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Abstract. In this paper we present some new results on the connection between the
Siegel norm, the length function and irreducible character values of finite groups. In
addition, we provide algorithms to compute the length of a cyclotomic integer and the
set of cyclotomic integers with Siegel norm bounded by a given positive real number.

1. Introduction

Let Q be the field of rational numbers, let C be the field of complex numbers and for
any number field K, let OK denote its ring of integers. For any positive integer n we
let ζn denote a primitive nth root of unity. Cassels [2] introduced the following map,
and used it in certain problems related to roots of unity. For any algebraic number α,
let

A (α) =
1

[K : Q]

∑
σ

|σ (α)|2 ,

where σ runs over all the embeddings of K into C. Note that A (α) depends only on
α and not on the field K containing α. This function has many useful properties. For
example, its square root is a vector space norm on the field of algebraic numbers (called
the Siegel norm in [9] due to its connection, in the particular case of a cyclotomic field,
to Siegel’s trace problem [7]).

For any cyclotomic integer α, its length l(α) is defined to be the smallest number l
such that α can be written as a sum of l roots of unity. This function is well defined,
since any cyclotomic integer is a sum of roots of unity. Also if χ is an irreducible char-
acter of a finite group G, and g ∈ G, then χ(g) is a sum of |G|th roots of unity. Hence
l(χ(g)) is well defined. Burnside [1] showed that a nonlinear irreducible character of a
finite group takes the value zero on at least one element of the group. An unpublished
theorem of Thompson [3, Exercise 3.15, page 46] states that any irreducible character
of a finite group attains the value zero or a root of unity at more than one third of the
group elements. Cassels [2] proved that an algebraic integer α in an abelian field with
A(α) < 2 is a sum of at most two roots of unity. Two of the authors [8] showed that
any irreducible character of a finite group is a sum of at most three roots of unity at
more than three fifths of the elements of the group and is a sum of at most four roots
of unity at more than two thirds of the elements of the group.

In the present paper, we complement the work from [8] with some further results
concerning the connection between the Siegel norm, the length function and irreducible
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character values of finite groups. A natural question that arises is whether one can
obtain nontrivial results for character values that can be written as sums of at most
m roots of unity for values of m that are larger than four. In other words, if χ is
a nonlinear character of an irreducible representation of a finite group G, and m is a
positive integer, we are interested in obtaining lower bounds for the number of elements
in the set

Bχ,m := {g ∈ G : l(χ(g)) ≤ m}. (1.1)

In connection with this, we prove the following result.

Theorem 1.1. Let G be a finite group and q be the smallest prime dividing the order
of G. Let m be a nonnegative integer and χ be a nonlinear irreducible character of G.
Then

|Bχ,m| ≥
M − 1

M
|G|+ (χ(1))2

M
− 1, (1.2)

where Bχ,m is given by (1.1) and M =
1

2

(
q

q − 1

φ(|G|)
|G|

m+ 1

2ω(|G|)−1
+ 1

)
.

Here φ is the Euler function and ω is the number of distinct prime factors function.
We also consider a dual problem to the one above, where instead of fixing a character

χ and counting those g ∈ G for which l(χ(g)) ≤ m, we now fix an element g ∈ G, and
count those irreducible characters χ of G for which l(χ(g)) ≤ m.
For any element g in a finite group G and any nonnegative integer m, let Bg,m denote
the set

Bg,m := {χ : χ is an irreducible character of G and l(χ(g)) ≤ m}. (1.3)

We prove the following result.

Theorem 1.2. Let G be a finite group and let q be the smallest prime factor of |G|.
Let g ∈ G and let m be any nonnegative integer. Then

|Bg,m| ≥ k(G)− |G|
M |Cg|

, (1.4)

where M =
1

2

(
q

q − 1

φ(|G|)
|G|

m+ 1

2ω(|G|)−1
+ 1

)
,Bg,m is given by (1.3), Cg denotes the con-

jugacy class of g and k(G) is the number of conjugacy classes in G.

As an example, in the case of p-groups, M = m+2
2

in Theorems 1.1 and 1.2. Therefore
by (1.2),

|Bχ,m| ≥
m

m+ 2
|G|+ 8

m+ 2
− 1,

uniformly for all nonnegative integers m, all primes p, all p-groups G and all nonlinear
irreducible characters χ of G.

A natural question that arises would be to assess how accurate the bounds from
Theorems 1.1 and 1.2 are for various groups G. In other words, one may ask how large
or how small the ratios between the bounds for |Bχ,m| provided by Theorem 1.1 and
the actual values of |Bχ,m| are, and similarly for Theorem 1.2. The table below shows,
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for some values of m and some groups G, the actual values of |Bχ,m| and respectively
|Bg,m|, and the corresponding bounds provided by Theorems 1.1 and 1.2.

Group D8, Q8 D8, Q8 D10 D10 A4

Value of m 0 1 0 1 3
Bound for |Bχ,m| from (1.2) 3 5 1 3 9

Actual value of |Bχ,m| 6 6 5 5 10
Accuracy 50% 83% 20% 60% 90%

Bound for |Bg,m| from (1.4) 1 3 2 2 2
Actual value of |Bg,m| 1 5 2 4 4

Accuracy 100% 60% 100% 50% 50%

The reader may wonder whether a result dual to that of Burnside would hold in
the following form: for any non-identity element in a finite (non-abelian) group, there
is a nonlinear character which takes the value zero on this element (hence on all the
elements in its conjugacy class). It turns out that this is not true in general (see for
instance the character tables of the symmetric group S3 and the quaternion group
Q8). However, this is the case for elements with nontrivial conjugacy class in a certain
infinite family of groups, as follows from Theorem 1.2. To see this, let us take G to
be an arbitrary group of order pl, l ≥ 3, with the property that |Z(G)| = |[G,G]| = p.
Then by [6, Proposition 7.1],

k(G) = pl−1 + p− 1.

Since |Cg| divides the order of the group, |Cg| is a power of p. Also, for a p-group,
M = m+2

2
and therefore M = 1 for m = 0. For any g ∈ G \Z(G) one has |Cg| > 1, and

from (1.4) it follows that

|Bg,0| ≥ pl−1 + p− 1− pl

|Cg|
= pl−1

(
1− p

|Cg|
)

+ p− 1 > 0.

Note that for a non-abelian group of order p3, |Z(G)| = |[G,G]| = p, so the above
result is true for all such groups. Also, the bound in Theorem 1.2 is attained in some
cases. For instance, for the dihedral group D10, one may choose an element g ∈ D10

with |Cg| = 5. Then by (1.4), |Bg,0| ≥ 2 and the actual value of |Bg,0| is 2.
In Section 3, we provide an algorithm to compute the set of all cyclotomic integers

in a fixed cyclotomic field which have bounded Siegel norm. In other words, given a
cyclotomic field and a positive real number m, the algorithm computes the set consist-
ing of algebraic integers α with A(α) < m. In Section 4, an algorithm to compute the
length of a cyclotomic integer is given. And finally in Section 5, we provide an example
of an algebraic integer α such that A(α) < k+2

2
, but l(α) > k, k ∈ N with smallest such

k possible.

2. Proof of Theorem 1.1 and Theorem 1.2

We start by recalling some results from [2] and [8].
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Lemma 2.1 ([2], Equations (3.1) and (3.4)). Let N be a positive integer and N = pN0

and p - N0. For α ∈ Q(ζN),

α =

p−1∑
j=0

αjζ
j,

where αj ∈ Q(ζN0) and ζ is a primitive p-th root of unity. If α is an algebraic integer,
then αj can be chosen to be algebraic integers. Moreover,

(p− 1)A(α) =
∑

0≤j<k≤p−1

A(αj − αk).

Lemma 2.2 ([2], Equations (3.14) and (3.16)). Let N be a positive integer and p be a
prime such that pr||N (i.e. pr | N and pr+1 - N), for some positive integer r ≥ 2. Let
N0 = N/p and ζ be a primitive pr-th primitive root of unity. Then any α ∈ Q(ζN) can
be written uniquely as

α =

p−1∑
j=0

αjζ
j,

where αj ∈ Q(ζN0). And if α is an algebraic integer, then αj are also algebraic integers.
Moreover,

A(α) =

p−1∑
j=0

A(αj).

Lemma 2.3 ([8], Theorem 1). Let p be a prime, a ∈ N and let α ∈ OQ(ζpa ) be a nonzero
algebraic integer, where ζpa is a primitive root of unity of order pa. Then

A(α) ≥ l(α) + 1

2
.

The next result offers a generalization of Lemma 2.3 above.

Lemma 2.4. Let n ≥ 1 be an integer and let q be the smallest prime factor of n. Let
α ∈ OQ(ζn) be a nonzero algebraic integer. Then

A(α) ≥ 1

2

(
q

q − 1

φ(n)

n

l(α)

2ω(n)−1
+ 1

)
.

Proof. To prove this, we use induction on ω(n), the number of distinct prime factors of
n. For ω(n) = 1, the desired inequality holds by Lemma 2.3. Let us assume the result
for ω(n) = k ≥ 1 and show that the same is true for N with ω(N) = k + 1. Let p be
the second smallest prime factor of N and let r be its exponent in N . Also let q be the
smallest prime dividing N . Consider n = N/pr, thus ω(N) = ω(n) + 1, and p 6= q.

First we consider the case when N = pn, in other words when r = 1. Let α ∈ Q(ζN)
be a nonzero algebraic integer. Using Lemma 2.1, we have

α =

p−1∑
j=0

αjζ
j,
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where αj ∈ Q(ζn) and ζ is a primitive p-th root of unity. Also

(p− 1)A(α) =
∑

0≤j<k≤p−1

A(αj − αk).

For fixed k, 0 ≤ k ≤ p− 1, since
∑p−1

j=0 αkζ
j = 0, we can write

α =

p−1∑
j=0

αjζ
j =

p−1∑
j=0

(αj − αk)ζj.

Now for any β, γ ∈ OQab and ρ a root of unity, we know that l(β+γ) ≤ l(β) + l(γ) and
l(ρβ) = l(β). Using this, we obtain

l(α) ≤
p−1∑
j=0

l(αj − αk). (2.1)

Also by the induction hypothesis, for the algebraic integers αj 6= αk ∈ Q(ζn), we have
the inequality

A(αj − αk) ≥
1

2

(
1

2ω(n)−1
φ(n)

n

q

q − 1
l(αj − αk) + 1

)
,

which yields

l(αj − αk) ≤
n2ω(n)−1

φ(n)

q − 1

q
(2A(αj − αk)− 1) for αj 6= αk.

Using this in (2.1),

l(α) ≤ n2ω(n)−1

φ(n)

q − 1

q

∑
0≤j≤p−1
αj 6=αk

(2A(αj − αk)− 1).

Now sum over k : 0 ≤ k ≤ p− 1 to obtain

pl(α) ≤ q − 1

q

n2ω(n)−1

φ(n)

p−1∑
k=0

∑
0≤j≤p−1
αj 6=αk

(2A(αj − αk)− 1)

=
q − 1

q

n2ω(n)−1

φ(n)

(
p−1∑
j,k=0

(
2A(αj − αk)−# {j ∈ {0, 1, . . . , p− 1} : αj 6= αk}

))

=
q − 1

q

n2ω(n)−1

φ(n)

(
4(p− 1)A(α)−

p−1∑
j,k=0

# {j ∈ {0, 1, . . . , p− 1} : αj 6= αk}

)

≤ q − 1

q

n2ω(n)−1

φ(n)

(
4(p− 1)A(α)− 2p+ 2

)
=
q − 1

q

(p− 1)n2ω(n)

φ(n)
(2A(α)− 1) .
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Here we used Lemma 2.1 and the fact that since α is nonzero, at least two of the
coefficients αj are distinct. Hence

l(α) ≤ q − 1

q

p− 1

p

n2ω(n)

φ(n)
(2A(α)− 1),

which implies

A(α) ≥ 1

2

(
q

q − 1

p

p− 1

φ(n)

n2ω(n)
l(α) + 1

)
≥ 1

2

(
q

q − 1

φ(p)

p

φ(n)

n2ω(n)
l(α) + 1

)
=

1

2

(
q

q − 1

φ(N)

N

l(α)

2ω(N)−1 + 1

)
.

Thus if r = 1, then we are done. Now let r = 2 and let α ∈ Q(ζN) be a nonzero
algebraic integer. Then by Lemma 2.2,

α =

p−1∑
j=0

αjζ
j and A(α) =

p−1∑
j=0

A(αj),

where ζ is a root of unity of order pr and αj is an algebraic integer in Q(ζN/p). By the
case considered above, we know for each j for which αj 6= 0,

A(αj) ≥
1

2

(
q

q − 1

φ(N
p

)
N
p

l(αj)

2ω(
N
p
)−1

+ 1

)
=

1

2

(
q

q − 1

φ(N)

N

l(αj)

2ω(N)−1 + 1

)
.

Therefore

A(α) ≥
p−1∑
j=0
αj 6=0

1

2

(
q

q − 1

φ(N)

N

l(αj)

2ω(N)−1 + 1

)

≥ 1

2

( q

q − 1

φ(N)

N

1

2ω(N)−1

p−1∑
j=0
αj 6=0

l(αj) + 1
)

≥ 1

2

(
q

q − 1

φ(N)

N

l(α)

2ω(N)−1 + 1

)
,

since l(β) + l(γ) ≥ l(β + γ) and αj 6= 0 for at least one j. This gives us the desired
inequality for r = 2. Continuing this way, we conclude the same is true for any positive
integer r. This completes the proof of Lemma 2.4. �

We now provide the proofs of Theorem 1.1 and Theorem 1.2.

Proof. of Theorem 1.1.
Let G be a finite group and q be the smallest prime dividing the order of G. Let m be
a positive integer and χ be a non-linear irreducible character of G. We know by the
orthogonality of characters that ∑

g∈G

|χ(g)|2 = |G|. (2.2)
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Let ζ be a root of unity of order |G| and let G be the Galois group of the extension
Q(ζ)/Q. By averaging both sides of (2.2) over the Galois conjugates, we have

1

|G|
∑
σ∈G

(∑
g∈G

|χ(g)|2
)

= |G|.

Interchanging the order of summation, we obtain∑
g∈G

A(χ(g)) = |G|.

Since A(.) ≥ 0 and A(χ(1)) = (χ(1))2, we have the inequality

(χ(1))2 +
∑

1 6=g∈G\Bχ,m

A(χ(g)) ≤ |G|. (2.3)

If we let M denote the quantity

M =
1

2

(
q

q − 1

φ(|G|)
|G|

m+ 1

2ω(|G|)−1
+ 1

)
,

then by Lemma 2.4, A(χ(g)) ≥ M for all g /∈ Bχ,m. Combining this with (2.3), we
obtain

M (|G| − |Bχ,m| − 1) + (χ(1))2 ≤ |G|,
and that yields the desired inequality

|Bχ,m| ≥
M − 1

M
|G|+ (χ(1))2

M
− 1.

�

We now move on to prove Theorem 1.2.

Proof. of Theorem 1.2.
Let G be a finite group and denote by k(G) the number of conjugacy classes of G, and
by Irr(G) the set of irreducible characters of G. For σ ∈ G, we denote by C(σ) = CG(σ)
the centralizer of σ in G. Let q be the smallest prime dividing the order of G and let
m be a positive integer. Using the orthogonality of columns of the character table of
G, we have, for g ∈ G, ∑

χ

|χ(g)|2 = |G|/|Cg|,

where the sum is taken over all irreducible characters χ of G and Cg denotes the
conjugacy class of g. Averaging both sides by the Galois conjugates and rewriting, as
in the proof of Theorem 1.1, we obtain∑

χ

A(χ(g)) = |G|/|Cg|.

Now using the positivity of A(.), we have∑
χ/∈Bg,m

A(χ(g)) ≤ |G|/|Cg|. (2.4)
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Let M =
1

2

(
q

q − 1

φ(|G|)
|G|

m+ 1

2ω(|G|)−1
+ 1

)
. Then by Lemma 2.4,

A(χ(g)) ≥M for χ /∈ Bg,m.

This along with (2.4) gives

|G|
|Cg|
≥M (| Irr(G)| − |Bg,m|) .

i.e.

Bg,m ≥ | Irr(G)| − |G|
M |Cg|

.

Since the number of irreducible characters equals the number of conjugacy classes for
a finite group G, for a given m ∈ N and g ∈ G, there are at least

k(G)− |G|
M |Cg|

=
1

|G|
∑
σ∈G

|C(σ)| − |C(g)|
M

irreducible characters χ for which χ(g) can be written as a sum of at most m roots of
unity. �

3. An algorithm for finding the cyclotomic integers with bounded
Siegel norm

In this section we describe an algorithm which determines all cyclotomic integers α
in a fixed cyclotomic field which have A(α) ≤ m, for a given m > 0.

We will need the following consequence of Lemma 2.1.

Corollary 1 ([2], relation (3.9)). Let X be the number of nonzero coefficients in the
representation of α in Lemma 2.1. Write

α =
X∑
j=1

γjζ
rj ,

where γj ∈ Q(ζN
p

), and 0 ≤ rj < p are distinct. Then

(p− 1)A(α) = (p−X)
X∑
j=1

A(γj) +
∑

1≤i<j≤X

A(γi − γj).

Let N ≥ 1 be an integer, let m be a positive real number, and let α ∈ Q(ζN) be
a cyclotomic integer with A(α) ≤ m. Let p be the largest prime divisor of N . We
distinguish two cases:

Case 1. p||N . In this case using Lemma 2.1, we can write

α =

p−1∑
j=0

αjζ
j, where αj ∈ Q(ζN

p
) and ζ = ζp. (3.1)
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Denote by X the number of nonzero coefficients in the representation (3.1) of α.
Write

α =
X∑
j=1

γjζ
rj where γj ∈ Q(ζN

p
), and 0 ≤ rj < p.

Now Corollary 1 implies that

(p− 1)m ≥ (p− 1)A(α) = (p−X)
X∑
j=1

A(γj) +
∑

1≤i<j≤X

A(γi − γj).

Using the positivity of A, we derive

(p− 1)m ≥ (p−X)
X∑
j=1

A(γj). (3.2)

Note that we can always assume that X ≤ p − 1 (if all coefficients αj in the repre-
sentation (3.1) of α are nonzero, subtracting 0 = α0(1 + ζ + ζ2 + . . .+ ζp−1) from both
sides, we obtain a representation of α in which α0 = 0, so X ≤ p − 1). Thus, for any
j ∈ {1, 2, . . . , X},

A(γj) ≤
X∑
i=1

A(γj) ≤
(p− 1)m

p−X
≤ (p− 1)m. (3.3)

Case 2. p2 | N . In this case using Lemma 2.2 we can write

α =

p−1∑
j=0

αjζ
j with αj ∈ Q(ζN

p
) and ζ = ζpr , where pr||N. (3.4)

Since m ≥ A(α) =

p−1∑
j=0

A(αj), we obtain

A(αj) ≤ m, for 0 ≤ j ≤ p− 1. (3.5)

Now that we have bounds for A(αj), (αj are the coefficients in the representations
(3.1) or (3.4) of α), we can repeat the above for these coefficients, i.e. we consider the
largest prime divisor q of N/p and we write the representations (3.1) or (3.4) for the
αj.

Since α is an algebraic integer and at each step we can take αj to be algebraic
integers, at the end of this process (we will be in Case 1) the coefficients appearing in
the representation (3.1) are in the ground field Q, so they are rational integers. But
A(n) = n2, for n ∈ Z, so from (3.3) we can find the possible values of these coefficients,
and then, working backwards, we can find all the possible values of the coefficients of
α in the initial representation (3.1) or (3.4).
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4. Computing the length of a cyclotomic integer

In this section we present an algorithm which determines the length of a cyclotomic
integer.

We will use the following results. The first one of them is a more general version of
Lemma 2.2.

Lemma 4.1 ([5], Lemma 2). Suppose N = pnN2, where p is a prime, p - N2 and
n > 1. Let L be a positive integer with L < n and put N = pLN1. Let ζ be a primitive
pn-th root of unity. Then every β ∈ Q(ζN) is uniquely of the shape

β =

pL−1∑
j=0

αjζ
j,

with the αj in Q(ζN1). The αj are integers if β is.

Lemma 4.2 ([4], Lemma 9). Let p1, p2, . . . , pn be distinct primes. Then A(α) ≥ l(α)
2n

,
for any algebraic integer α ∈ Q(ζp1p2...pn).

Lemma 4.3 ([5], Theorem 1 (i)). Let β be a cyclotomic integer and suppose β =
n∑
j=1

ρj

is a representation of β as a sum of n roots of unity. Let Q(ζN) be the smallest
cyclotomic field containing β and let Q(ζN∗) be the smallest cyclotomic field containing
ρ1, ρ2, . . . , ρn. If n = l(β), then N = N∗.

We are now set to describe the algorithm to compute l(α).
Let N ≥ 1 be an integer and let α ∈ Q(ζN) be a cyclotomic integer. Let

N = p1p2 . . . pnq1
r1q2

r2 . . . qm
rm ,

with pi 6= qj for any i, j, and rj ≥ 2, for any 1 ≤ j ≤ m be the prime factorization of
N .

Step 1. Obtaining upper bounds for l(α).
Applying successively Lemmas 2.2 and 5.1, we obtain

α =

q1r1−1−1∑
j1=0

αj1ζ
j1
q1r1

, with αj1 ∈ Q(ζp1p2...pnq1q2r2 ...qmrm ) and l(α) =
∑
j1

l(αj1).

αj1 =

q2r2−1−1∑
j2=0

αj1,j2ζ
j2
q2r2

, with αj1,j2 ∈ Q(ζp1p2...pnq1q2q3r3 ...qmrm ), l(αj1) =
∑
j2

l(αj1,j2).

Continuing in this fashion, one obtains

αj1,j2,...,jm−1 =

qmrm−1−1∑
jm=0

αj1,j2,...,jmζ
jm
qmrm , with αj1,j2,...,jm ∈ Q(ζp1p2...pnq1q2...qm) and
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l(αj1,j2,...,jm−1) =
∑
jm

l(αj1,j2,...,jm).

Therefore

l(α) =
∑

j1,j2,...,jm

l(αj1,j2,...,jm).

To simplify notation, let pn+1 := q1, pn+2 := q2,...,pn+m := qm, and let s := n+m.
Using Lemma 4.2 we derive

l(α) =
∑

j1,j2,...,jm

l(αj1,j2,...,jm) ≤ 2s
∑

j1,j2,...,jm

A(αj1,j2,...,jm).

Let M := b2s
∑

j1,j2,...,jm

A(αj1,j2,...,jm)c. Hence l(α) ≤M .

Step 2. Expressing α as a sum of l roots of unity.
Denote ζ = ζN and write α ∈ Z[ζ] as α = a0 + a1ζ + . . .+ aN−1ζ

N−1, where aj ∈ Z.
From [5] Theorem 1(i), we know that if α can be written as α = η1 + η2 + . . . + ηl,

where l = l(α), and ηj are roots of unity, then α can be written as

α = c1ζ
d1 + c2ζ

d2 + . . .+ ckζ
dk , (4.1)

with cj ∈ Z, 0 ≤ dj ≤ N − 1 and
k∑
i=1

|ci| = l.

For b = (b0, b1, . . . , bN−1) ∈ ZN , let L(b) =
N−1∑
j=0

|bj| and for any n ≥ 0, denote

An := {b0 + b1ζ + . . .+ bN−1ζ
N−1 ∈ Z[ζ] : L(b) = n}.

From (4.1) we obtain that α ∈ Al. Hence α ∈
M⋃
n=0

An.

For 0 ≤ n ≤M we check whether α ∈ An (by writing both α and the general element
of An in the integral basis 1, ζ, ζ2, . . . , ζφ(N)−1. The algorithm stops as soon as we find
coefficients b0, b1, . . . , bN−1 ∈ Z such that α = b0 + b1ζ + . . .+ bN−1ζ

N−1 ∈ Al.

5. A counterexample

As mentioned in [8] (page 222), the implication

A(α) <
k + 2

2
⇒ l(α) ≤ k (5.1)

does not hold in general. Also from Theorem 2, [8], combined with the results of Siegel
and Cassels [2], one knows that a counterexample would require k ≥ 5. And, from
Theorem 1 of [8], we know that we should look for a counterexample in Q(ζn), where n
is divisible by at least two primes. In this section we will show that counterexamples to
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(5.1) can be found as soon as n is divisible by at least two odd primes. More precisely,
we’ll exhibit an infinite set T of cyclotomic integers such that any β ∈ T satisfies

A(β) <
1 + l(β)

2
(5.2)

Then take k := l(β)− 1, and α := β to obtain the desired counterexample. Moreover,
one of the elements of T violates (5.1) for k = 5 (as mentioned above, this is the least
value of k for which a counterexample to (5.1) can exist).

We will use the following result.

Lemma 5.1 ([5], Theorem 2). Let N ≥ 1 be an integer, let β ∈ Q(ζN) be a cyclotomic
integer, and let p be a prime divisor of N . Let

β =
∑
j

αjζ
j

be a representation for β as in Lemma 2.1 if p||N , or as in Lemma 2.2 if p2|N . In
the former case, suppose in addition that at most 1

2
(p−1) of the αj are non-zero. Then

l(β) =
∑
j

l(αj).

For any prime p > 2, denote Cp :=

p−1
2∑
i=1

ζ ip , and for any prime q > p, let

βp,q = CpCq =

q−1
2∑
i=1

Cpζ
i
q.

Using Corollary 1 (with X = q−1
2

), we obtain

(q − 1)A(βp,q) = (q − q − 1

2
)

q−1
2∑
j=1

A(Cp) =
q + 1

2
· q − 1

2
A(Cp).

Hence

A(βp,q) =
q + 1

4
A(Cp). (5.3)

Similarly we obtain

A(Cp) =
p+ 1

4
A(1) =

p+ 1

4
. (5.4)

Combining relations (5.3) and (5.4) we derive

A(βp,q) =
(p+ 1)(q + 1)

16
. (5.5)

Applying Lemma 5.1 twice, we obtain

l(βp,q) = l(CpCq) =
q − 1

2
l(Cp) =

q − 1

2
· p− 1

2
=

(p− 1)(q − 1)

4
. (5.6)

From (5.5) and (5.6) we see that the inequality (5.2) is equivalent to (p−3)(q−3) > 0.
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Taking q > p > 4 we obtain that βp,q is the desired counterexample. Let T = {βp,q :
q > p primes}. Finally note that l(β5,7) = 6. Hence β5,7 is a counterexample for (5.1)
when k = 5.
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