elements
of an algebra over C instead of over Z, and the resulting finite dimensional commutative algebra
is called the fusion algebra. Its finite dimensional representations are fully reducible, while its
irreducible representations are all one dimensional so any finite dimensional representation of the
fusion algebra splits into a direct sum of one dimensional representations. In particular, the adjoint
representation of the fusion algebra (given by ΦA → NA where (NA)CB := NC

AB is an integer matrix)
is finite dimensional and hence reducible to a direct sum of one dimensional representations. This
means that the matrices NA can all be simultaneously diagonalized by a unitary matrix S. After
identifying a couple of other key properties of the matrix S, it follows that

NC
AB =

∑
D

SADSBD(S−1)CD
S0D

This is not the Verlinde formula yet; the Verlinde formula is the above equation once we identify S
with the matrix that implements the effect of modular transformations on characters these CFTs
(modular transformations and characters are discussed just below).
Earlier in these notes, we talked about the equivalence between a CFT on a cylinder and a CFT on
the plane. An interesting requirement to impose on a theory on the plane is consistency conditions
on correlation functions of higher genus Riemann surfaces. Modular invariance is the study of
the dependence of the 0 point torus correlation function (i.e the torus partition function) on the
parameter τ := ω1

ω2
. Here ω1 and ω2 are complex numbers such that the torus is obtained as the

quotient C/(ω1Z + ω2Z). The complex structure of tori obtained in this way is invariant under the

action of the modular group PSL2(Z) on τ (acting by

∣∣∣∣a b
c d

∣∣∣∣ · τ = aτ+b
cτ+d ), and hence we expect

that the partition function Z(τ) will be invariant under the modular group as well.

7 Affine Lie algebras

7.1 Simple Lie algebras

In this section we go over the basics of finite dimensional simple Lie algebra theory. This follows
chapter 13 of diFrancesco and chapter 1 of Fuchs and Schwiegert’s Affine Lie algebras and quantum
groups. Let g be such an algebra. Then

Definition 7.1 A Cartan-Weyl basis for g consists of

• elements {H1, ...,Hr} of a maximal abelian subalgebra. These subalgebras are not unique, but
unique up to automorphisms of g. The span of these elements

g0 := span({Hi}ri=1) (150)

is termed a Cartan subalgebra of g, and r is called the rank of g.

• Simultaneous eigenvectors of g0 (called step operators) in the adjoint representation

{Eα|adHi(Eα) = [Hi, Eα] = αiEα} (151)

These α - called roots - are non-degenerate and can be thought of as elements of the dual space
of the Cartan subalgebra g∗0. We denote the set of roots by Φ.

Since g is simple it has a canonical non-degenerate inner product defined as follows.

Definition 7.2 The Killing form is an inner product on simple Lie algebras

k(X,Y ) :=
1

2g
Tr(adx ◦ ady) (152)

where g is a constant that we will specify later.

The Killing form satisfies the identity

K([X,Y ], Z) = K(X, [Y, Z]) (153)

The Killing form is still non-degenerate once restricted to g0. Hence it induces an isomorphism
between g0 and g∗0, and using this isomorphism we get an inner product ( , ) on g∗0. By definition
the elements of g0 have trivial brackets amongst themselves, so all of the interesting brackets will
involve step operators. We already know the bracket between elements of g0 and Eα, so all that
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is left is to examine the bracket structure of the step operators. Using the Jacobi identity we can
compute that

[Hi, [Eα, Eβ ]] = (αi + βi)[Eα, Eβ ] (154)

Using this, after some work we can compute

[Eα, Eβ ] =


Nα,βE

α+β α+ β ∈ Φ

k(Eα, E−α)Hα α = −β
0 α+ β /∈ Φ

(155)

In the first of the above cases, Nα,β is an unspecificed constant and the fact that the commutator is
proportional to Eα+β follows from non-degeneracy of the roots. In the second case, we have defined
Hα =

∑
(k−1)ijα

iHj ∈ g0 (which is the image of α under the isomorphism provided by the killing
form). Here we are using the components (k−1)ij of k−1, the inner product induced on g∗0 . We can
work in a basis of g0 such that k|g0

is the Euclidean metric, and hence so is its inverse. In this basis,
we get the simpler

Hα =
∑

αiHi (156)

Of course the step operators were only defined up to a constant, so (155) reflects our choice of
normalization conventions. In these conventions it follows that k(Eα, E−α) = 2∑

αiαi = 2
(α,α) =: 2

|α|2 .

Say that R is a representation of g with a basis of simultaneous eigenvectors of g0, |λ〉:

Hi |λ〉 = λi |λ〉 (157)

These λ ∈ g∗0 are called weights. Clearly roots are weights of the adjoint representation. It is simple
to compute that

Hi(Eα |λ〉) = (λi + αi)Eα |λ〉 (158)

If R is finite dimensional, the set of roots is finite, and thus some power of Eα must eventually
kill any eigenvector |λ〉. We know that E−α is also a step operator if Eα is, and hence there exist
smallest minimal non-negative integers pλ and qλ such that

(Eα)pλ+1 |λ〉 = 0 (159)

(E−α)qλ+1 |λ〉 = 0 (160)

Now notice that the operators {Eα, E−α, 1
|α|2H

α} form an algebra isomorphic to sl(2) with 1
|α|2H

α →
J3, E±α → J±.

[Eα, E−α] = 2
1

|α|2
Hα (161)

[
1

|α|2
Hα, Eα] = Eα (162)

[
1

|α|2
Hα, E−α] = −E−α (163)

Hence we know the representation theory of this algebra. We can look at the module

span{(E−α)qλ |λ〉 ..., E−α |λ〉 , |λ〉 , Eα |λ〉 , ..., (Eα)pλ |λ〉}

which we identify as a highest weight sl(2) representation. We know that such a representation has
dimension 2j+ 1, and clearly here we have that the lowest (highest) J3 ∼ 1

|α|2H
α eigenvalue will be

given by acting on (E−α)qλ |λ〉 ((E−α)pλ |λ〉) with 1
|α|2H

α to get

j =
(α, λ)

|α|2
+ pλ (164)

−j =
(α, λ)

|α|2
− qλ (165)

(166)

and together these imply

2
(α, λ)

|α2|
= qλ − pλ ∈ Z (167)

This relation holds for any weight λ, and since roots are examples of weights it holds in particular
for roots.
Generally the set Φ of roots will span g∗0 but dim g0 − r ≥ r so that there will be some linear
dependencies between the elements of Φ. We can come up with a basis for g∗0 consisting of a subset
of Φ termed the simple roots. To construct the simple roots, we cut g0 by a hyperplane that
doesn’t contain any of the roots, call the roots lying on one half the positive roots Φ+ and the
roots lying on the other half the negative roots Φ−. From the positive roots, we define the simple
roots to be those that cannot be written as a sum of two positive roots. It can be shown that
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there are r of these simple roots, labeled {α1, ..., αr}, and that they are linearly independent. Note
that subscripts on a root indicate different simple roots, while superscripts on a root indicate the
components of some generic root. In addition, any positive root has non-negative integer coefficients
in the basis of simple roots, and any negative root has non-positive integer coefficients in the basis of
simple roots. Since every positive root is a Z≥0 sum of simple roots, we can define the highest root
θ =

∑
i aiαi to be the positive root with the greatest sum of coefficients

∑
ai (θ is unique). These

ai are called the marks. In fact, all of the roots can be obtained by subtracting off an appropriate
non-negative integer sum of simple roots from θ.
Going back to (167), we define the simple coroots

α∨j :=
2αj
|αj |2

(168)

so that any of the inner products (αi, α
∨
j ) are integers. Since we have just normalized the roots in

order to define the coroots, the coroots obviously also form a basis for g∗0. If we expand θ in this
basis θ =

∑
i a
∨
i α
∨
i then we call the coefficients a∨i the comarks. From the comarks we obtain

Definition 7.3 The dual Coxeter number is

g := 1 +
∑
i

a∨i (169)

This dual Coxeter number is the g that appears in the normalization of the Killing form (152). Of
course we have made a large number of arbitrary choices to get to this point, so it is not obvious
that the dual Coxeter number thus defined does not depend on these choices, but this is in fact
the case; g is an invariant of g. We can form the matrix of all inner products between simple roots
and simple coroots Aij := (αi, α

∨
j ) called the Cartan matrix. From our previous observations,

the Cartan matrix is an integer matrix. From the definition of coroots, it is clear that the diagonal
elements Aii of the Cartan matrix are all equal to 2. All of the off diagonal elements of the Cartan
matrix are equal to 0,−1,−2 or −3. Clearly Aij = 0 implies Aji = 0 but in general it is not true

that Aij = Aji. However we note that for i 6= j AijAji =
4(αi,αj)

2

|αi|2|αj |2 < 4 by Cauchy Schwarz (αi and

αj linearly independent so we get strict inequality), so Aij , Aji 6= 0 tells us that at least one of Aij
and Aji must be −1 (−2 · −2, −3 · −2 and −3 · −3 are all bigger than 3). The simple root lengths
|α2
i | turn out to take at most two values, and we call those with the greater of these values the long

roots and those with the smaller the short roots. Clearly non-equality of Aij and Aji results from
αi and αj have different lengths. In the case there is just one root length we call g simply laced.
From our simple roots we can define a particular Cartan-Weyl basis known as the Chevalley basis.
Actually, we have already encountered the necessary definitions when we analyzed the commutation
relations (161)− (163). We define for each simple root αi three operators

ei := Eαi (170)

f i = E−αi (171)

hi =
2Hαi

|αi|2
(172)

The point of the Chevalley basis is that it is simple to write down commutation relations between
these elements in terms of the Cartan matrix:

[hi, hj ] = 0 (173)

[hi, ej ] = Aije
j (174)

[hi, f j ] = −Ajif j (175)

[ei, f i] = δijh
i (176)

The hi do constitute a basis for g0 but the ei and f i do not account for all possible step operators,
so this is not a full basis yet. In order to get the rest of the step operators, we need to employ the
Serre relations

[ad(ei)]1−Ajiej = 0 (177)

[ad(f i)]1−Aijf j = 0 (178)

(179)

This is nothing but equations (159) and (160) for the adjoint representation in the Chevalley basis,
but now we explicitly know pλ and qλ. The rest of the step operators are then simply of the form
[ad(ei)]sej for 0 ≤ s ≤ −Aji and [ad(f i)]rf j for 0 ≤ s ≤ −Aij . The upshot of the Chevalley basis
and the Serre relations is that the entire simple Lie algebra g can be reconstructed from its Cartan
matrix.
Now we discuss yet another basis of g∗0 (the third one!) called the basis of fundamental weights.
These are the elements ωi of g∗0 such that

(ωi, α
∨
j ) = δij (180)

23



i.e the basis vectors of the dual lattice of the simple coroot lattice. Since we already showed that the
weights λ of any representation have integer inner products with any simple coroot, the coefficients
of any such λ in the basis of fundamental weights will be integral:

λ =
∑
i

λiωi =: (λ1, ..., λr) ∈ Zr (181)

These λi are known as the Dynkin labels of λ. What are the Dynkin labels of the simple roots? If
we write αi =

∑r
k=1 ckωk, then taking inner products with α∨j yields

Aij = (αi, α
∨
j ) =

∑
k

ckδjk = cj =⇒ αi =

r∑
k=1

Aikωk = (Ai1, ..., Air) (182)

and so the Dynkin labels of αi are the ith row of the Cartan matrix. For any weight λ we have

hi |λ〉 =
2Hαi

|αi|2
|λ〉 =

2

|αi|2
r∑

k=1

αkiH
k |λ〉 =

2

|αi|2
r∑

k=1

αki λ
k = (α∨i , λ) = λi (183)

where the last equality follows from expanding λ in the fundamental weight basis and using the
duality between fundamental weights and simple coroots. If we take all possible inner products
Fij := (ωi, ωj) between fundamental weights, we get the quadratic form matrix. This matrix is
nothing other than a change of basis matrix from the basis of fundamental weights to the basis of
simple coroots:

ωi =
∑

Fijα
∨
b (184)

Multiplying (182) through by 2
|αi|2 we get

α∨i =
∑ 2

|αi|2
Aijωj (185)

The change of basis matrices between two bases are inverses of each other by basic linear algebra,
so we get

Fij = (A−1)ij
|αj |2

2
(186)

Clearly the quadratic form matrix allows us to take inner products in the fundamental weight basis
by multiplying F with Dynkin labels.
If we return now to the fact that {Eα, E−α, 1

|α|2H
α} forms a sl(2) algebra and

span{(E−α)qλ |λ〉 ..., E−α |λ〉 , |λ〉 , Eα |λ〉 , ..., (Eα)pλ |λ〉}

is a highest weight representation space for it, taking |λ〉 = |β〉 := Eβ (working in the adjoint
representation), from the representation theory of sl(2) we get that |β〉 has some integer eigenvalue
m for J3 ∼ 1

|α|2H
α

mEβ =
1

|α|2
[Hα, Eβ ] =

1

|α|2
∑

αi[Hi, Eβ ] =
1

|α|2
∑

αiβiEβ =
1

2
(α∨, β)Eβ (187)

and so we see that 2m = (α∨, β). Furthermore, so long as m 6= 0 we know that the spectrum of J3

includes −m since it contains m (the spectrum is {−2j − 1,−2j + 1, ..., 2j − 1, 2j + 1}). Looking at
the set of eigenvectors listed above, we see that the eigenvector with J3 eigenvalue −m has to be of
the form |β + `α〉 for some integer qβ ≤ ` ≤ pβ . Computing the action of J3 on this vector returns

−mEβ+`α =
1

2
(α∨, β + `α)Eβ+`α =

1

2
(2m+ 2`)Eβ+`α (188)

and hence −2m = 2m+2`. Therefore we have β+`α = β−2mα = β− (α∨, β)α, and this is another
root. Hence if we define

Definition 7.4 A Weyl reflection sα : g∗0 → g∗0 is defined by

sαβ = β − (α∨, β)α (189)

Here α is a root and β is any element of g0, not necessarily a root as above. The group W of
all Weyl reflections is the Weyl group and it is generated by the Weyl reflections of simple roots
W = 〈sα1

, ..., sαr 〉.

then we see that the Weyl group permutes Φ, the set of all roots. As mentioned in the definition,
the Weyl group is generated by Weyl reflections of simple roots, so if we know the relations among
these simple reflections we know the entire group. The relations between these simple reflections is
easy to write down, and so we get the following presentation for W :

W = 〈sα1
, ..., sαr |s2

αi = 1, (sαisαj )
mij = 1〉 (190)
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where mij := 2 if Aij = 0 and mij := 4π
4π−(α∨i ,α

∨
j ) = π

π−θij . θij is the angle between αi and αj ,

defined using the inner product induced by the inverse Killing form on g∗0. Notice that acting with
a simple reflection on a simple root yields the nice formula

sαiαj = αj −Ajiαi (191)

which follows immediately from the definition of the simple reflection and the definition of the Cartan
matrix. The union of the orbits of the simple roots under the Weyl group is the set of all roots.
A quick computation shows that the inner product on g∗0 is invariant under the action of the Weyl
group.
We can define the integer span of any of our bases (simple roots, simple coroots, or fundamental
weights) to be the root lattice Q, the coroot lattice Q∨ and the fundamental weight lattice
P . The root lattice is a sublattice of the fundamental weight lattice, Q ≤ P , while the P and Q∨

are by definition dual lattices. We give a special name to a particular element of the fundamental
weight lattice:

Definition 7.5 The Weyl vector is the element of g∗0

ρ =

r∑
i=1

ωi (192)

We can make use of the Weyl group to prove a different characterization of the Weyl vector, namely
half the sum of the positive roots ρ = 1

2

∑
α∈Φ+ α. We just need to show that 1

2

∑
α∈Φ+ α has the

correct coefficients in the fundamental weight basis, i.e we need to show that ( 1
2

∑
α∈Φ+ α, α∨i ) = 1.

We can do this by making use of the invariance of the inner product under the Weyl group. Namely,

(
1

2

∑
α∈Φ+

α, α∨i ) = (sαi
1

2

∑
α∈Φ+

α, sαiα
∨
i ) = (

1

2
[−αi +

∑
α∈Φ+

α]− 1

2
αi,−αi) =

(
1

2

∑
α∈Φ+

α,−α∨i ) + (−αi,−α∨i ) = −(
1

2

∑
α∈Φ+

α, α∨i ) + 2 =⇒ (
1

2

∑
α∈Φ+

α, α∨i ) = 1 (193)

In this computation we used the fact that sαi
1
2

∑
α∈Φ+ α = 1

2 [−αi +
∑
α∈Φ+ α]− 1

2αi which follows
because sαi permutes all of the positive roots besides αi amongst themselves, while it sends αi to
−αi; these are both consequences of (191) and the fact that positive roots are Z≥0 sums of simple
roots. We can use the Weyl group elements to partition g∗0 into a complete fan whose cones are
given by

Definition 7.6 The Weyl chamber Cw for w ∈W is the cone

Cw := {λ ∈ g∗0|(wλ, αi) ≥ 0, i = 1, ..., r} (194)

Remark 21 Are there any interesting properties of the toric variety associated to the fan of Weyl
chambers...

We also define the shifted Weyl reflection associated to w ∈W by

w · λ = w(λ+ ρ)− ρ (195)

where ρ is of course the Weyl vector and λ ∈ g∗0. The shifted Weyl reflections still give a group
action on g∗0.
Now let’s talk about the finite dimensional representation theory of simple Lie algebras. This boils
down to two steps: finding the irreducible highest weight representations (irreps) and expressing
tensor products of irreps as direct sums of irreps. We don’t go into the details of the derivation, but
here is how the classification works. We define an integral dominant weight Λ ∈ P to be a Z≥0

linear combination of the fundamental weights

Λ =

r∑
i=1

Λiωi, Λi ∈ Z≥0 (196)

There is a one to one correspondence between dominant integral weights and irreps. Namely, for
each integral dominant weight Λ we get an irrep RΛ with the following features:

1. The weight set ΩΛ or RΛ is given by the following inductive algorithm:

• Define K1 = {Λ}
• Add Kn to ΩΛ

• Define
Kn+1 :=

⋃
λ=

∑
λiωi∈Kn

{λ− kαi|1 ≤ k ≤ λi}

• Repeat the last two steps until they can’t be done anymore, i.e until Kn contains only
λ =

∑
λiωi such that each λi is non-positive
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2. The multiplicities of each weight λ ∈ ΩΛ (how many simultaneous eigenvectors in RΛ have the
same weight λ) is given by the Freudenthal recursion formula

[|Λ + ρ|2 − |λ+ ρ|2]multΛ(λ) = 2
∑

α∈Φ+,k≥1

(λ+ kα, α)multΛ(λ+ kα) (197)

Here ρ is the previously defined Weyl vector. Using this formula, we can start at the unique
highest weight Λ (multΛ(Λ) = 1) of RΛ and obtain the multiplicities of all of the other weights
systematically.

Next we talk about a distinguished element of the universal enveloping algebra of g, U(g), called the

quadratic Casimir operator. In a basis {T a}dim g
a=1 of the Lie algebra (not one specially chosen to

make the Killing form components Euclidean) it is given by

Q :=
∑
a,b

kabT
aT b (198)

Q acts as a constant on any irrep, and that constant is

Q ∼ (Λ,Λ + 2ρ) in RΛ (199)

The highest weight of the adjoint representation is the highest root θ discussed previously. If we
compute (199) for Λ = θ we get that

Q ∼ 2g in Rθ (200)

where g is the previously defined dual coxeter number.
We can form an inner product on the image of g under a representation homomorphism RΛ (we are
using RΛ to denote both the representation space and the homomorphism from g into gl(RΛ)):

kΛ(T a, T b) := TrRΛ
(RΛ(T a)RΛ(T b)) (201)

kΛ is proportional to the killing form k = kθ

(kΛ)ab = |θ|2xΛkab (202)

and this proportionality constant xΛ is known as the index of RΛ. We actually still have some
freedom in normalization of the roots of g left over (so far we have only normalized them relative to
each other so that the k(Eα, E−α) = 2

|α|2 ) and we can use this freedom to take |θ|2 = 2. With this

convention it is easy to compute from (199) + (202) that

xΛ =
dimRΛ · (Λ,Λ + 2ρ)

2 dim g
(203)

Given a representation RΛ, we define

Definition 7.7 The character of RΛ is

χΛ :=
∑
λ∈ΩΛ

multΛ(λ)eλ (204)

where eλ is a formal symbol that satisfies eλ1eλ2 = eλ1+λ2 and can be evaluated on weights eλ(λ′) :=
exp((λ, λ′)).

There is a formula due to Weyl for these characters. We define for any w ∈ W the length of w,
denoted `(w), to be the minimum number of simple reflections needed to be multiplied together to
obtain w. Then we define ε(w) := (−1)`(w). Using these ε, we can write

χΛ =

∑
w∈W ε(w)ew(Λ+ρ)∑
w∈W ε(w)ew(ρ)

(205)

which is called the Weyl character formula. It can be used to derive a formula for the dimension
of an irrep, but we won’t write it here. The Littlewood-Richardson coefficients of a tensor
product are the multiplicity with which other irreducible representations appear in the direct sum
decomposition:

RΛ ⊗Rµ =
∑
ν

N ν
Λ,µRν (206)

where ν ranges over dominant integral weights. There are a number of schemes used to calculate
these coefficients, but we only highlight one that generalizes nicely to affine Lie algebras. This is
the character method. Equation (204) for the character of an irrep can easily be extended to the
character of any arbitrary representation of g. Once we do this, it is easy to show that χRΛ⊕RΛ′ =
χΛ +χΛ′ and χRΛ⊗RΛ′ = χΛ ·χΛ′ which tells us that taking character is a ring homomorphism from
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the ring of representations of g to the character ring of g. Using (206) along with these rules for how
characters combine we obtain

χΛχµ =
∑
ν

N ν
Λ,µχν (207)

Using (204) for χµ and (205) for χΛ and χν , after clearing denominators we get∑
w∈W

ε(w)ew(Λ+ρ)
∑
µ′∈Ωµ

multµ(µ′)eµ
′

=
∑

ν,w∈W
N ν

Λ,µε(w)ew(ν+ρ) (208)

Let’s isolate the terms on the RHS and LHS with formal exponentials eν̄+ρ for some fixed dominant
weight ν̄. Note that ν̄ + ρ is dominant, being that it is the sum of two dominant weights. For some
generic exponential appearing on the RHS, ew(ν+ρ), the only w that can make ν+ρ dominant is w = 1
since the W orbit of each weight intersects the fundamental chamber C1 exactly once, and hence only
eν+ρ can contribute. But in order for eν+ρ to be equal to eν̄+ρ we need ν = ν̄, and hence the only term
on the RHS with formal exponential eν̄+ρ is ν = ν̄, w = 1. This term is N ν̄

Λ,µε(1)eν̄+ρ = N ν̄
Λ,µe

ν̄+ρ.

Now we examine the LHS. First we rewrite the inner sum as
∑
µ′∈Ωµ

multµ(µ′)ew(µ′) which holds
because the Weyl groups permutes Ωµ, and multiplicities are invariant under the action of the Weyl
group. So we have ∑

w∈W,µ′∈Ωµ

ε(w)multµ(µ′)ew(Λ+µ′+ρ)

and we would like to know when the weight in the formal exponential is equal to ν̄+ρ.. This happens
when w · (Λ + µ) = w(Λ + µ′ + ρ)− ρ = ν̄. Hence equating the contributions from the RHS and the
LHS to eν̄+ρ we get ∑

µ′∈Ωµ

∑
w∈W

w·(Λ+µ′)=ν̄

ε(w)multµ(µ′) = N ν̄
Λ,µ (209)

Finally, we can write

multµ(µ′) = multµ(ρ+ ν̄ − w(Λ + ρ)) = multµ(w−1(ν̄ + ρ)− ρΛ) = multµ(w−1 · ν̄ − Λ) (210)

where we have made use of the condition under the sum in (209) in the first equality, invariance of
multiplicities under multiplication by w−1 in the second equality, and the defintion of the shifted
Weyl reflection in the last equality. ε(w) = ε(w−1), and hence using (210) we can write the sum
(209) in the simpler form

N ν̄
Λµ =

∑
w∈W

ε(w)multµ(w · ν̄ − Λ) (211)

Lastly for this section, we note that we should talk about embeddings of Lie algebras and branching
rules, but we leave that discussion for later when we talk about it in the affine case.

7.2 Affine Lie algebras

Affine Lie algebras are infinite dimensional Lie algebras built from a simple Lie algebra g. They can
be described starting from a Cartan matrix Aij and relaxing the condition that det(A) > 0 to the
easier condition that the determinant of each of the minors of the Cartan matrix is greater than 0,
but we won’t take this route here. Instead, we present a constructive approach to them. We begin
with the so-called loop algebra of g, defined as

L(g) := g⊗ C[t, t−1] (212)

i.e the set of all Laurent polynomials with coefficients in g. We denote a basis element T a ⊗ zn of
L(g) by T an , and we define commutators on this algebra by

[T an , T
b
m] =

dim g∑
c=1

ifabc T
c
n+m (213)

We can centrally extend this loop algebra by an element k̂ so that the modified commutation relations
now read (in a basis such that k(T a, T b) = δab)

[T an , T
b
m] =

dim g∑
c=1

ifabc T
c
n+m + k̂nδn,−m (214)

[T an , k] = 0 (215)

For a Cartan Weyl basis {H1, ...,Hr} ∪ {Eα|α ∈ Φ} of g such that the Killing form restricted to g0

is δij = k(Hi, Hj), and k(Eα, E−α) = 2
|α|2 these relations become

[Hi
n, H

j
m] = k̂nδijδn,−m (216)

[Hi
n, E

α
m] = αiEαn+m (217)

[Eαn , E
β
m] =


2
|α|2 (Hα

n+m + knδn,−m) α = −β
Nα,βE

α+β
n+m α+ β ∈ Φ

0 else

(218)

27



This central extension of L(g) is not quite an affine Lie algebra yet: we must adjoin an element D
to it which acts by

[D,T an ] = nT an (219)

[k̂, D] = 0 (220)

Once we have adjoined D, we have

Definition 7.8 An (untwisted) affine Lie algebra ĝ is the vector space L(g) ⊕ Ck̂ ⊕ CD sup-
plemented with the commutation relations (214), (215), (219) and (220).

The theory of these untwisted affine Lie algebras closely mirrors the theory of simple Lie algebras.
Firstly, we note that ĝ contains g as the horizontal subalgebra, span({T a0 }). The isomorphism is
clear using (214). As with g, we have a maximal abelian algebra for ĝ:

Definition 7.9 The Cartan subalgebra ĝ0 of ĝ is spanned by g0 ∪ {k̂, D}.

We can again put a Killing form K on ĝ. We require that the invariance property (153) still holds,
and up to normalization this requires

K(T an , T
b
m) = δabδn,−m (221)

K(D, k̂) = 1 (222)

K(T an , k̂) = K(k̂, k̂) = K(T an , D) = K(D,D) = 0 (223)

This new Killing form is non-degenerate when restricted to ĝ0, so we again get an inner product on
ĝ0, a canonical isomorphism between ĝ0 and ĝ∗0, and an induced inner product on ĝ∗0. We can label
elements of the weight space ĝ∗0 (called affine weights) by their values on the Cartan subalgebra ĝ
like usual:

λ̂ = (λ̂(H1
0 ), ..., λ̂(Hr

0 ), λ̂(k̂), λ̂(D)) ∈ ĝ∗0 (224)

The first r components of this vector form a standard weight λ in g∗0, the dual of the Cartan

subalgebra of the horizontal subalgebra of ĝ, so we can write λ̂ = (λ, kλ = λ̂(k̂), nλ = λ̂(D)). In
terms of these components, the induced inner product on g∗0 takes the explicit form

(λ̂, µ̂) = (λ, µ) + kλnµ + kµnλ (225)

where (λ, µ) is the induced inner product on the weight space g∗0. Affine roots, i.e affine weights
of the adjoint representation of ĝ on itself, take the form

β̂ = (β, 0, n) ∈ Φ̂ (226)

for β ∈ g∗0 and n ∈ Z. This holds because k̂ has 0 eigenvalues in the adjoint representation ((215)

and (220)), while D gives the Z gradation of L(g), and commutes with itself and k̂. Applying the
formula (225) then tells us that we can just remove hats when taking inner products of affine roots.
There are two types of affine roots; the real roots are the roots associated to the vectors Eαn , which
are α̂ = (α, 0, n), and the imaginary roots are the roots associated the vectors Hi

n which are
(0, 0, n). We define δ := (0, 0, 1) and α := (α, 0, 0) so that the roots associated to Hi

n can be written
more concisely as nδ and the roots associated the Eαn can be written more concisely as α+nδ. Using
(225) again we can calculate that the imaginary roots have 0 norm (nδ,mδ) = 0. Unlike the case of
g simple, there are degeneracies amongst the affine roots. Namely, nδ is the affine root of each Hi

n

for i = 1, ..., r and is therefore r−fold degenerate, while the roots α+ nδ are non-degenerate (which
follows from the non-degeneracy of the roots of g). Clearly a basis for the set of all affine roots can
be given by the simple roots αi = (αi, 0, 0) plus δ, since the simple roots form a basis for the root
space of g, but we choose instead to take as a basis the simple roots plus α0 = −θ+ δ where θ is the
highest root i.e the highest weight of the adjoint representation of g. Therefore the preferred basis,
which we shall call the affine simple roots Φ̂s, for ĝ∗0 is {α0, ..., αr}. The affine positive roots
Φ̂+ are the Z≥0 linear span of the affine simple roots intersected with Φ̂ - this was also the case for
g∗0, but the construction here is reversed (for g∗0 we started with positive roots and then found the
simple roots as a subset of them). We can show that the set of all affine positive roots is

Φ̂+ = {α+ nδ|n > 0, α ∈ Φ ∪ {0}} ∪ Φ+ (227)

It is clear that Φ+ ⊂ Φ̂+, and for the other elements we can write α+nδ = α+n(α0+θ) = nα0+nθ+α.
θ has the property that θ + α is always dominant for any α ∈ Φ ∪ {0} (usually this is phrased as
θ−α is always dominant, but of course α ∈ Φ ⇐⇒ −α ∈ Φ), so this expression is indeed a positive
root. For the other inclusion, the only other types of roots that exist are of the form

• α + nδ = α + n(α0 + θ) for n < 0, α ∈ Φ ∪ {0}. nθ + α is a linear combination of the αi for
i > 0, so the coefficient n on α0 in the expansion of nδ is negative and hence this is not an
affine positive root (the coefficients on the other αi’s are negative too, just easier to see it for
α0).
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• α for α ∈ Φ/Φ+

From this characterization of the set of affine positive roots, we see that that there is no highest
root so the adjoint representation is not a highest weight rep.
As mentioned at the beginning of this section, we could have started with Cartan matrices to get to
affine Lie algebras (and more general algebras as well called Kac Moody algebras which would
be those whose Cartan matrix had no restriction on determinant), but we did not take this path.
We instead describe the Cartan matrix Â that results from our constructed ĝ. First we define

Definition 7.10 The affine simple coroots are

α∨i :=
2

|αi|2
αi (228)

just as in the simple g case, except now we have i = 0, 1..., r.

Obviously these affine simple coroots will be the same as the simple coroots for i > 0 will be the
same as those of g We just need to calculate the norm of α0 = −θ + δ:

|α0|2 = (θ, θ)− 2(θ, δ) +���(δ, δ) = 2− 2(θ, δ) = 2 (229)

This last equality follows because δ is orthogonal to all of the (g) simple roots αi = (αi, 0, 0), and θ
is a sum of such roots. Hence we see that α∨0 = α0. Given these coroots, we define

Definition 7.11 The Cartan matrix associated to ĝ is the matrix of inner products

Âij := (αi, α
∨
j ) (230)

So the Cartan matrix Â for ĝ is an (r + 1) × (r + 1) matrix whose minor obtained by deleting the
0th row and column gives the Cartain matrix A for g. So the only new entries in the Cartan matrix
Â are in the 0th row and column. We can calculate them.

Â00 = (α0, α
∨
0 ) = 2 (231)

Â0,j = (α0, α
∨
j ) = −(θ, α∨j ) +

����(δ, α∨j ) = −
r∑
i=1

ai(αi, α
∨
j ) = −

r∑
i=1

aiAij (232)

Âj,0 = (αj , α
∨
0 ) = (αj , α0) = −(αj , θ) = −

r∑
i=1

a∨i Aji (233)

where the ai and a∨i are the marks and comarks from the last section (the coefficients of θ in
the simple root and simple coroot basis respectively). We set a convention where the zeroeth
mark a0 and the zeroeth comark a∨0 are both equal to 1. These definitions allow us to calculate∑r
i=0 aiÂij = 0, and hence the generalized Cartan matrix has a zero eigenvalue. This is in sharp

contrast to the Cartan matrix of g which had positive determinant. The given definition for the
zeroeth mark and comark also allow us to write

δ =

r∑
i=0

aiαi =

r∑
i=0

a∨i α
∨
i (234)

g = 1 +

r∑
i=1

a∨i =

r∑
i=0

a∨i (235)

so we get nice expressions for δ and the dual Coxeter number.
Again mirroring simple Lie algebra theory, we can define the dual vectors to the simple coroots
called the affine fundamental weights:

(ω̂i, α
∨
j ) = δij (236)

We can calculate that ω̂0 = (0, 1, 0) = (0, α∨0 , 0), ω̂1 = (ω1, a
∨
1 , 0), ..., ω̂r = (ωr, a

∨
r , 0). ω̂0 is the basic

fundamental weight. If we define ωi = (ωi, 0, 0) then using the basic fundamental weight we can
write ω̂i = ωi + a∨i ω0 for i = 1, ..., r. The inner product between the basic fundamental weight and
any other affine fundamental weight vanishes because of (225), and the inner product between ω̂i
and ω̂j for i, j > 0 is just the inner product between ωi and ωj , i.e elements of the quadratic form
matrix:

(ω̂i, ω̂j) = (ωi, ωj) = Fij (237)

Now a point of clarification: ĝ0 (and hence ĝ∗0) is an r+2 dimensional space, while there are only r+1
affine simple roots, affine simple coroots, and affine fundamental weights, so each of these linearly
independent sets needs one more element to form a whole basis for ĝ∗0. For example, we can add
ω̂0 to the affine simple roots or affine simple coroots, and we can add δ to the affine fundamental
weights to get actual bases for ĝ∗0. In this latter basis, we can expand any weight λ̂ ∈ ĝ∗0 to get

λ̂ = rδ +
∑r
i=0 λiω̂i where the λi are again known as the Dynkin labels and r is just some real

coefficient. If we evaluate λ̂ on k̂ we get
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Definition 7.12 The level of an affine weight λ̂ is

k := λ(k̂) (238)

We can evaluate the level by looking at λ̂ = rδ+
∑r
i=0 λiω̂i and summing up the contributions to the

second slot λ̂ = (λ, λ̂(k̂), λ̂(D)). rδ = (0, 0, r) contributes nothing, and each term λiω̂i = (λiωi, λiα
∨
i )

contributes λiα
∨
i yielding

k =

r∑
i=0

λiα
∨
i = λ0 + (λ, θ) (239)

Sometimes it is convenient to forget about the D eigenvalue of a given weight and write things like
λ = [λ0, ..., λr] suggesting that a weight is characterized by its Dynkin labels, but this is obviously
incomplete information about the weight λ. We can define the Weyl vector ρ̂ in this way as [1, ..., 1].
I believe that when we do this, we are implicitly assuming that ρ̂(D) = 0 but maybe that is not
the case (I will modify this statement if I find out differently later). We define dominant integral
affine weights as we did for dominant integral weights; those weights that possess all non-negative
integer Dynkin labels.
Continuing on in parallel with how we developed the theory of simple Lie algebras, we can define
the affine Weyl group Ŵ to be the group of all Weyl reflections by real roots. That is, we have
for any real root α̂ = (α, 0,m) and arbitrary weight λ̂ = (λ, k, n)

sα̂λ := λ̂− (λ̂, α̂∨)α̂ (240)

and
Ŵ := {sα̂|α̂ ∈ Φ̂} (241)

We also define the shifted affine Weyl transformation analogously to the finite case:

w · λ̂ := w(λ̂+ ρ̂)− ρ̂ (242)

We can calculate the effect of an affine Weyl reflection on a generic weight λ̂ using (225) :

sα̂λ = (λ, k, n)− 2

|α|2
[(λ, α) + km+ 0 · n](α, 0,m) =

(λ− 2

|α|2
((λ, α) + km)α, k, n− 2

|α|2
((λ, α) + km)m) =

(sα(λ+ kmα∨), k, n− ((λ, α) + km)
2m

|α|2
) (243)

The first line is just applying (225), the second line is grouping together the terms, and the last line
is noticing that

sα(λ+ kmα∨) = λ+ kmα∨ − (λ+ kmα∨, α∨)α =

λ+ kmα∨ − (λ, α∨)α− (kmα∨, α∨)α =

λ− 2

|α|2
(λ, α)α+ kmα∨ − (kmα,α∨)α∨ =

λ− 2

|α|2
(λ, α)α+ kmα∨ − 2kmα∨ =

λ− 2

|α|2
(λ, α)α− 2

|α2|
kmα

Because δ is orthogonal to every root, affine Weyl transformations do not affect it: sα̂δ = δ. Affine
Weyl transformations, like their finite counterparts, preserve the induced inner product on ĝ∗0. Also
like their finite counterparts, affine Weyl orbits of affine weights of some given representation have
constant multiplicity. If we define for any coroot α∨ the translation operator tα∨ = sαsα+δ after some
algebra, and using (242) we get that sα̂ = sα(tαv )m. We can also compute that tα∨tβ∨ = tα∨+β∨

and hence the set of these translations is isomorphic to the coroot lattice of g, Q∨. We can write an
explicit for for the action of tα∨ :

tα∨(λ, k, n) = (λ+ kα∨, k, n+
1

2k
(|λ|2 − |λ+ kα∨|2)) (244)

When k = 0 we first expand out the inner products in the third slot of this formula and cancel the
denominator k. For any sα̂ = sα(tαv )m = sαtmα∨ we can compute the effect of conjugation by sα̂
on tβ∨ , remembering that sα̂ = (sα̂)−1 is order 2:

sα̂tβ∨s
−1
α̂ = sαtmα∨+β∨sαtmα∨ = tsα(mα∨+β∨)+mα∨ (245)

and hence we see that the set of tβ∨ ’s form a normal subgroup of Ŵ . Furthermore this normal

subgroup intersects W ≤ Ŵ trivially, so by the decomposition sα̂ = sα(tαv )m we get

Ŵ ∼= Q∨ oW (246)
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Remark 22 In all of the sources that I have seen, they claim that for any σ ∈ Ŵ , σtβ∨σ
−1 =

tσ(β∨) but I don’t understand this. If we take σ = sα0
to be the element of the affine Weyl group

corresponding to the simple root α0 = (−θ, 0, 1), then using the formula (242) with λ = β∨ =
(β∨, 0, 0) we get sα0

(β∨) = (sα0
(β∨), 0,−(β∨, θ∨)) which has a non-zero last component and is

hence not a coroot anymore. It doesn’t even make sense to write tsα0
(β∨). What am I missing

here? I think the argument that I gave above is better - the key difference is that I only act on
coroots with the finite reflection sα instead of the affine reflection sα̂. I just did the calculation
sαtmα∨+β∨sα = tsα(mα∨+β∨) by hand by acting on an arbitrary λ̂ = (λ, k, n).

Once again following the development of the theory of g, we can define affine Weyl chambers

Ĉw = {λ̂|(wλ̂, αi) ≥ 0, i = 0, ..., r} (247)

and make note that the affine Weyl orbits intersect the affine fundamental chamber Ĉ1 exactly once.
Now we discuss the representation theory of affine Lie algebras. We will again focus our attention on
the highest weight representations, but now can define a subclass of these highest weight representa-
tions that are of special importance: the integrable highest weight representations. In short,
to get an integrable highest weight representation we take the Verma module of some dominant
integral affine weight λ̂ = [λ1, ..., λr] at level k (notice we don’t specify λ̂(D): this is because it can
always be set to 0 once we focus on a specific rep by shifting the definition of the generators of ĝ),
and quotient out by the null vectors (the vectors that have zero norm if we impose (T an )† = T a−n.
Equivalently, vectors that generate a maximal submodule of Vλ̂ so that the quotient is irreducible).
The condition λ0 ∈ Z≥0 along with equation (239) tells us that for λ = (λ1, ..., λr) we must have

(λ, θ) ≤ k ∈ Z≥0 (248)

The inequality above is obvious, and the condition k ∈ Z≥0 follows from the fact that k = λ0+(λ, θ) =
λ0 + (λ, θ∨); λ0 ∈ Z≥0 and θ = θ∨ has integer inner product with λ since λ is a weight of some rep
of g. Expanding θ in the simple coroot basis of g and λ in the fundamental weight basis of g, (248)
reads

r∑
i=1

λia
∨
i ≤ k (249)

Since each comark a∨i is positive, and the λi are positive integers, this gives us only finitely many
integrable highest weight representations at a given level k ∈ Z≥0. So, to sum up, to form a highest
weight integrable representation

• Pick a level k ∈ Z≥0

• Choose a dominant integral weight λ̂ = (λ, k, 0) such that λi ∈ Z≥0 for each i = 1, ..., r and
(λ, θ) ≤ k. There are only finitely many such λ.

• Form the Verma module Vλ̂ = U(ĝ−)vλ̂ where ĝ− is the subalgebra of ĝ generated by all of the
step operators corresponding to negative roots.

• Impose ĝ+vλ̂ = 0 (ĝ+ is the subalgebra of ĝ generated by the step operators corresponding

to positive roots) and ĝ0 = span{H1
0 , ...,H

r
0 ,K,D} acts by Hi

0 = λi, k̂ = k and D = 0.
Equivalently we could have started with the Verma module V ′

λ̂
= U(ĝ)vλ̂ and quotientied out

by these relations.

• Finally, quotient the resulting object out by the null vectors: these are the vectors (E−αi0 )λivλ̂
for i = 1, ..., r and (Eθ−1)λ0+1vλ̂ and their descendants.

To find the weights and multiplicities of these integrable highest weight representations, we follow
the same procedure that we did for g: we subtract positive integer sums of simple roots from the
dominant weight λ̂ in an algorithmic way - we won’t review exactly which sums get subtracted here,
because it is exactly the same idea as for simple g, except that the algorithm does not terminate.
The multiplicities follow from the same recursion formula (197) with ρ replaced with the affine Weyl
vector ρ̂, and a factor that accounts for the degeneracy of imaginary roots:

[|λ̂+ ρ̂|2 − |λ̂+ ρ̂|2]multλ̂(λ̂′) =
∑
α̂>0

multλ̂(α̂)

∞∑
p=1

multλ̂(λ̂′ + pα̂)(λ̂′ + pα̂, α̂) (250)

Now we discuss the character theory of affine Lie algebras. We start with the same definition:

Definition 7.13 The (affine) character of a representation R of ĝ is

χR =
∑
µ̂∈Ω̂R

multR(µ̂)eµ̂ (251)

However this definition comes with an added subtlety. The weight set Ω̂R of a representation of
an affine Lie algebra is infinite dimensional, so we have convergence issues to worry about when it
comes to evaluating such a sum acting on another weight. However, it can be shown that these
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characters converge for reasonable representations such as the irreducible integrable highest weight
representations that we just defined. Just as with the finite dimensional simple Lie algebras g, we
get a nice formula for the characters of the irreducible integrable highest weight representations, this
time called the Weyl-Kac character formula. It looks identical to the last character formula:

χλ̂ =

∑
w∈Ŵ ε(w)ew(λ̂+ρ̂)∑
w∈Ŵ ε(w)ew(ρ̂)

(252)

Using the decomposition Ŵ = Q∨ oW of the affine Weyl group into a semidirect product, we can
manipulate (252) further. First we define the generalized Theta functions

Θλ̂ := e
−|λ̂|2δ

2k

∑
α∨∈Q∨

etα∨ λ̂ (253)

After some manipulations (doing some algebra on the generalized Theta function, and using the
semidirect product structure of Ŵ to rewrite (252)) we get that the Weyl-Kac formula transforms
into

χλ̂ = esλ̂

∑
w∈W ε(w)Θw(λ̂+ρ̂)∑
w∈W ε(w)Θw(ρ̂)

(254)

where

sλ̂ :=
|λ̂+ ρ̂|2

2(k + g)
− |ρ|

2

2g
(255)

To get rid of this extra exponential lurking around, we define the normalized affine characters

χ̃λ̂ := e−sλ̂χλ̂ =

∑
w∈W ε(w)Θw(λ̂+ρ̂)∑
w∈W ε(w)Θw(ρ̂)

(256)

We can evaluate characters at specific weights to get specialized characters. Namely, if we define
µ̂ = (0, 2πiτ, 0) for some number τ then we get from the basic definition (251) that

χλ̂(τ) =

∞∑
n=0

dnq
n (257)

where q = e2πiτ and dn is the dimension of the nth graded piece of the Rλ̂ (the grading of a vector is
defined as (negative) the sum of the subscripts of the operators in ĝ applied to it). More generally,

it is conventional to write a weight λ̂′ as

λ̂′ = 2πi(ζ, τ, t) (258)

We can obviously write any function of the weights λ̂′ instead as a function of the inputs ζ ∈ g∗0,
τ and t. This normalization convention makes it easier to work with modular transformations of
weights; the weight space ĝ∗0 carries an action of PSL2(Z) defined by[

a b
c d

]
(ζ, τ, t) = (

ζ

cτ + d
,
aτ + b

cτ + d
, t− c|ζ|2

cτ + d
) (259)

We recall from earlier sections that PSL2(Z) is generated by two matrices (or rather their equivalence

classes) S =

[
0 −1
1 0

]
and T =

[
1 1
0 1

]
. Since we have a group action on the set of weights, we

get an associated group action for any function of the weights such as Θλ̂ or the characters χ. To
compute the form of the group action on these functions, we only need to analyze the effect of S
and T on them. For Θλ̂, we get

SΘλ̂(ζ, τ, t) = (−iτ)
r
2 |P/Q∨|− 1

2 k−
r
2

∑
λ̂′∈P̂k/kQ∨

e−2πi(λ̂′,λ̂)kΘλ̂′(ζ, τ, t) (260)

TΘλ̂ = e
iπ(λ̂,λ̂)

k Θλ̂(ζ, τ, t) (261)

All the symbols above have been defined besides P̂k which is the set of affine weights with integer
Dynkin labels at level k (a sublattice of the lattice P̂ generated by the affine fundamental weights).
Hence the sum is over representatives in this quotient of lattice (it doesn’t matter which representa-
tives are chosen). An interesting feature of (260) and (261) is that the modular transformations of
the generalized Theta functions result in linear combinations of other generalized Theta functions
at the same level k. From (260), (261) and (254) it is possible to compute the effect of a modular
transformation on the characters or normalized characters. We just list the results here. It is easiest
to work with the normalized characters χ̃- everything can be translated back to the language of char-
acters χ if need be. Firstly the normalized characters of integrable highest weight representations
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at a given level transform amongst themselves. We write

Sχ̃λ̂ =
∑
λ̂′∈P̂+

k

Sλ̂λ̂′ χ̃λ̂′ (262)

T χ̃λ̂ =
∑
λ̂′∈P̂+

k

Tλ̂λ̂′ χ̃λ̂′ (263)

(264)

where P̂+
k ⊂ P̂k is the subset of dominant affine weights at level k. The explicit forms of these

matrices are

Sλ̂λ̂′ = (−1)|Φ
+||P/Q∨|− 1

2 (k + g)−
1
2

∑
w∈W

exp(
−2πi

k + g
(w(λ̂+ ρ̂), λ̂′ + ρ̂)) (265)

Tλ̂λ̂′ = e2πisλ̂δλ̂,λ̂′ (266)

It can be shown that the matrix Sλ̂,λ̂′ is unitary and symmetric. Clearly the same is true of Tλ̂,λ̂′ .

The matrices Sλ̂,λ̂′ and Tλ̂,λ̂′ do not constitute a representation of the modular group PSL2(Z) since

they do not satisfy the defining properties S2 = 1 and (ST )3 = 1. Rather, they satisfy S4 = 1,
and (ST )6 = 1, and so they give a representation of the two-fold covering SL2(Z) on the space of
normalized characters instead. In fact, what we get is S2 = (ST )3 = C where C is the charge

conjugation matrix defined as Cλ̂,λ̂′ = δλ̂,λ̂+ where λ̂+ is the highest weight of the conjugate

representation to Rλ̂ (explicitly −w0 · λ̂ = λ̂+ where w0 is the longest element of the affine Weyl
group).

8 Wess Zumino Witten models

8.1 Sigma model and WZW model

Let G be a semi-simple Lie group with Lie algebra g.

Definition 8.1 The sigma model associated to G is the field theory with action

S0[g] =
1

4a2

∫
S2

d2z Tr′(∂µg
−1∂µg) (267)

where g(z, z̄) : Ĉ = S2 → R(G) is a map from the 2-sphere to some unitary faithful matrix represen-
tation of G, and Tr′ := Tr

xR
where xR is the Dynkin index of the representation on g induced by the

representation R on G. This normalization ensures that this action is independent of the particular
representation that is chosen.

The sigma model has an important GL × GR symmetry given by g(z, z̄) → gLg(z, z̄)g−1
R for any

gL ∈ GL ∼= G and gR ∈ GR ∼= G. Since G is a Lie group, this is a continuous symmetry and
from Noether we obtain a conserved current. If we just focus on the GR part of the symmetry,
the corresponding conserved current is Jµ = g−1∂µg. As we will see after computing the variation
δS0, the vanishing of ∂µJµ is actually the same statement as the classical equations of motion.

When we move to complex coordinates, this equation reads ∂zJ̃z̄ + ∂z̄J̃
z = 0 where we have defined

J̃z := g−1∂zg and J̃z̄ := g−1∂z̄g (we put tildes because we would like to reserve the notation Jz/z̄ for
currents in the full WZW model). In order for the quantum theory to have holomorphic factorization,
we expect that each of the terms above (∂zJ

z̄ and ∂z̄J
z) should vanish on their own, but in fact this

does not hold for the sigma model.
Classically the sigma model is conformally invariant, but when we move to the quantum theory
beta function calculations show that the sigma model is no longer conformally invariant (CFTs are
fixed points of RG flow and hence beta functions should vanish at a true (quantum) conformal field
theory). We can add a term to this action to make it so that the resulting theory is classically and
quantum mechanically conformally invariant.

Definition 8.2 The Wess-Zumino term is

Γ[g] :=
−i
24π

∫
B

d3y εαβγTr(g
−1∂αgg−1∂βgg−1∂γg) (268)

We will take as our total action SWZW [g] = S0[g] + kΓ[g] for some k (k will turn out to be the
(integer) level that we talked about when discussing integrable highest weight representations of
affine Lie algebras). We need to explain what B is, and how g : S2 → R(G) can be integrated
over it. B is the closed 3 dimensional ball, i.e B ∼= {(x, y, z)|x2 + y2 + z2 ≤ 1} and the boundary
∂B = {(x, y, z)|x2 + y2 + z2 = 1} is identified with the S2 on which g is defined. So we have g
defined on the boundary of B, but we still need to clarify what values g takes inside the ball. The
second homotopy group π2(G) of any Lie group vanishes, which tells us that every map g : S2 → G
is nullhomotopic. We can use this nullhomotopy gt : S2 × [0, 1] → G to construct an extension
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gext : B → G of g by setting the restriction gext
∣∣∣
{(x,y,z)|x2+y2+z2=t}∼=S2

equal to gt (so g0 should

actually be the constant map and g1 = g). Now we have an extension, and we would like to know
if it is unique. In fact it is not; there are a Z′s worth of homotopy classes of such extensions if
we put some conditions on G. Take two extensions g1 and g2 of g. Then we can define a map
h : S3 ∼= B1 ∪B2/(∂B1 ∼ ∂B2)→ G by letting h be gi on Bi; this prescription makes sense because
by definition the extensions g1 and g2 agree on their boundary. Maps from S3 to G are of course
classified up to homotopy by π3(G), and if we impose the further conditions on G (namely that G has
to be compact and simple) we have from algebraic topology that π3(G) = Z. Taking two extensions
g1 and g2 and constructing h : S3 → G from them as above, if the class of h in π3(G) is n, then it
can be shown that Γ[g1] = Γ[g2] + 2πin. This is not an issue so long as k is an integer, because then
the Euclidean path integral integrand e−SWZ will be well defined. So k must be an integer, which
agrees with the fact that k will eventually be identified as the level of a ĝ representation.
We can compute the variation of Γ[g] with respect to small homotopies of g rel the boundary S2 of
B, and the result is

δΓ =
i

8π

∫
S2

d2z εµνTr
′(g−1δg∂µ(g−1∂νg)) (269)

We can also compute the variation of S0 to get

δS0 =
1

2a2

∫
S2

d2z Tr′(g−1δg∂µ(g−1∂µg)) (270)

which is where the equation of motion for the sigma model comes from. We can read the equation
of motion off from δSZW = δS0 + kδΓ, convert it into complex coordinates, and the result is

(1 +
a2k

4π
)∂z(g

−1∂z̄g) + (1− a2k

4π
)∂z̄(g

−1∂zg) = 0 (271)

We choose a2 = 4π
k so that this second term vanishes, and the EOM reads ∂zJz̄ := ∂z(g

−1∂z̄g) = 0.
If we define Jz := ∂zgg

−1 then the anti-holomorphicity of Jz̄ implies the holomorphicity of Jz :

g−1(∂z̄Jz)g = g−1(∂z̄[(∂zg)g−1])g =

g−1([∂z̄∂zg]g−1 + ∂zg∂z̄g
−1)g =

g−1[∂z̄∂zg] + g−1∂zg(−g−1(∂zg)g−1)g =

g−1[∂z̄∂zg]− g−1(∂zg)(g−1∂zg) = ∂z(g
−1∂z̄g) = ∂zJz̄ = 0 (272)

We used the relation ∂µg
−1 = −g−1(∂µg)g−1 twice in this calculation. We can normalize Jz and Jz̄

to obtain

Definition 8.3 The conserved currents of the WZW model are

J := −kJz = −k(∂zg)g−1 (273)

J̄ := kJz = kg−1∂z̄g (274)

The WZW model still has the GL × GR symmetry of the sigma model, but this symmetry ac-
tually gets substantially enhanced in the WZW model: the WZW action is invariant under g →
gL(z)g(z, z̄)gR(z̄)−1 for any functions gL and gR. This can be checked infinitesemally by taking
gL(z) = 1 + ω(z) and gR(z̄) = 1 + ω̄(z̄) for ω, ω̄ : S2 → g. We obtain δωg = (1 + ω)g − g = ωg and
similarly δω̄g = g(1− ω̄)− g = −ω̄g. We can compute the variation of the action SWZ with respect
to g → g + δω,ω̄g = g + δωg + δω̄g and the result is that

δω,ω̄SWZW =

k

2π

∫
d2xTr′[ω(z)∂z̄(∂zgg

−1)− ω̄(z̄)∂z(g
−1∂z̄g)]

−1

2π

∫
d2x∂z̄Tr

′[ω(z)J(z)] + ∂zTr[ω̄(z̄)J̄(z̄)] =

i

4π

∮
dzTr′[ω(z)J(z)]− i

4π

∮
dz̄Tr′[ω̄(z̄)J̄(z̄)] =

− 1

2πi

∮
dzωaJa +

1

2πi

∮
dz̄ω̄aJ̄a (275)

The first of these expressions follows directly from varying the action. The second is the result of
an integration by parts and substituting in J and J̄ . The third is moving to complex coordinates
and using complex analysis to write a dzdz̄ integral of derivatives into a sum of a holomorphic and
anti-holomorphic contour integral. The last is writing ω = ωata and J = Jata as a sum of basis
elements ta of (a representation of) g and using the normalization condition Tr′(tatb) = 2δab (the
factor xR - the Dynkin index - in Tr′ is put there specifically so that this conidtion holds). Some
things to note about (275) are that it vanishes, which we apparently get by integrating the first
expression by parts...
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Remark 23 I am yet to understand this although apparently it is obvious? I thought for a sec-
ond that it just vanished because of ∂zJ̄ and ∂z̄J are present in the first expression, but current
conservation is only guaranteed to hold on shell.

The vanishing of (275) is good because it confirms at an infinitesimal level that we do indeed have
an upgraded GL(z) × GR(z̄) symmetry in the WZW theory. The second thing to note is that we
can write a Ward identity associated to this symmetry. Using the last expression of (275), it takes
the form

δω,ω̄〈X〉 = − 1

2πi

∮
dzωa〈JaX〉+

1

2πi

∮
dz̄ω̄a〈J̄aX〉 (276)

We can compute δωJ from the fact that J = −k∂zgg−1 and get

δωJ = −k(∂z(δωg)+(∂zg)δωg
−1) = −k(∂z(ω)g+ω∂z(g))+k(∂zg)(g−1ωgg−1) = [ω, J ]−k∂zω (277)

Writing (277) in terms of the components Ja of J gives

δωJ
a = ifabcω

bJc − k∂zωa (278)

On the other hand we can use (276) to get

δω〈Jb(w)〉 =
1

2πi

∮
dzωa〈Ja(z)Jb(w)〉 (279)

Using Cauchy and comparing (278) with (279) gives us the JaJb OPE:

Ja(z)Jb(w) =
kδab

(z − w)2
+
ifabcJ

c(w)

z − w
+ ... (280)

Remark 24 Each Ja turns out to have conformal dimension 1. Classically this is clear by com-
puting the dimension of g from the action, but the fact that this dimension receives no quantum
corrections apparently follows because (according to Lorenz Eberhardts notes) ‘holomorphic quanti-
ties are protected.’ I need to learn what this means, I am not sure at the moment.

We can mode expand each Ja as

Ja(z) =
∑
n∈Z

z−n−1Jan (281)

As always, knowledge of the singular part of the OPE is equivalent to knowledge of commutators
between all modes. This yields for (280) and (281) the defining relations of the affine Lie algebra ĝ

[Jan , J
b
m] = ifabcJ

c + knδn,−mδab (282)

Since k takes a particular value here and is not just some central element, we see that the modes
form a representation at level k. We can of course write this all in a particular basis, i.e a Cartan
Weyl basis or even more specifically a Chevalley-Serre basis, and then the commutation rules will
take the form that we are familiar with from the last two sections. Let’s note that we do not yet
have an element D adjoined so it is a bit of a lie to say we have ĝ; we just have the central extension
of the loop algebra over g so far. D will turn out to be −L0, where the Virasoro modes will be
defined via the Sugawara construction in the next section. This definition of D will actually force
us to consider non-zero third components of affine weights λ̂(D) 6= 0 because we won’t be able to
just translate D by some constant to set the eigenvalue to 0 anymore.

8.2 Sugawara’s construction of the energy momentum tensor

So far we do not have Virasoro algebra anywhere in sight, nor have we discussed the energy momen-
tum tensor of the WZW model. We now remedy this situation.

Definition 8.4 The Sugawara energy momentum tensor is the field

T (z) := γ(JaJa)(z) (283)

There is an implied sum a = 1, ...,dim g and γ is a constant that is to be determined later.

Before we jump into the analysis of OPE’s that arise from this definition, lets take a second to think
what this says algebraically. The modes of the stress energy tensor form the Virasoro algebra of a
conformal field theory. This proposed tensor therefore must satisfy the standard OPE

T (z)T (w) ∼ c

2(z − w)4
+

T (w)

(z − w)2
+
∂T (w)

z − w

which is of course completely equivalent to its modes satisfying the Virasoro algebra. So we need to
show that this OPE holds. This is possible to do because we know the Ja(z)Jb(w) OPE and T is
defined in terms of the J ’s. Assuming that we have verified this, let’s recall equation (67) which gave
us the modes of the normal ordering of two fields in terms of quadratic expressions in the modes of
the original fields. This tells us that quadratic expressions in the modes of the Ja currents (which
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are elements of the universal enveloping algebra of ĝ) form a Virasoro algebra, and hence every affine
Lie algebra contains a Virasoro algebra in its universal enveloping algebra.

Using Wick contractions, we can compute the OPE of T (z) with Ja(w) and with itself. These
computations will help us fix the normalization constant γ. We begin by writing the Wick rule

A(z)(BC)(w) =
1

2πi

∮
w

dx

x− w
[A(z)B(x)C(w) +B(x)A(z)C(w)] (284)

which is a consequence of formal calculus. Applying this rule to A(z) = Ja(z) and B = C = Jb and
inserting the OPE (280) yields

Ja(z)(JbJb)(w) =
1

2πi

∮
w

dx

x− w
[Ja(z)Jb(x)Jb(w) + Jb(x)Ja(z)Jb(w)] =

1

2πi

∮
w

dx

x− w
([

kδab
(z − x)2

+
ifabcJ

c(x)

z − x
]Jb(w) + Jb(x)[

kδab
(z − w)2

+
ifabcJ

c(w)

z − w
]) =

1

2πi

∮
dx

x− w

[kδabJb(w)

(z − x)2
+
ifabc
z − x

[
kδcb

(x− w)2
+
ifcbdJ

d(w)

x− w
+ (JcJb)(w) + ...]

]
+

1

2πi

∮
w

dx

x− w

[kδabJb(x)

(z − w)2
+

ifabc
z − w

[
kδbc

(x− w)2
+
ifcbdJ

d(w)

(x− w)
+ (JbJc)(w) + ...]

]
(285)

The third and fourth lines of (285) are the summands corresponding to the contractions Ja(z)Jb(x)

and Ja(z)Jb(w)respectively. They look very similar, but there is actually an asymmetry between
these terms caused by the fact that we are integrating with respect to x. The first term on the fourth
line of (285) can be evaluated using Cauchy’s integral formula to get

1

2πi

∮
w

dx

x− w
kδabJ

b(x)

(z − w)2
=
kδabJ

b(w)

(z − w)2
(286)

The rest of the fourth line has all of its x dependence in the powers of (x − w); by Cauchy again,
we conclude that only the term with a first order pole at x = w could survive. Higher order poles
in the integrand would give us derivatives with respect to x of a constant with respect to x, and the
quantities in the ellipses are all order x−w, so even after dividing them by the 1

x−w out front they
will be holomorphic and integrate to 0. The order 1 pole at x = w is the term

1

2πi

∮
w

dx

x− w
ifabc
z − w

(JbJc)(w) =
ifabc(J

bJc)(w)

z − w
(287)

So the total contribution from the fourth line is

ifabc(J
bJc)(w)

z − w
+
kδabJ

b(w)

(z − w)2

The third line of (285) is a bit more involved. A simple application of Cauchy’s integral theorem for
the first term on the third line gives us

1

2πi

∮
w

dx

x− w
kδabJ

b(w)

(z − x)2
=
kδabJ

b(w)

(z − w)2
(288)

which we notice is identical to the first contribution (286) from the fourth line. The rest of the
(non-zero) terms on the third line read

1

2πi

∮
w

dx
ifabc
z − x

[ kδcb
(x− w)3

+
ifcbdJ

d(w)

(x− w)2
+

(JcJb)(w)

x− w

]
we could integrate these terms individually, but it is quicker to realize that

• the first one dies since fabcδcb = facc = 0 since Lie algebra structure constants are antisym-
metric.

• the last one integrates to ifabc(J
cJb)(w)

z−w . If we sum this up with the contribution (287), by the

symmetricity of (JbJc)(w) + (JcJb)(w) under b ⇐⇒ c and the antisymmetricity of fabc these
two terms cancel each other.

• the middle term integrates to ifabcifcbdJ
d(w)

(z−w)2 .

So the final result is

Ja(z)(JbJb)(w) =
2kδabJ

b(w)

(z − w)2
+
−fabcfcbdJd(w)

(z − w)2
(289)

We have implied sums on c, b and d in this second term. If we do the summation on b and c first,
then using the identity −fabcfcbd = 2gδad where g is the previously defined dual Coxeter number of
g. So we get that

Ja(z)T (w) = γJa(z)(JbJb)(w) =
2γkδabJ

b(w)

(z − w)2
+

2γgδadJ
d(w)

(z − w)2
= 2γ(g + k)

Ja(w)

(z − w)2
(290)
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By swapping the variables z and w and using commutativity of fields in a contraction and then
Taylor expanding, this gives us

T (z)Ja(w) = 2γ(k + g)
Ja(z)

(z − w)2
= 2γ(k + g)

[ Ja(w)

(z − w)2
+
∂Ja(w)

z − w

]
(291)

We would like Ja to be a primary field of our theory so we take the previously unspecificed constant
γ to now be

γ =
1

2(k + g)
(292)

We can verify that such a choice for γ gives the T (z)T (w) OPE its proper form c
2(z−w)4 + T (w)

(z−w)2 +
∂T (w)
z−w , and from this calculation we can also obtain the value c for our theory. We just use Wick’s

theorem again, and now employ our knowledge of the TJa, JaJa and ∂JaJa OPEs (the last follows
from just taking derivatives of the JaJa OPE).

T (z)T (w) =
1

2(k + g)
T (z)(JaJa)(w) =

1

2(k + g)

1

2πi

∮
w

dx

x− w

{ 1

(z − x)2
[
k dim g

(x− w)2
+ 0 + (JaJa)(w) + ...]+

1

z − x
[
−2k dim g

(x− w)3
+ (∂JaJa)(w) + ...]+

1

(z − w)2
[
k dim g

(x− w)2
+ 0 + (JaJa)(w) + ...]

1

z − w
[
2k dim g

(x− w)3
+ (∂JaJa)(x) + ...]

}
(293)

As with the last OPE calculation, on each of the last two lines here only one term can contribute,
and those are the terms with no x − w power i.e (JaJa)(w) and ∂JaJa(w). These terms, once

integrated, then contribute a total 1
2(k+g) [ (JaJa)(w)

(z−w)2 + (∂JaJa)(w)
z−w ]. So we just need to calculate the

contributions from the second and third lines. The pieces with k dim g’s on them are evaluated using
Cauchy’s integral therem applied to 1

(z−x)2 and 1
z−x . The result is that those terms integrate to

1
2(k+g) [ 3k dim g

(z−w)4 − 2k dim g
(z−w)4 ] = 1

2(k+g)
k dim g
(z−w)4 . Furthermore, these are the only terms in (293) that give

a (z − w)−4 contribution, and hence we identify c
2 = k dim g

2(k+g) or in other words

c =
k dim g

k + g
(294)

The other terms can be similarly integrated to get the standard T (w)
(z−w)2 + ∂T (w)

z−w part of the TT

OPE. All of this analysis could have been done at the mode level using equation (67) and the known
relations of ĝ. We note that (67) for T can be written as

Ln =
1

2(k + g)

∑
m

: JamJ
a
m−n : (295)

where the normal ordering on modes here works simply by putting the positive one on the right. We
already know the commutation relations of ĝ and of the Virasoro algebra, but using this relation we
can calculate how the Virasoro modes interact with ĝ :

[Ln, J
a
m] = −mJan+m (296)

8.3 WZW primaries

Let’s recall our discussion in section 6 of extended symmetry. We are in exactly that situation now;
the (chiral half of the) symmetry algebra of our theory is W = ĝ ⊕ vir, a semi direct sum whose
complications are delineated by (296).

Remark 25 I am a little bit unsure about the vector space decomposition W = ĝ ⊕ vir, but that is
how it is written in Fuchs. It seems like these two subspaces both share D = −L0, the element of the
universal enveloping algebra of (L(g) ⊕ Ck̂) and so do not intersect trivially. I wonder if it should

really be W = (L(g) ⊕ Ck̂) ⊕ vir and we can take the 1D subspace spanned by L0 in vir and direct

sum it with L(g)⊕ Ck̂ to get the full affine Lie algebra ĝ = L(g)⊕ Ck̂ ⊕ C(−L0) as a subalgebra of
W. In either case we still have a ĝ and a vir subalgebra, they just intersect nontrivially in the way
that I have written it.

Hence it makes sense to talk about fields and states that are primary with respect to this larger
symmetry algebraW, or various subalgebras of it such as ĝ or vir. The W i

n, i 6= 0 will now correspond
to modes Jan for a = 1, ...,dim g and by definition for i = 0 we have W 0

n = Ln. k is central. We can
give thisW a triangular decomposition just as in section 6. Let’s recall how this goes, in the specific
case of W = ĝ⊕ vir. First, W =W+⊕W0⊕W− where W+ = ĝ+⊕ vir+, W− = ĝ−⊕ vir− and W 0
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is the subspace spanned by W i
0’s (so the horizontal subalgebra of ĝ and L0) and the central terms

k. Then we find a maximal abelian subalgebra of W0 that contains L0, and call it W0. One such
choice isW0 spanned by the Cartan subalgebra of the horizontal subalgebra of ĝ along with L0, and
k. The commutativity of the Cartan subalgebra of the horizontal subalgebra of ĝ is inherent, and all
of these horizontal Cartan elements also commute with L0 as is apparent from (296). k commutes
with everything. The correspondingW+ andW− that give us our triangular decomposition are then
given byW+ being the subspace ofW0⊕W+ spanned byW+ and the step operators corresponding
to positive roots of the horizontal algebra in ĝ and similarly forW−. So we haveW =W+⊕W0⊕W−
is the triangular decomposition. The triangular decomposition allows us to form Verma modules of
W and quotient them to get arbitrary highest weight modules.
Highest weight modules for W can be labeled by an affine ĝ weight λ̂, because the eigenvalues of L0

and c on a level k state |λ̂〉 are completely fixed by (294) and a relation that we will derive shortly

that gives the conformal weight hλ̂ of |λ̂〉. To every primary state |λ̂〉 generating its own (affine)
sector, by the state operator correspondence we get a primary field φλ̂. In the next section when
we analyze the Gepner Witten equation we will see that fields corresponding to weights that are
not dominant integrable automatically decouple from the other fields of the theory - that is, the
correlation functions involving that field or its descendants all vanish. Hence the only relevant fields
to the model are the ones corresponding to level k dominant integrable weights λ̂ ∈ P+

k . We know

there are only finitely many such λ̂ for a given level k, those integral weights satisfying (λ, θ) ≤ k.
Hence the WZW model for g at level k is an example of a rational conformal field theory (defined
briefly before, but it means a theory that has finitely many sectors with respect to its maximal
symmetry algebra).
In our discussion from part 6 we talked about the conditions necessary for a field φ to be a primary
field of some subalgebra of the maximal algebra W. The examples we have encountered thus far are

• The sl(2)-primary fields are those fields φ that satisfy [L1, φ(0)] = 0. Equivalently, L1 |φ〉 =
L1φ(0) |0〉 = 0.

• The vir primary fields are those fields φ that satisfy [Ln, φ(0)] = 0 for all n > 0. Equivalently,
Ln |φ〉 = Lnφ(0) |0〉 = 0.

The analog of this for a general subalgebra V of W is that a V primary field needs to have trivial
commutators with all of the modes in the positive part of the triangular decomposition of V. Instead
of calling a field a ĝ primary field, we use the terminology WZW primary field. Indeed every field
that is a ĝ primary field is automatically a vir primary field (this can be seen from the expression
(295)), and hence is a primary field of the entire W = ĝ⊕ vir, so this definition makes good sense.

Remark 26 I have read that the only modular invariants that can be formed for a theory with
maximal symmetry algebra are the diagonal ones. So for the WZW models with non-diagonal spectra
and modular invariant partition functions, it seems like the true symmetry algebra of the theory is
larger than just ĝ⊕ vir, and therefore maybe calling ĝ-primary fields WZW primary fields is a bit of
a misnomer. Its just terminology anyways, so it doesn’t matter.

A WZW primary field φλ,µ is labeled by two dominant integrable highest weights, one for the chiral

half and the other for the anti-chiral half. Notice that we can write λ instead of λ̂ without ambiguity:
we are talking about level k weights, and using the relation (239) that λ0 = k− (λ, θ) we can recover

the last Dynkin label λ0 of λ̂, and the D eigenvalue is just −hλ (hλ defined below in equation (301)).
It also is good to write the labels for φ in terms of weights of g instead of affine weights of ĝ because
φ is a field that transforms in the representations Rλ and Rµ of g. We can see this explicitly in the
form that the Jaφλ,µ and J̄aφλ,µ OPEs take

Ja(z)φλ,µ(w, w̄) ∼ −t
a
λφλ,µ(w, w̄)

z − w
(297)

J̄a(z̄)φλ,µ(w, w̄) ∼
φλ,µ(w, w̄)taµ

z̄ − w̄
(298)

This is a matrix equation because φλ,µ is valued in the representation space Rλ⊗Rµ of g. taR denotes

the image of ta under a representation homomorphism g
R→ End(V ) (we recall that ta is the basis of

g used to obtain the components Ja from the current J). There are various other ways to express
that φ is a primary field.

Remark 27 We restrict attention to the chiral half of the theory so we write things like φλ from
now on.

One equivalent way to express that φλ is a WZW primary is

(Janφλ) =

{
−taλφλ n = 0

0 n > 0
(299)

where Jan(w) is the field we get from mode expanding Ja away from 0 and the LHS of the above
is the normal ordered product. If we make the usual definition of the state associated to a field
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|φλ〉 := φλ(0) |0〉 , then another way we can express the condition that φλ is a WZW primary is

Jan |φλ〉 =

{
−taλ |φλ〉 n = 0

0 n > 0
(300)

This last characterization of WZW primaries allows us to see that a WZW primary is also a vir
primary from the formula (295) applied when n is positive.
From the section on affine Lie algebras we remember that [λ0, ..., λr] is not actually enough labels

to describe λ̂ - we still need λ̂(D), but in fact we know it in this case since we are taking D to be a
particular element of the universal enveloping algebra U(L(g)⊕Ck), namely D = −L0 = 1

2(k+g)

∑
n :

Ja−nJ
a
n :. We can calculate using (300)

hλ |φλ〉 := L0 |φλ〉 =
1

2(k + g)
Ja0 J

a
0 |φλ〉 =

1

2(k + g)
taλt

a
λ |φλ〉 =

(λ, λ+ 2ρ)

2(k + g)
|φλ〉 (301)

There are a lot more terms in the expansion of L0 in terms of the modes of Ja’s, but these are the
only ones that don’t annhilate |φλ〉 via (300). In the last equality we have recognized the appearance
of the quadratic Casimir operator for the representation Rλ of g, and used (199) which tells us the
value that it takes in a particular irrep.
From the OPE (280) we know that J is not itself a WZW primary field, although from the OPE
(291) we know that it IS a vir primary field. So we see that all WZW primaries are vir primaries,
but not all vir primaries are WZW primaries. Indeed there will be infinitely many Virasoro primary
fields, obtained by acting with the on the true WZW primaries with the elements of W− that are
in W0. In terms of the state space, this means that even though there are finitely many sectors in
the W decomposition, in the vir decomposition there will be infinitely many sectors.

8.4 Null vector equations

We have already encountered differential equations that arose as a consequence of a null vector.
These were the BPZ equations which follow from the existence of null vectors of level N = rs in the
(Virasoro)-Verma module V (c, hr,s(c)). In the WZW model, there are two important types of null
vector equations. The first is called the Knizhnik-Zamolodchikov equation (KZ equation)
which arises from a null vector that expresses the relation between the Virasoro algebra of our
theory and the affine Lie algebra ĝ. Namely, using equation (295) and (299) we get

L−1 |φλ〉 =
1

k + g
Ja−1J

a
0 |φλ〉 =

−1

k + g
Ja−1t

a
λ |φλ〉 =⇒

(L−1 +
1

k + g
Ja−1t

a
λ) |φλ〉 = 0 (302)

This is the null vector that yields the KZ equation when inserted into correlation functions. To get
the explicit differential equation, we first compute (using the contour definition of normal ordering,
reversing the contour tightly wound around a point to be negative the sum of contours around all
the other points, and the Jaφλ OPE)

〈φ1(z1)....(Ja−1φi(zi))...φn(zn)〉 =
∑
j 6=i

taj
zi − zj

〈φ1(z1)...φn(zn)〉 (303)

Here we write φj in place of φ′λj , a horizontal descendant of φλj , for simplicity. Using this and the
equivalence between L−1 and ∂zi that was established in the section on normal ordering we get

[∂zi +
1

k + g

∑
j 6=i

tai ⊗ taj
zi − zj

]〈φ1(z1)...φn(zn)〉 (304)

which is the KZ equation. The tensor symbol should be understand to mean that ti acts on φi and tj
acts on φj . We won’t dive further into the KZ equation, but like the BPZ equations it is interesting
and fruitful to try to solve for the correlation functions that satisfy them.
The second null vector equation we will consider is the Gepner Witten equation. This is the
equation that arises because of the null vector associated to the step operator of the simple root
α0 = (−θ, 0, 1), namely (Eθ−1)k−(θ,λ)+1 |φλ〉 = 0. The existence of such a null vector is presupposing
that |φλ〉 belongs to an integrable representation, which we know is the case for at least the vacuum
vector. Clearly raising Eθ−1 to a higher power will still give us a null vector, so for p ≥ k− (θ, λ) + 1
we get

〈(Eθ−1)pφλ(z)φ1(z1)...φn(zn)〉 = 0 (305)

We can come up with an expression for the correlator by the standard procedure, writing the normal
ordered product as a contour integral, using known OPE’s, and doing residue calculus. The result
is

p∑
`i=0

`1+...+`n=p

p!

`1!...`n!

1

(z − z1)`1 ...(z − zn)`n
× 〈φλ(z)

n∏
i=1

(Eθ0)`iφi)(zi)〉 = 0 (306)
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This is the Gepner-Witten equation. As mentioned, we need λ ∈ g∗0 to yield a dominant integrable

weight λ̂ ∈ ĝ∗0 in order for this analysis to go through. The identity field of the theory corresponds
to the dominant integrable level k weight kω̂0 = (0, k, 0), and hence is an example of such a primary
field. Letting φλ be the identity, and integrating (306) times (z − zn)p−1 with respect to z we pick
up the `i = pδin term in the above sum which gives us

〈φ1(z1)....(Eθ−1)pφn(zn)〉 = 0 (307)

9 GKO coset models

9.1 Virasoro modes

The WZW model of the last section was constructed particularly for g simple, but for g semisimple
we can take the energy momentum tensor of theory to be the sum of the Sugawara energy momentum
tensors for each of the irreducible Lie algebras that g is composed of. This immediately enlarges the
amount of WZW theories that we have at our disposal, and this section will introduce a tool that
allows for the construction of many other CFT’s as a sort of quotient of WZW theories. Specifically,
we start with an embedding of Lie algebras p

9.2 Identification group and field identification

9.3 Fixed points

9.4 Twining characters and orbit Lie algebras

9.5 Maverick cosets
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