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Abstract: For the completed Riemann zeta function ξ(s), it is known that the Riemann hypothesis for ξ(s)
implies the Riemann hypothesis for ξ (m)(s), where m is any positive integer. In this paper, we investigate
the distribution of the fractional parts of the sequence (αγm), where α is any fixed non-zero real number
and γm runs over the imaginary parts of the zeros of ξ (m)(s). We also obtain a zero density estimate and an
explicit formula for the zeros of ξ (m)(s). In particular, all our results hold uniformly for 0 ≤ m ≤ g(T), where
the function g(T) tends to infinity with T and g(T) = o(log log T).
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1 Introduction
The Riemann ξ -function is defined by

ξ(s) = H(s)ζ(s), (1.1)

where
H(s) := s2 (s − 1)π

−s/2Γ( s2), (1.2)

and ζ(s) denotes the Riemann zeta function. The non-trivial zeros of ζ(s) are identical to the zeros of ξ(s). It is
well known that the real parts of the zeros of ξ(s) lie in the critical strip0 < Re(s) < 1. TheRiemannhypothesis
for ξ(s) states that these zeros lie on the critical line Re(s) = 1/2. Moreover, the Riemann hypothesis for ξ(s)
implies that the zeros of ξ (m)(s) also lie on the critical line Re(s) = 1/2. In 1983, Conrey [4] showed that for
m ≥ 0, the real parts of the zeros of ξ (m)(s) also lie in the critical strip 0 < Re(s) < 1.

There has also been a great interest in studying the vertical distribution of the zeros of ξ(s). Under the
assumption of the Riemann hypothesis, Rademacher [32] first proved that the sequence (αγ0), where γ0
denotes the imaginary part of a non-trivial zero of ζ(s) and α is any fixed non-zero real number, is uniformly
distributed modulo one. Hlawka [19] proved this result unconditionally.

Let {x} denote the fractional part of a real number x. Let ρ0 = β0 + iγ0 denote a non-trivial zero of ζ(s).
The discrepancy of the set {{αγ0} : 0 < γ0 ≤ T} is defined by

D∗α(T) := sup
0≤y≤1#{0 ≤ γ0 ≤ T; 0 ≤ {αγ0} < y}N(T)

− y

,

where N(T) denotes the number of zeros of ζ(s) such that 0 ≤ β0 ≤ 1 and 0 < γ0 ≤ T.
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For any integer x, let α = log x
2π . In 1975, Hlawka [19] showed that

D∗α(T) ≪ log x
log T (1.3)

under the Riemann hypothesis, while

D∗α(T) ≪ log x
log log T (1.4)

unconditionally. In 1993, Fujii [17] improved this bound and showed that

D∗α(T) ≪α log log T
log T .

Recently, Ford and Zaharescu [15] investigated this result on discrepancy inmore general settings. In particu-
lar, they showed that the discrepancy of the set {h(αγ0) : 0 < γ0 ≤ T} is of the orderO(1/ log T) for a large class
of functions h : ℝ/ℤ→ ℂ. Also, Akbary and Murty [1] obtained similar results on the uniform distribution
and the discrepancy for a large class of Dirichlet series on the assumption of average density hypothesis.

Another very important result in this direction is due to Montgomery. In [26], he studied the pair corre-
lation of zeros of ζ(s). Odlyzko [30] showed that the distribution of consecutive spacing of imaginary parts of
zeros would agree with the distribution of eigenvalue spacings in Gaussian unitary ensemble. These results
were also extended for general L functions by Murty and Perelli [28], and Murty and Zaharescu [29]. In
his work [26], Montgomery mentioned the connection between Landau–Siegel zeros and the gap between
consecutive zeros of the Riemann zeta function. Conrey and Iwaniec [5] showed that the existence of Landau–
Siegel zeros implies that the spacing of consecutive zeros of ζ(s) are close to multiples of half the average
spacing.

The vertical distributions of zeros of ξ (s) have also been studied recently. In [11], Farmer, Gonek and
Lee initiated the study of consecutive spacing of zeros of ξ (s). They investigated the pair correlation of the
zeros of ξ (s) under the Riemann hypothesis. They obtained various estimates on the consecutive spacing
and multiplicity of the zeros of ξ (s). Bui [2] improved some of their results on consecutive spacing of zeros
of ξ (s).

One motivation of studying such distributions of ξ (m)(s) is to understand the distribution of zeros of an
entire function under differentiation. From the functional equation

ξ(s) = ξ(1 − s), (1.5)

one can see that the entire function ξ(1/2 + it) is real on the real axis and has order one. Also, from the
work of Craven, Csordas and Smith [7], Ki and Kim [22], and Kim [23], one may observe that for sufficiently
large m, the Riemann hypothesis is true for ξ (m)(s) in a bounded region. Also, the zeros of ξ (m)(s) approach
equal spacing asm tends to infinity. For details, readers are directed to the work of Farmer and Rhoades [12],
Coffey [3], and Ki [21]. Since the small gaps between zeros become larger under differentiation, by thework of
Conrey and Iwaniec [5], one may disprove the existence of Landau–Siegel zeros by showing the gap between
consecutive zeros of ξ (m)(s) to be less than half of the average spacing for sufficiently many zeros; for details,
also see [11].

In 2009, Ford, Soundararajan and Zaharescu [14] established some connections betweenMontgomery’s
pair correlation function and the distribution of the fractional parts of (αγ0). So onemight expect that the pair
correlation result of Gonek, Farmer and Lee [11] would have connections with the distribution of fractional
parts of (αγm), where ρm = βm + iγm denotes a complex zero of ξ (m)(s).

Although much information on the distribution of fractional parts of (αγ0) is known, the authors cannot
recall any results of the distribution of fractional parts of (αγm). The main goal of this paper to obtain some
classical results on the distribution of the fractional parts of (αγm) analogous to the results of Rademacher
[32] and Hlawka [19]. Our first result in this direction is stated below.

Theorem 1.1. For α ∈ ℝ, α ̸= 0, and a positive integer m, the sequence (αγm) is uniformly distributed modulo
one, where γm runs over the imaginary parts of zeros of ξ (m)(s) and zeros are counted with multiplicity.
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Next, we are interested in the discrepancy of the sequence (αγm). Let Nm(T) denote the number of zeros of
ξ (m)(s) such that 0 ≤ βm ≤ 1 and 0 < γm ≤ T. Conrey [4] proved that

Nm(T) =
T
2π log T

2π −
T
2π + Om(log T). (1.6)

Let D∗m(α; T) denote the discrepancy
D∗m(α; T) := sup

0≤y≤1#{0 ≤ γm ≤ T; 0 ≤ {αγm} < y}Nm(T)
− y


of the set {{αγm} : 0 < γm ≤ T}, and zeros are counted with multiplicity.
For T > 10, let us define

L := log log T
(log log log T)2

.

Then L tends to infinity with T. We have the following bound for D∗m(α; T), which generalizes the results of
Hlawka [19] for ζ(s).

Theorem 1.2. Let α ≥ log2
2π and let m ≤ L be a non-negative integer. Then

D∗m(α; T) ≤ a1α
log log T +

ea2mα
√log T

as T →∞ and uniformly on m ≤ L, where a1 and a2 are absolute constants. Moreover, under the assumption
of the Riemann hypothesis,

D∗m(α; T) ≤ c1α
log T + exp(

c2m log T
log log log T )

α
√T

as T →∞ and uniformly on m ≤ L, where c1 and c2 are absolute constants.

Remark. From the above theorem, for 0 ≤ m ≤ L, the bound

D∗m(α; T) ≪ α
log log T

holds unconditionally and
D∗m(α; T) ≪ α

log T
holds under the assumption of the Riemann hypothesis. Theorem 1.2 shows that the distribution of the
sequence (αγm) depends on m. If we take m ≤ L, then the discrepancy vanishes as m tend to infinity with T.
This result can be comparedwith that of Ki [21]who showed that there exist sequencesAn and Cn, with Cn → 0
slowly, such that

lim
n→∞ Anξ (2n)(12 + iCns) = cos s

uniformly on compact subset of ℂ, which was conjectured by Farmer and Rhoades [12]. In other words, one
can say that the zeros of derivatives become more well spaced as m increases.

Hlawka’s discrepancy bounds (1.3) and (1.4) rely on the explicit formula of Landau [24]

∑
0<γ0≤T xρ0 = −Λ(x) T2π + O(log T), (1.7)

where Λ(n) is the von-Mangoldt function. Gonek [18] gave an explicit formula, similar to (1.7), which is uni-
form in both x and T. Fujii [16] also obtained a similar result independently. Gonek’s explicit formula can be
stated as follows:

∑
0<γ0≤T xρ0 = −Λ(x) T2π + O(x log2(2xT) + log2Tlog x ) + O(log xmin(T, x

⟨x⟩))
, (1.8)

where ⟨x⟩ is the distance to the nearest integer prime power other than x itself.
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In order to prove Theorems 1.1 and 1.3, we also need an explicit formula for the zeros of ξ (m)(s). An
essential ingredient in obtaining the explicit formulas (1.7) and (1.8) in the case of ζ(s) is the Dirichlet series
representation of ζ


ζ (s) for Re s > 1. However, there are no suchDirichlet series for

ξ (m+1)
ξ (m) (s).We give an explicit

formula for ξ (m)(s).
Theorem 1.3. Let x, T > 1 and let nx be the nearest prime power to x. Let the zeros of ξ (m)(s) be counted with
multiplicity. Then, for any number δ > 0 and integer K ≥ 1,

∑
0≤γm≤T xρm = −Λ(nx)2π δx,T + O(T

(2 log2x)mK+1
(log T)mK ) + O(xT(

log log T
log T )

K+1
4
)

+ O(x log(2xT) log log2x + log2Tmin(T, 1
log x))

+ O(x log x(log2x)mK+1( log log T
δ(log T)δ

)
mK
+ x(log T)δe(log T)δ) (1.9)

holds uniformly for 0 ≤ m ≤ L. Here δx,T = T if x = nx, and

δx,T ≪ min(T, 1
|log x

nx |
) if x ̸= nx.

The first error term in (1.9) can be written as a main term with some more efforts. This error term also disap-
pears if x is not an integer,which could beprovedbyusing the samemethodgiven in the proof of Theorem1.3.
Also the error term containing K and δ in (1.9) can be improved by a result of Erdős [9] for small values of K.

Differentiating (1.5) gives the functional equation

ξ (m)(s) = (−1)mξ (m)(1 − s). (1.10)

Since ξ (m)(s) is real-valued for real values of s, it is clear from (1.10) that the zeros of ξ (m)(s) are symmetric
with respect to the line σ = 1/2. Therefore, for 0 < x < 1, we have

∑
0≤γm≤T xρm = ∑0≤γm≤T x1−ρ̄m = x ∑0≤γm≤T(1x )ρm . (1.11)

If we choose
K = ⌊ 4 log Tlog log T ⌋,

then for a fixed x and for T sufficiently large, one can show that (1.9) can be written as

∑
0≤γm≤T xρm ≪ Txϵ + xTϵ ,

for ϵ > 0, which may depend on T. Therefore, by the Riemann hypothesis, we find that

∑
0≤γm≤T xiγm ≪ Tx− 12+ϵ + x 1

2 Tϵ , (1.12)

which is non trivial for 2 ≤ x ≤ T2−ϵ by (1.6). Now, if one assumes that {xiγ}γ behave like independent random
variables, then we may expect that

∑
0≤γm≤T xiγm ≪ T

1
2+ϵ (1.13)

for all x > 0. Clearly, this is not true for every x.
By observing the bounds in (1.12) and (1.13), we have the following conjecture.

Conjecture 1.4. For all real numbers x, T ≥ 2 and any ϵ > 0,

∑
0≤γm≤T xiγm ≪ Tx− 12+ϵ + T 1

2 xϵ

holds uniformly for 0 ≤ m ≤ L.

Authenticated | aroy15@uncc.edu author's copy
Download Date | 9/7/19 4:03 PM



A. Malik and A. Roy, On the distribution of zeros of derivatives of the Riemann ξ-function | 5

To obtain the bounds in (1.3) and (1.4), another important result needed is to obtain a non-trivial upper
bound for

∑
0<γ0≤Tβ0 − 12 .

In 1924, Littlewood [25] proved that

∑
0<γ0≤Tβ0 − 12  ≪ T log log T,

which was later improved by Selberg [33] in 1942. In particular, he obtained
1

∫
1/2 N0(σ, T) dσ ≪ T,

where N0(σ, T) denotes the number of zeros ρ0 of ζ(s) such that β0 > σ and 0 < γ0 < T.
We need a similar result for ξ (m)(s). For a fixed σ, let Nm(σ, T) denote the number of zeros ρm = βm + iγm

of ξ (m)(s), countedwithmultiplicity, such that βm > σ and 0 < γm < T. Our next result provides a zero density
estimate for ξ (m)(s).
Theorem 1.5. With Nm(σ, T) defined as above, we have

1

∫
1/2 Nm(σ, T) dσ ≤ e(O(m))T

for 0 ≤ m ≤ L uniformly.

Since the prior works suggest that the zeros of ξ (m)(s) migrate to the line σ = 1
2 , we have the following con-

jecture.

Conjecture 1.6. Let

C(m) := lim sup
T→∞ 1

T

1

∫
1/2 Nm(σ, T) dσ.

Then the function C(m) is a decreasing function of m.

Remark. Note that for σ > 1
2 , 1

∫
1/2 Nm(σ, T) dσ ≥ (σ − 12)Nm(σ, T).

Therefore,
Nm(σ, T) = Om(

T
σ − 1

2
) (1.14)

holds for 1
2 < σ ≤ 1. Combining (1.6) and (1.14) we find that the zeros of ξ (m)(s) are clustered near the line

σ = 1
2 .

2 Auxiliary lemmas
For a positive real number θ, and X = Tθ, define

MX(s) = ∑
n≤X μ(n)

ns+R/ log T P(1 − log nlog X), (2.1)

where R is an absolute constant and P is a polynomial with P(0) = 0 and P(1) = 1. We have the following
result from [6, p. 10].
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Lemma 2.1. LetV(s) = Q(− 1
log T

d
ds )ζ(s) for somepolynomialQ, and letMX(s)bedefinedas in (2.1). For θ < 4/7,

T

∫
2


VMX(

1
2 −

R
log T + it)



2
dt ∼ c(P, Q, R)T,

where 0 < R ≪ 1 and

c(P, Q, R) = |P(1)Q(0)|2 + 1
θ

1

∫
0

1

∫
0

e2RyQ(y)P
(x) + θQ(y)P(x) + θRQ(y)P(x)2 dx dy.

For fixed P and R, one has
c(P, Q, R) ≪

 max
0≤x≤1(Q(x), Q(x))2. (2.2)

As an application of the Faà di Bruno formula [13, p. 188], we obtain the following result.

Lemma 2.2. For any non-zero analytic function f , we have

f (n)
f
(s) = ∑

μ1+2μ2+⋅⋅⋅+kμk=n
μi≥0 n!

k
∏
i=1 1

μi!(i!)μi
((

f 
f )
(i−1)
(s))

μi
.

Let Bn denote the nth Bell number. Then we know

Bn = ∑
μ1+2μ2+⋅⋅⋅+kμk=n

μi≥0 n!
k
∏
i=1 1

μi!(i!)μi
≪ (

n
log n )

n
. (2.3)

We also need the following result. This is a uniform version of [4, Lemma 1].

Lemma 2.3. Let H(s) be as defined in (1.2), and s = σ + it. Then the following hold:
(i) For |t| ≥ 1 and any σ,

H(s)
H(s)
=
1
2 log s

2π + O(
1
|t|)

and
(
H(s)
H(s) )

(k)
(s) ≪ (k!)
|t|k

holds uniformly for k ≤ L. If |t| ≤ σ, then we replace t by σ in the error terms.
(ii) For |t| > 10 and |σ| < A log log T, where A is a constant,

H(k)(s)
H(s)
= (

H(s)
H(s) )

k
(1 + O( Bk

|t log t|)) (2.4)

holds uniformly for k ≤ L. If |t| ≤ σ, then we replace t by σ in the error terms.

The above results follow from Lemma 2.2 and the following form of Stirling’s formula

log Γ(s) = 12 log2π + (s − 12) log s − s − Ω(s),

where Ω(s) ≪ 1/|t|, and if |t| ≤ σ, then Ω(s) ≪ 1/σ. (See [31, Section 21].)
We also need the following lemma from [18].

Lemma 2.4. For x, T ≥ 1 and c = 1 + 1
log2x ,∞

∑
n=2
n ̸=x

Λ(n)
nc

min(T, 1
|log x/n|) ≪ log2x log log2x + log xmin(Tx ,

1
⟨x⟩)

,

where ⟨x⟩ is the distance to the nearest integer prime power other than x itself.
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Weyl’s criterion [35] for uniformly distributed sequences is given by the following lemma.

Lemma 2.5. A sequence (xn)n≥1, is uniformly distributed modulo one if and only if
lim
N→∞ 1

N

N
∑
n=1 e2πikxn = 0 for all integers k ̸= 0.

The following inequality is due to Erdős and Turán [10].

Lemma 2.6. Let DN denote the discrepancy of a sequence (xn)n≥1 of real numbers. Then, for any positive inte-
ger M,

DN ≤
C1

M + 1 + C2
M
∑
k=1 1k


1
N

N
∑
n=1 e2πikxn ,

where C1 and C2 are absolute positive constants.

The following lemma is due to Montgomery and Vaughan [27].

Lemma 2.7. If∑∞n=1 n|an|2 converges, then
T

∫
0



∞
∑
n=1 ann−it

2
dt =

∞
∑
n=1|an|2(T + O(n)).

The following lemma from [34, p. 213] will be used to bound the argument of an analytic function.

Lemma 2.8. Let f(s) be an analytic function except for a pole at s = 1, which is real for real s. Let 0 ≤ a < b < 2.
Suppose that T is not an ordinate of any zero of f(s). Let |f(σ + it)| ≤ M for σ ≥ a,1 ≤ t ≤ T + 2 andRe(f(2+it)) ≥
c > 0 for some c ∈ ℝ. Then, for σ ≥ b,

|arg f(σ + iT)| ≤ c
log 2−a

2−b (logM + log 1c ) + 3π2 .

Let Λk denote the generalized von-Mangoldt defined by

Λk(n) := ∑
d|n μ(d) logk nd .

Therefore, for Re(s) > 1, ∞
∑
n=1 Λk(n)

ns
= (−1)k ζ

(k)(s)
ζ(s)

. (2.5)

Let Λ∗lk denote the l-fold convolutions of Λk, i.e.,

Λ∗lk = Λk ∗ ⋅ ⋅ ⋅ ∗ Λk⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
l times

. (2.6)

Then, we have the following inequality.

Lemma 2.9. With the notation from (2.5) and (2.6),

(Λk log∗Λ∗l1k1 ∗ ⋅ ⋅ ⋅ ∗ Λ
∗lm
km )(n) ≤ (log n)

1+k+k1+l1+⋅⋅⋅+kn+ln .
Proof. From [20, p. 35], we have

Λk(n) ≤ logk n.

Using the above inequality and (2.5), we find that

(Λk log∗Λk1 )(n) = ∑
ab=n Λk(a) log(a)Λk1 (b) ≤ Λk(n) log(n)(1 ∗ Λk1 )(n) ≤ log

k+k1+1 n.
By repeating this argument, we complete the proof of the lemma.
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In [4], the details of the proof of (1.6) are omitted. Also, the error term in the asymptotic of Nm(T) depends
on m. We prove an asymptotic result for Nm(T) where the dependence of m is explicit.

Lemma 2.10. Let Nm(T) denote the number of zeros of ξ (m)(s) with 0 < t < T, and zeros are counted with
multiplicity. Then

Nm(T) =
T
2π log T

2π −
T
2π + O(log T + m logm)

uniformly for m ≤ L. The constant in the error term is absolute.

Proof. Applying Leibnitz’s rule in (1.1), we find that

ξ (m)(s) = H(m)(s)Fm(s), (2.7)

where
Fm(s) := ζ(s) +

m
∑
j=1(mj )H(m−j)(s)H(m)(s) ζ (j)(s). (2.8)

Let T be a large number. Then, for σ ≥ L and k ≤ m,

|ζ (k)(s)| ≥ logk 22σ −
∞
∑
n=3 logk nnσ

≥
logk 2
2σ+1 .

From (2.8), Lemma 2.3 and for σ ≥ L, we have

|Fm(s) − 1| ≪
1

2σ+1 (log6)m < 12 (2.9)

when m ≤ L.
Choose T > 0 so that the line t = T is free of zeros of ξ (m)(s). Let R be the rectangle, taken counterclock-

wise, with vertices L − iT,L + iT, 1 − L + iT, 1 − L − iT. By the argument principle, the functional equation
(1.10) and relation (2.7),

4πNm(T) = Im(∫
R

d
ds

log ξ (m)(s) ds)
= 2(∫

C

d
ds

logH(m)(s) ds) + 2 Im( L−iT
∫

1/2−iT +
L+iT
∫

L−iT −
L+iT
∫

1/2+iT d
ds

log Fm(s) ds)

= 2 Im(I1 + I2 + I3 − I4), (2.10)

where C denotes the lines from 1/2 − iT to L − iT, L − iT to L + iT and then L + iT to 1/2 + iT. From (2.3),
Bm ≪ log T for m ≤ L. Combining this with (2.4), we have

I1 = Im(logH(m)(s)|C) = ( logH(s)|C + m log L(s)|C) + O(
1
T )

.

From [8, p. 98], we have
Im(logH(s)|C) = T log

T
2π − T + O(m).

From Lemma 2.3, one finds
Im(m log L(s)|C) = O(m)

for m ≤ L. Hence,
I1 = T log

T
2π − T + O(m).

From (2.9), we have
I3 = Im( log Fm(s)|L+iTL−iT) = O(m).

Next, we compute I4. Let
F̃(z) = 12 (Fm(z + iT) + Fm(z̄ + iT)).

Authenticated | aroy15@uncc.edu author's copy
Download Date | 9/7/19 4:03 PM



A. Malik and A. Roy, On the distribution of zeros of derivatives of the Riemann ξ-function | 9

Then for large T the function F̃(z) is analytic in the disk |z − L| < 4L. Let n(x) denote the number of zeros of
F̃(z) in the disk |z − L| < x. Then, by Jensen’s theorem,

n(2L) log2 = n(2L)
4L

∫
2L

1
t
dt ≤

4L

∫
0

n(t)
t

dt ≤ 1
2π

2π

∫
0

log|F̃(4Leiθ + 2L)| dθ − log|F̃(2L)|. (2.11)

From (2.9), we have

|F̃(2L) − 1| = |Re(Fm(2L + iT)) − 1| ≤ |Fm(2L + iT) − 1| <
1
2 . (2.12)

For Re(s) > 0, one has

ζ(s) = s
∞
∫
1

⌊x⌋ − x + 1
2

xs+1 dx + 1
s − 1 +

1
2 .

Therefore, for Re(s) > 1/2 and |s − 1| > A, we have

ζ (k)(s) ≪ k!tB (2.13)

for some B > 0. From Stirling’s formula, (2.8) and (2.13), we have

F̃(s) ≪ (4m)m|t|B (2.14)

in the disk |z − L| < 4L. Equations (2.11), (2.12) and (2.14) give us

n(2L) ≪ log T + m logm

for m ≤ L. Since the number of zeros of Re(Fm(s)) on (L + iT, 1/2 + iT) are bounded by n(2L), we get

I4 = Im( log Fm(s)|1/2+iTL+iT ) = O(log T + m logm).

Similarly, I2 = O(log T + m logm). By combining I1, I2, I3, and I4 in (2.10), we complete the proof of the
lemma.

3 Proof of the explicit formula

Let m ≤ L be any positive integer and let t > 10. Then, by Lemma 2.3, one finds that H(m)(s)
H(s) is non-zero and

H(s) never vanishes. Therefore, H(m)(s) does not have any complex zero for t > 10. By (2.7), the complex
zeros of Fm(s) are the only zeros of ξ (m)(s). The logarithmic derivative of (2.8) yields

Fm(s)
Fm(s)
=
ζ (s)
ζ(s)
+
Em(s)
Em(s)

, (3.1)

where
Em(s) = 1 +

m
∑
j=1(mj )H(m−j)(s)H(m)(s) ζ (j)(s)ζ(s)

. (3.2)

Also,

d
ds

Em(s) =
m
∑
j=1(mj )(H(m−j)(s)H(m)(s) ζ (j)(s)ζ(s) )


=

m
∑
j=1(mj )( ζ (j)(s)ζ(s) )

H(m−j)(s)
H(m)(s) + m

∑
j=1(mj )(H(m−j)(s)H(m)(s) ) ζ (j)(s)ζ(s)

=: E1,m(s) + E2,m(s). (3.3)
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Let c = 1 + 1
log2x and Tδ = exp((log T)δ) for any fixed δ > 0. Consider the rectangle R defined by the vertices

1 − c + iTδ, c + iTδ, c + iT and 1 − c + iT. It is known that the zeros of ξ (m)(s) lie in the vertical strip 0 < σ < 1.
Then, by the residue theorem and Lemma 2.10,

∑
0≤γm≤T xρm + O(xTδ log Tδ) = 1

2πi ∫
R

Fm(s)
Fm(s)

xs ds

=
1
2πi(

c+iTδ
∫

1−c+iTδ +
c+iT
∫

c+iTδ +
1−c+iT
∫

c+iT +
1−c+iTδ
∫

1−c+iT )F

m(s)

Fm(s)
xs ds

= I1 + I2 + I3 + I4. (3.4)

In the next three subsections, we will compute the integrals I1 and I3, I2, and I4, respectively.

3.1 Computation of the horizontal line integrals I1 and I3
As an application of Lemma 2.3, we deduce that

H(m−j)
H(m) (s) ≪ 2j

logj t
(3.5)

and
(
H(m−j)
H(m) (s)) ≪ 2j+1

logj+1 t (3.6)

for t > Tδ and m ≤ L. Let t ≥ Tδ. Then, by (3.2) and (3.5), we have

|Em(2 + it) − 1| ≪
m2m
log t <

L2L
log Tδ
<
1
2 . (3.7)

From (3.3), (3.5) and (3.6), we find

|Em(2 + it)| ≪ m2m
log t <

L2L
log Tδ
<
1
2 . (3.8)

Combining (3.1), (3.7) and (3.8), we find
Fm
Fm
(2 + it) ≪ 1 (3.9)

for t ≥ Tδ. Since ξ (m)(s) is an entire function of order 1, by Hadamard’s factorization theorem, one can rewrite
it as

ξ (m)(s) = eA+Bs∏
ρm
(1 − s

ρm
)e−s/ρm ,

where the product runs over all the zeros of ξ (m)(s), and A, B are certain constants. By logarithmic differenti-
ation, (2.7), (3.9) and Lemma 2.3, we obtain

Fm
Fm
(s) =∑

ρm
(

1
s − ρm
−

1
ρm
) + O(log t) =∑

ρm
(

1
s − ρm
−

1
2 + it − ρm

) + O(log t). (3.10)

Now, we consider the terms in the sum on the right side of (3.10) for which |γm − t| ≥ 1. From Lemma 2.10,
we have

Nm(t + 1) − Nm(t) ≪ log t. (3.11)
Using (3.11), we find that∞

∑
n=1 ∑

n≤|γm−t|<n+1 2 − σ
(s − ρm)(2 + it − ρm)

≪
∞
∑
n=1 ∑

n≤|γm−t|<n+1 1
(γm − t)2

≪
∞
∑
n=1 ∑

n≤|γm−t|<n+1 1
n2

≪
∞
∑
n=1 log(t + n)n2

≪ log t. (3.12)
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By (3.11), we have
∑|γm−t|<1 1

2 + it − ρm
≪ log t. (3.13)

Invoking (3.12) and (3.13) in (3.10), we obtain

Fm
Fm
(s) = ∑|γm−t|<1 1

s − ρm
+ O(log t) (3.14)

for t ≥ Tδ. From (3.14), in (3.4) the integral I3 can be written as

∑|γm−T|<1
1−c+iT
∫

c+iT xs

s − ρm
ds + O(log2T

c

∫
1−c xσ dσ) =: ∑|γm−T|<1 Iγm + O(x log2Tlog2x ). (3.15)

In order to compute Iγm , we shift the line of integration from Im s = T to Im s = T + 1. For |γm − T| < 1, by the
residue theorem, we see that

Iγm = (
1−c+i(T+1)
∫

c+i(T+1) +
c+i(T+1)
∫

c+iT −
1−c+i(T+1)
∫

1−c+iT ) xs

s − ρm
ds + O(1)

≪ 1 +
c

∫
1−c xσ

√(σ − βm)2 + (T + 1 − γm)2
dσ + x

T+1
∫
T

dt

√(c − βm)2 + (t − γm)2
+

x1−c
βm − 1 + c

≪ x log log2x. (3.16)

Note that the sum on the right side of (3.15) has log(2T) terms. Therefore, the contribution from the top
horizontal integral is

I3 =
1
2πi

1−c+iT
∫

c+iT Fm(s)
Fm(s)

xs ds ≪ x log(2T) log log(2x). (3.17)

Computing similarly, as in (3.15) and (3.16), the contribution from the integral along the lower horizontal
of the rectangle R in (3.4) is given by

I1 =
1
2πi

1−c+iTδ
∫

c+iTδ Fm(s)
Fm(s)

xs ds ≪ x log(2Tδ) log log(2x). (3.18)

3.2 Computation of the right vertical integral I2

Next, we compute the integral on the right vertical line of the rectangle R in (3.4). From (3.1), one has

I2 =
c+iT
∫

c+iTδ F

m

Fm
(s)xs ds =

c+iT
∫

c+iTδ ζ

ζ
(s)xs ds +

c+iT
∫

c+iTδ E1,mEm
(s)xs ds +

c+iT
∫

c+iTδ E2,mEm
(s)xs ds

=: I1,2 + I2,2 + I3,2.

The integral I3,2. From [34, Section 6.19], we have the following bound for the Riemann zeta function:

ζ 
ζ
(σ + it) ≪ log

2
3 t log

1
3 log t,

which holds uniformly on σ > 1 − A log− 23 t log− 13 log t, where A is an absolute constant. Using the Cauchy
integral formula, for any positive integer n, we obtain

(
ζ 
ζ
(σ + it))

(n)
≪ n! log

2n
3 t log

n
3 log t,
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which holds uniformly on σ > 1 − A log− 23 t log− 13 log t. Hence, by Lemma 2.2,

ζ (n)
ζ
(σ + it) ≪ B2n log

2n
3 t log

n
3 log t (3.19)

and
(
ζ (n)
ζ
(σ + it))


≪ B2n log

2n+2
3 t log

n+1
3 log t (3.20)

for σ > 1 − A log− 23 t log− 13 log t. Combining (2.3), (3.19) and (3.5) with (3.2), we find that

|Em(σ + it) − 1| ≪ B2m
m
∑
j=1(mj ) log

2j
3 t log

j
3 log t

logj t
≪ B3m

log
1
3 log t

log
1
3 t
<
1
2 (3.21)

for large t ≥ Tδ and uniformly for σ > 1 and m ≤ L. Using (3.6), (3.19) and (3.21) in (3.3), we have

E2,m
Em
(σ + it) ≪ B2m

m
∑
j=1(mj ) log

2j
3 t log

j
3 log t

t logj+1 t ≪ B3m
log

2
3 t log

1
3 log t

t log2 t
≪

1
t log

7
6 t

(3.22)

for t ≥ Tδ and uniformly for σ > 1. Therefore, integrating by parts, and using (3.21) and (3.22), one deduces
that

I3,2 ≪ x. (3.23)

The integral I2,2. Rewrite I2,2 as

I2,2 =
K−1
∑
k=0(−1)k

c+iT
∫

c+iTδ E1,m(s)(Em(s) − 1)kxs ds +
c+iT
∫

c+iTδ E1,m(s)(Em(s) − 1)
K

Em(s)
xs ds =: J1 + J2. (3.24)

Firstly, we compute J2. From (3.3), (3.5) and (3.20), we find that

E1,m(σ + it) ≪ B2m
m
∑
j=1(mj ) log

2j
3 t log

j
3 log t

logj t
≪ B3m

log
1
3 log t

log
1
3 t

. (3.25)

Hence, from (3.21), (3.25), and the definition of J2 in (3.24), we have

J2 ≪ xT(
B3m log

1
3 log T

log
1
3 T
)
K+1
≪ xT( log

1
4 log T

log
1
4 T
)
K+1

, (3.26)

where the implied constant in the bound is absolute.
Now, we compute J1. From (3.2) and (3.3), we have

E1,m(s)(Em(s) − 1)k =
m
∑
j=1 ∑

l1+l2+⋅⋅⋅+lm=k(mj )( ζ (j)(s)ζ(s) )
H(m−j)(s)
H(m)(s) k! m

∏
i=1 1

li!
((

m
i )

ζ (i)(s)
ζ(s)

H(m−i)(s)
H(m)(s) )li . (3.27)

Let L := l1 + 2l2 + ⋅ ⋅ ⋅ + mlm + j and σ > 1. Then, by Lemma 2.3 and (2.5), we find

(
ζ (j)(s)
ζ(s) )

H(m−j)(s)
H(m)(s) m

∏
i=1( ζ (i)(s)ζ(s)

H(m−i)(s)
H(m)(s) )li = 2L

logL(s/2π)
(
ζ (j)(s)
ζ(s) )

 m
∏
i=1( ζ (i)(s)ζ(s) )

li
(1 + O( 1

t log t))

=
(−2)L

logL(s/2π)

∞
∑
n=1 bL(n)ns (

1 + O( 1
t log t)), (3.28)

where
bL(n) = (Λj log∗Λl1 ∗ Λ∗l22 ∗ ⋅ ⋅ ⋅ ∗ Λ

∗lm
m )(n).

From Lemma 2.9, we find that
bL(n) ≤ logL+1 n.
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Therefore, from (3.24), (3.27) and (3.28), we deduce that

J1 =
K−1
∑
k=0(−1)k m

∑
j=1 ∑

l1+l2+⋅⋅⋅+lm=k(mj )k!
m
∏
i=1 1

li!
((

m
i ))

li ∞
∑
n=1

c+iT
∫

c+iTδ (−2)
LbL(n)

logL(s/2π)
(
x
n )

s
(1 + O( 1

t log t)) ds. (3.29)

Let n be the nearest integer to x. Then
c+iT
∫

c+iTδ 1
logL(s/2π)

(
x
n )s ds ≪ ( xn )c T

∫
Tδ

1
logL t

dt ≪ T
logL T

.

If x is not an integer, then, by integrating by parts, we obtain

c+iT
∫

c+iTδ 1
logL(s/2π)

(
x
n )

s
ds ≪ xc

(logL Tδ)nc log(x/n)
.

Therefore, ∞
∑
n=1 bL(n)

c+iT
∫

c+iTδ 1
logL(s/2π)

(
x
n )

s
ds ≪ bL(n)T

logL T
+
∞
∑
n=1
n ̸=n

xcbL(n)
(logL Tδ)nc log(x/n)

. (3.30)

Also,

∑
1≤n≤n/2 xcbL(n)

(logL Tδ)nc log(x/n)
+ ∑

n≥2n xcbL(n)
(logL Tδ)nc log(x/n)

≤
x

(logL Tδ)

∞
∑
n=1 bL(n)nc

≪
x(j + 1)!∏m

i=1(i!)li
(logL Tδ)(c − 1)L+1
≪ x log x( log log Tδ log x

log Tδ
)
L
. (3.31)

In the penultimate step, we have used the fact that (i!/(log log Tδ)i ≪ 1 for i ≤ m ≤ L.
For the remaining terms in the sum on the right side of (3.30), we have

∑
n/2≤n≤2n

n ̸=n
xcbL(n)

(logL Tδ)nc log(x/n)
≪

logL+1 x
logL Tδ

∑
n/2≤n≤2n

n ̸=n
1

log(x/n) . (3.32)

Since

log x
n
≥ log n

n
= − log(1 − n

 − n
n ) ≥ |n − n|n ,

we have
∑

n/2≤n≤2n
n ̸=n

1
log(x/n) ≤ ∑

n/2≤n≤2n
n ̸=n

n
|n − n| ≪ x log2x. (3.33)

For the error term in (3.29), we have∞
∑
n=1 bL(n)

c+iT
∫

c+iTδ 1
logL(s/2π)

(
x
n )

s
O( 1

t log t) ds ≤
x

(logL Tδ)

∞
∑
n=1 bL(n)nc

≪ x log x( log log Tδ log x
log Tδ

)
L
. (3.34)

From the definition of L, we have

K−1
∑
k=0 m
∑
j=1 ∑

l1+l2+⋅⋅⋅+lm=k(mj )k!
m
∏
i=1 1

li!
((

m
i ))

li
(Y)L ≤ (1 + Y)mK . (3.35)
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Substituting (3.30), (3.31), (3.32), (3.33) and (3.34) in (3.29) and then use (3.35), we deduce that

J1 ≪
K−1
∑
k=0 m
∑
j=1 ∑

l1+l2+⋅⋅⋅+lm=k(mj )k!x log x(
m
∏
i=1 1

li!
((

m
i ))

li
(
2 log log Tδ log x

log Tδ
)
L

+ log2x
m
∏
i=1 1

li!
((

m
i ))

li (2 log x)L

logL Tδ
+
T
x

m
∏
i=1 1

li!
((

m
i ))

li (2 log x)L

logL T
)

≪ x log x((2 log log Tδ log2x
log Tδ

)
mK
+ log2x (2 log2x)

mK

(log Tδ)mK +
T
x
(2 log2x)mK

(log T)mK )

≪ x log x(log2x)mK+1( log log Tδlog Tδ
)
mK
+ T (2 log2x)

mK+1
(log T)mK . (3.36)

Combining (3.26) and (3.36), we find that

I2,2 ≪ x log x(log2x)mK+1( log log Tδlog Tδ
)
mK
+ T (2 log2x)

mK+1
(log T)mK + xT(

log
1
4 log T

log
1
4 T
)
K+1

. (3.37)

The integral I1,2. Let nx be the nearest prime power to x. Then, by Lemma 2.4,

I1,2 =
c+iT
∫

c+iTδ ζ

ζ
(s)xs ds = −

c+iT
∫

c+iTδ
∞
∑
n=2Λ(n)( xn )s ds

= −iΛ(nx)
T

∫
Tδ

(
x
nx
)
it
dt + O(xc

∞
∑
n=2
n ̸=nx

Λ(n)
nc log(x/nx)

)

= −iΛ(nx)δx,T + O(x log(2x) log log(2x)) + O(Tδ log x), (3.38)

where

δx,T =
T

∫
0

(
x
nx
)it dt.

Clearly, δx,T ≪ T. If x = nx, then
δx,T = T,

otherwise

δx,T =
( xnx )

iT − 1
i log x

nx
≪

log x

nx



−1
.

Notice that the first term on the right side of (3.38) disappears if x is not an integer.
Finally, Combining (3.23), (3.37) and (3.38), we arrive at

I2 =
c+iT
∫

c+iTδ F

m

Fm
(s)xs ds = −iΛ(nx)δx,T + O(x log(2x) log log(2x) + Tδ log x)

+ O(T (2 log2x)
mK+1

(log T)mK + xT(
log

1
4 log T

log
1
4 T
)
K+1
)

+ O(x log x(log2x)mK+1( log log Tδlog Tδ
)
mK
). (3.39)

3.3 Computation of the left vertical integral I4

Now, we move on to estimate the integral along the left vertical side of the rectangle R in (3.4). From the
functional equation (1.10), one can derive

Fm
Fm
(s) = (−1)m+1 Fm

Fm
(1 − s) + (−1)m+1H(m+1)

H(m) (1 − s) − H(m+1)H(m) (s).
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Thus, for the integral along the left vertical line, we have

I4 =
1−c+iT
∫

1−c+iTδ F

m

Fm
(s)xs ds

= (−1)m+1 1−c+iT
∫

1−c+iTδ F

m

Fm
(1 − s)xsds +

1−c+iT
∫

1−c+iTδ ((−1)m+1H
(m+1)
H(m) (1 − s) − H(m+1)H(m) (s))xs ds

=: I1,4 + I2,4.

Firstly, we estimate I2,4. Integrating by parts and employing Lemma 2.3, we find that

I2,4 ≪
log2T
log x .

Also, trivially, we have
I2,4 ≪ T log2T.

Hence,
I2,4 ≪ log2Tmin{T, 1

log x}.

Now, we estimate I1,4. We rewrite the integral I1,4 above as

I1,4 =
1−c+iT
∫

1−c+iTδ ζ

ζ
(1 − s)xs ds +

K−1
∑
k=0

1−c+iT
∫

1−c+iTδ Em1(1 − s)(Em(1 − s) − 1)kxs ds
+

1−c+iT
∫

1−c+iTδ E

m1(1 − s)(Em(1 − s) − 1)K

Em(1 − s)
xs ds +

1−c+iT
∫

1−c+iTδ E

m2
Em
(1 − s)xs ds

=: J41 + J42 + J43 + J44.

Now, we compute J41 defined above as follows:

J41 =
1−c+iT
∫

1−c+iTδ ζ

ζ
(1 − s)xs ds = ix1−c ∞∑

n=2 Λ(n)nc

T

∫
Tδ

(nx)it dt

≪ (x1−c ∞∑
n=2 Λ(n)

nc log(xn)) ≪ (
x1−c
c − 1) ≪ log x.

Proceeding in a similar fashion as for J1 earlier and using (3.29), we have

J42 =
K−1
∑
k=0(−1)k m

∑
j=1 ∑

l1+l2+⋅⋅⋅+lm=k(mj )k!
m
∏
i=1 1

li!
((

m
i ))

li ∞
∑
n=1

1−c+iT
∫

1−c+iTδ (−2)
LbL(n)

n logL(s/2π)
(nx)s(1 + O( 1

t log t)) ds,

where ∞
∑
n=1 bL(n)n

1−c+iT
∫

1−c+iTδ (nx)
s

logL(s/2π)
(1 + O( 1

t log t)) ds ≪
∞
∑
n=1 x1−cbL(n)
(log Tδ))Lnc log(nx)

≪ logL+1 x.
A similar computation as used for (3.36) gives

J42 ≪ log x(2 log2x)mK+1.
Proceeding similarly, as we did for J2 and I3,2, we arrive at

J43 ≪ T( log
1
4 log T

log
1
4 T
)
K+1

and J44 ≪ 1.
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Thus, the contribution from the integral along the left vertical side of the rectangle R in (3.4) becomes

I4 =
1−c+iT
∫

1−c+iTδ F

m

Fm
(s)xs ds = O(log x(2 log2x)mK+1 + T( log 1

4 log T
log

1
4 T
)
K+1
)+O(min(T log2T, log2Tlog x )). (3.40)

By using the estimates from (3.17), (3.18), (3.39), and (3.40) in (3.4), we complete the proof of Theo-
rem 1.3.

4 Proof of the zero density estimates: Theorem 1.5
As discussed earlier in the previous section, since the complex zeros of ξ (m)(s) are identical to those of Fm(s),
we prove the theorem for Fm(s) instead. Let

f(s) := MX(s)Fm(s) − 1, (4.1)

where MX is defined by (2.1). Consider
h(s) := 1 − f 2(s). (4.2)

Here h(s) is analytic except for the pole at s = 1. Let P(x) = x in Lemma 2.1. Then, for 0 < θ < 1 and X = Tθ,
we have

MX(s) = ∑
n≤X μ(n)ns (1 + O( log nlog T ))(1 −

log n
log X) = ∑n≤X μ(n)ns (1 + O( log nlog T )).

Let σ ≥ 2. Then, from (2.8), (3.5), (4.1), and (4.3),

f(s) ≪

ζ(s) ∑

n≤X μ(n)ns − 1 + eO(m)log T ≪ ∑n≥X d(n)nσ
+
eO(m)
log T ≪

1
√X
+
eO(m)
log T

for T
2 ≤ t < T. Therefore, for some X > X0, T > T0, m ≤ L, and σ ≥ 2,

|f(s)| < 12 . (4.3)

Combining (4.2) and (4.3), we find that h(2 + it) ̸= 0 for t > T0 and X ≥ X0. Let ν(σ, T) denote the number
of zeros of h(s) in the rectangle σ > σ and 0 < t ≤ T. By the Hardy–Littlewood lemma (see [34, p. 221]), one
has

2π
2

∫
σ0

ν(σ, T2 , T) dσ =
T

∫
T/2 log|h(σ0 + it)| dt −

T

∫
T/2 log|h(2 + it)| dt

+
2

∫
σ0

arg h(σ0 + iT) dσ −
2

∫
σ0

arg h(σ0 + iT/2) dσ, (4.4)

where ν(σ, T2 , T) = ν(σ, T) − ν(σ,
T
2 ) and σ0 ≥

1
2 is fixed.

From (4.2) and (4.3), we deduce that

Re(h(2 + it)) ≥ 12

for t ≥ T0 and x ≥ X0. From (2.13), ζ (k)(s) ≪ k!tB for some constant B. Then

h(σ + it) ≪ eCm logmXA tA

for some constant C, σ ≥ 0 and sufficiently large t. Therefore, from Lemma 2.8, we have

arg h(σ + iT) − arg h(σ + i T2) ≪ log X + log T + m logm
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for σ ≥ σ0. This gives
2

∫
σ0

arg h(σ + iT) dσ −
2

∫
σ0

arg h(σ + i T2) dσ ≪ log X + log T + m logm ≪ log T (4.5)

for 0 < θ < 1, m ≤ L and X = Tθ.
From (2.8), (4.3), and for Re s > 1,

MX(s)Fm(s) = ζ(s)MX(s) +
m
∑
j=1(mj )H(m−j)(s)H(m)(s) ζ (j)(s)MX(s)

=
∞
∑
n=1 aX(n)ns

+
m
∑
j=1(mj )H(m−j)(s)H(m)(s) ∞∑n=2 bj,X(n)ns

, (4.6)

where aX(1) = 1,

aX(n) = ∑
d|n μ(d)(1 + O( log dlog T )) ≪

{
{
{

b(n)
log T if 2 ≤ n < X,
d(n) + b(n)

log T if n ≥ X,
(4.7)

and

bj,X(n) = ∑
d|n logj( nd )μ(d)(1 + O( log dlog T )) ≪

{
{
{

Λj(n) + c(n)
log T if 2 ≤ n < X,

c1(n) + c(n)
log T if n ≥ X.

(4.8)

Here, d(n) denotes the divisor function,

b(n) = ∑
d|n μ2(d) log d, c1(n) = ∑

d|n logj( nd )μ2(d) and c(n) = ∑
d|n logj( nd )μ2(d) log d. (4.9)

Therefore, for Re s > 1,∞
∑
n=1 b(n)ns = ζ(s)( ζ(s)ζ(2s))


,
∞
∑
n=1 c1(n)ns

= ζ (j)(s) ζ(s)
ζ(2s) and

∞
∑
n=1 c(n)ns = ζ (j)(s)( ζ(s)ζ(2s))


.

Since h(s) is analytic for σ ≥ 2 and h(s)→ 1 as σ →∞, by the residue theorem,

T

∫
T/2 log h(2 + it) dt =

∞
∫
2

log h(σ + i T2) dσ −
∞
∫
2

log h(σ + iT) dσ. (4.10)

One has
log|h(s)| ≤ log(1 + |f(s)|2) ≤ |f(s)|2 ≤ |f(σ)|2 (4.11)

and
log |h(s)| = Re(log h(s)).

Using this along with (4.10) and (4.11), we have

T

∫
T/2 log|h(2 + it)| dt = Re(

T

∫
T/2 log h(2 + it) dt)

≪
∞
∫
2

log

h(σ + i T2)


dσ +
∞
∫
2

log|h(σ + iT)| dσ

≪
∞
∫
2

|f(σ)|2 dσ. (4.12)

From (4.1), (4.6), (4.7) and (4.8), we have

(f(s))2 =
∞
∑
n=2 a(n)ns
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for Re(s) > 1 and a(n) ≪ eO(m)(d(n))3 log2m(n). Thus, from (4.12),

T

∫
T/2 log|h(2 + it)| dt = eO(m).

Thus, it remains to estimate only the first integral in (4.4), which is done by using the convexity theorem.
From (4.1), we find that

I1 :=
T

∫
T/2

f(12 −

R
log T + it)



2
dt ≪

T

∫
T/2

MXFm(

1
2 −

R
log T + it)



2
dt + T.

From Lemma 2.3 and integrating by parts, we have

T

∫
T/2

MXFm(

1
2 −

R
log T + it)



2
dt ∼

T

∫
T/2

MXV(

1
2 −

R
log T + it)



2
dt,

where
V(s) = ζ(s) +

m
∑
k=1(mk) 2k

logk T
ζ k(s).

Let Q(x) = (1 + 2x)m, R ≪ 1 be fixed and P(x) = x. Then, by Lemma 2.1 and (2.2),

T

∫
T/2

MXV(

1
2 −

R
log T + it)



2
dt ∼ cT,

where
c ≪
 max
0≤x≤1(Q(x), Q(x))2 ≪ 3m .

Next, we compute the integral

I2 :=
T

∫
T/2 |f(2 + it) − 1|2 dt =

T

∫
T/2 |MXFm(2 + it) − 1|2 dt.

From (3.5) and (4.6),

I2 ≪ m
T

∫
T/2


∞
∑
n=2 aX(n)n2+it 2 dt + m

∑
j=1((mj ))

2 4j

log2j T

T

∫
T/2


∞
∑
n=2 bj,X(n)n2+it 2 dt.

Employing Lemma 2.7, (4.7), (4.8), and (4.9), we have

I2 = eO(m) T
log2 T

.

From an easy modification of the classical convexity theorem (see [34, p. 233]), one can deduce that

T

∫
T/2 |f(σ0 + it)|2 dt = eO(m)T log 1−2σ0

3 T (4.13)

uniformly for 1
2 −

R
log T ≤ σ0 ≤ 2. From (4.11) and (4.13), we find that

T

∫
T/2 log|h(σ0 + it)| dt = eO(m)T log 1−2σ0

3 T. (4.14)
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Combining (4.4), (4.5), (4.12), (4.14), and the inequality
2

∫
σ0

ν(σ, T2 , T) dσ ≥
1

∫
σ0

Nm(σ, T) dσ −
1

∫
σ0

Nm(σ,
T
2 ) dσ,

which follows from (4.2), we obtain
1

∫
σ0

Nm(σ, T) dσ −
1

∫
σ0

Nm(σ,
T
2 ) dσ = e

O(m)T log 1−2σ0
3 T

uniformly for 1
2 ≤ σ0 ≤ 1. Now, we replace T by T/2n , n ≥ 0, in the above estimate, and sum over n for

0 ≤ n ≤∞ to complete the proof of Theorem 1.5.

5 Uniform distribution and Discrepancy Bounds:
Proofs of Theorems 1.1 and 1.2

5.1 Proof of Theorem 1.1

We start with the identity

∑
0≤γm≤T xiγm = ∑0≤γm≤T xρm−1/2 + ∑0≤γm≤T(xiγm − xρm−1/2), (5.1)

which holds for any x. Let x = e2πα, where α > 0 is any fixed real number. From (1.10), it can be shown that
the non-trivial zeros of ξ (m)(s) are symmetric with respect to the line σ = 1/2. Therefore,

∑
0≤γm≤T(xiγm − xρm−1/2) ≪ ∑0≤γm≤T

βm>1/2|1 − x
βm−1/2| ≪ √x log x ∑

0≤γm≤T
βm>1/2(βm − 1/2) = √x log x

1

∫
1/2 Nm(σ, T) dσ,

where in the penultimate step, we use the mean value theorem. Combining this with Theorem 1.5, we find
that

∑
0≤γm≤T(xiγm − xρm−1/2) ≪ eO(m)√xT log x. (5.2)

Let T be large enough such that
log2x ≤ (log T)1−ϵ .

for some ϵ > 0. For x > 1, from Theorem 1.3, we have

∑
0≤γm≤T xρm−1/2 ≪ T log x

√x
+√x log(2xT) log x + T

√x
(2 log2x)mK+1
(log T)mK

+√x(log T)δe(log T)δ +√xT( log log Tlog T )
K+1
4

+√x log x(2 log2x)mK+1( log log T
δ(log T)δ

)
mK

. (5.3)

Hence, from Lemma 2.10 and estimates (5.1), (5.2) and (5.3), we have
1

Nm(T)
∑

0≤γm≤T xiγm = o(1)
as T →∞ and uniformly for m ≤ L. A similar result also holds for 0 < x < 1. In this case, we first use (1.11)
on the left side of (5.3), and then apply Theorem 1.3.

Invoking the Weyl criterion, Lemma 2.5, we conclude that the sequence (αγm) is uniformly distributed
modulo one. This completes the proof of Theorem 1.1.
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5.2 Proof of Theorem 1.2

Case (i). Assuming the Riemann hypothesis. Let ρm = 1
2 + iγm. Also, note that Λ(nx)δx,T ≪ T log x. Then,

from Theorem 1.3 and Lemma 2.6, we have

D∗m(α; T) ≪ 1
M + 1 +

1
Nm(T)

M
∑
k=1 1k  ∑0≤γm≤T xikγm 

=
1

M + 1 +
1

Nm(T)

M
∑
k=1 1k  ∑0≤γm≤T(xk)ρm−1/2

≪
1

M + 1 +
1

T log T

M
∑
k=1{T log xxk/2 + xk/2k log(2xT) log x

+
T
xk/2 (2k log2x)mK+1

k(log T)mK + x
k/2 log x(2k log2x)mK+1( log log T

δ(log T)δ
)
mK

+
xk/2
k
(log T)δe(log T)δ + xk/2

k
T( log log Tlog T )

K+1
4
}

≪
1

M + 1 +
1

T log T{
T log x
x1/2 + x M+1

2 M log(2xT) log x

+
T
x1/2 MmK(2 log2x)mK+1

(log T)mK + x
M+1
2 log x(2M log2x)mK+1( log log T

δ(log T)δ
)
mK

+ x
M+1
2 (log T)δe(log T)δ + x M+1

2 T( log log Tlog T )
K+1
4
}. (5.4)

Now, we set
δ = 1 − log10

log log T , M + 1 = ⌊ log T
2 log2x⌋ and K = ⌊ 4 log Tlog log T ⌋.

Therefore, we obtain
D∗m(α; T) ≤ c1 log xlog T + exp(

c2m log T
log log log T )

log x
√T

,

where c1 and c2 are absolute constants, and this holds uniformly for 0 ≤ m ≤ L. This completes the proof of
Theorem 1.2.

Case (ii). Unconditional bound. From (5.1), we have

D∗m(α; T) ≪ 1
M + 1 +

1
Nm(T)

M
∑
k=1 1k  ∑0≤γm≤T xikγm 

≪
1

M + 1 +
1

Nm(T)

M
∑
k=1 1k( ∑0≤γm≤T(xk)ρm−1/2 +  ∑0≤γm≤T(xikγm − (xk)ρm−1/2)). (5.5)

From (5.4) and (5.2), we have

D∗m(α; T) ≪ 1
M + 1 +

1
T log T{

T log x
x1/2 + x M+1

2 M log(2xT) log x

+
T
x1/2 MmK(2 log2x)mK+1

(log T)mK + x
M+1
2 log x(2M log2x)mK+1( log log T

δ(log T)δ
)
mK

+ x
M+1
2 (log T)δe(log T)δ + x M+1

2 T( log log Tlog T )
K+1
4
+ eO(m)x M+1

2 T log x}.

Now, we set
M + 1 = ⌊ log log Tlog2x ⌋.

Hence, we deduce that
D∗m(α; T) ≤ a1 log x

log log T +
ea2m log x
√log T

,

where a1 and a2 are absolute constants, and this holds uniformly for 0 ≤ m ≤ L.
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