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EXTREMAL PRIMES FOR ELLIPTIC CURVES

WITHOUT COMPLEX MULTIPLICATION

C. DAVID, A. GAFNI, A. MALIK, N. PRABHU, AND C. L. TURNAGE-BUTTERBAUGH

(Communicated by Amanda Folsom)

Abstract. Fix an elliptic curve E over Q. An extremal prime for E is a prime
p of good reduction such that the number of rational points on E modulo p
is maximal or minimal in relation to the Hasse bound, i.e., ap(E) = ±

[
2
√
p
]
.

Assuming that all the symmetric power L-functions associated to E have an-
alytic continuation for all s ∈ C and satisfy the expected functional equation
and the Generalized Riemann Hypothesis, we provide upper bounds for the
number of extremal primes when E is a curve without complex multiplication.
In order to obtain this bound, we use explicit equidistribution for the Sato-Tate
measure as in the work of Rouse and Thorner, and refine certain intermediate

estimates taking advantage of the fact that extremal primes are less probable
than primes where ap(E) is fixed because of the Sato-Tate distribution.

1. Introduction

Let E denote an elliptic curve over Q. For a prime p of good reduction, E
reduces to an elliptic curve over the finite field Fp, and we denote by ap(E) the

trace of the Frobenius automorphism acting on the points of E over Fp. Then
ap(E) = p + 1 − #E(Fp), and |ap(E)| ≤ 2

√
p (the Hasse bound). The following

conjecture for the distribution of the normalized traces ap(E)/2
√
p in [−1, 1] was

formulated independently by Sato and Tate.

Theorem 1.1 (Sato-Tate conjecture). Let E be an elliptic curve without complex
multiplication over Q. Let α, β ∈ R with 0 ≤ α ≤ β ≤ 1. Then, as x → ∞,

1

π(x)
#

{
p ≤ x :

ap(E)

2
√
p

∈ (α, β)

}
∼ 2

π

∫ β

α

√
1− t2 dt.

If E has at least one prime of multiplicative reduction, the Sato-Tate conjecture
was proven by Taylor [16], in collaboration with Clozel, Harris, and Shepherd-
Barron [3, 7].

We study in this paper a refinement of the Sato-Tate conjecture concerning the
distribution of the primes p which fall at the extremes of this distribution, i.e., the
primes p such that ap(E) = ±[2

√
p], where for any real number y, [y] denotes the

integer part of y. Then #E(Fp) is maximal when ap(E) = −[2
√
p] and minimal

when ap(E) = [2
√
p].
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Extremal primes were first studied by James et al. [9], who conjectured (as
refined by James and Pollack [8]) that, as x → ∞,

# {p ≤ x : ap(E) = [2
√
p]}

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8

3π

x1/4

log x
if E does not have complex multiplication,

2

3π

x3/4

log x
if E has complex multiplication.

(1.1)

By symmetry, an analogous conjecture has been stated for extremal primes with
ap(E) = −[2

√
p]. It is enlightening to compare this conjecture with another refine-

ment of the Sato-Tate conjecture, namely, the Lang-Trotter conjecture. For any
fixed value h ∈ Z, the Lang-Trotter conjecture [10] predicts that

πE,h(x) = # {p ≤ x : ap(E) = h} ∼ CE,h
x1/2

log x
(1.2)

as x → ∞, where CE,h is a specific constant.1 Comparing (1.1) and (1.2), we
notice that for non-CM curves, there are expected to be fewer extremal primes
than primes with a fixed value of ap(E), since the extremal primes are at the edge
of the Sato-Tate distribution of Theorem 1.1, where the measure is small. On the
other hand, for CM curves, an excess of extremal primes is predicted, since in this
case, the measure for the distribution of ap(E)/2

√
p in [α, β] ⊆ [−1, 1]\{0} is given

by

μCM ([α, β]) =
1

2π

∫ β

α

dt√
1− t2

.

The asymptotic (1.1) for CM curves was proven by James and Pollack [8]. In a
subsequent paper by Agwu et al. [1] the authors obtained asymptotics for a refined
question for CM curves, namely, the primes where ap(E) falls within a small range
of the end of the Hasse interval. In this article, we focus on the case of non-CM
curves.

Like the Lang-Trotter conjecture, the asymptotic (1.1) for non-CM curves seems
to be out of reach with current techniques. An asymptotic was proven to hold on
average for non-CM elliptic curves E/Q in the Ph.D. thesis of Giberson [5] (see also
[6]). However, no non-trivial upper bounds are known for a single curve E/Q. The
goal of this paper is to obtain such upper bounds.

Let NE denote the conductor of the elliptic curve E, and define

(1.3) L(s, E) =
∏
p�NE

(
1− αp(E)

ps

)−1 (
1− αp(E)

ps

)−1 ∏
p|NE

(
1− ap(E)

ps

)−1

,

where we have normalized the L-function so that αp(E), αp(E) satisfy

#E(Fp) = p+ 1−√
p(αp(E) + αp(E)) for p � NE .

For any integer n ≥ 0, the symmetric power L-functions of E are given by

L(s, Symn(E)) =
∏
p|NE

Lp(s, Sym
n(E))

∏
p�NE

n∏
j=0

(
1− αp(E)jαp(E)n−j

ps

)−1

,

1If h = 0, then it is additionally assumed that E does not have complex multiplication. The
case h = 0 and E with complex multiplication was treated in [4].
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EXTREMAL PRIMES FOR ELLIPTIC CURVES WITHOUT CM 3

where the Euler factors Lp(s, Sym
n(E)) at the bad primes are described in Appen-

dix A.3.
The aforementioned proof of the Sato-Tate conjecture was obtained by proving

that if E has at least one prime of multiplicative reduction, then the functions
L(s, Symn(E)) have meromorphic continuation to the whole complex plane, satisfy
the functional equation (A.1), and are analytic and non-zero for Re(s) ≥ 1. (See
[16, Theorem B], with the difference there that the L-functions are not normalized.)
To get an effective version of the Sato-Tate conjecture in [15], the authors need to
assume each L(s, Symn(E)) has analytic continuation to the whole complex plane
and satisfies the Generalized Riemann Hypothesis (GRH). For convenience, we
include the function L(s, Sym0(E)) = ζ(s), which is analytic except for a simple
pole at s = 1.

Under the same hypotheses, one can also obtain upper bounds for the Lang-
Trotter conjecture. This was carried out by K. Murty [13] and extended by Bucur
and Kedlaya to arbitrary motives [2]. These results were improved recently by
Rouse and Thorner [15], who proved (under the same hypotheses as in Theorem
1.2, stated below) that

πE,h(x) 
E,h x3/4(log x)−1/2.

In our case, taking advantage of the fact that extremal primes fall at the edge of
the Sato-Tate interval, we refine the work of Rouse and Thorner to obtain a better
upper bound for the number of extremal primes.

Theorem 1.2. Let E be a non-CM elliptic curve over Q. Assume that for any
n ≥ 0, the L-functions L(s, Symn(E)) have analytic continuation to the entire
complex plane (except for a simple pole at s = 1 when n = 0) and satisfy the
functional equation (A.1) and the Generalized Riemann Hypothesis. Then

#{x < p ≤ 2x : ap(E) = [2
√
p]} 
E x1/2.

2. Explicit equidistiribution for the Sato-Tate measure

In this section, we prove upper bounds on Fourier coefficients of certain trigono-
metric polynomials which approximate characteristic functions of intervals. By
considering short intervals at the edge of the Sato-Tate distribution, we obtain
upper bounds that are stronger than what one obtains for general intervals.

We first briefly review classical results on explicit equidistribution. We refer the
reader to [12, Chapter 1] for a detailed exposition of trigonometric polynomials
approximating the characteristic function on subintervals of [0, 1] with respect to
the uniform measure and for the notation in this section. By the change of variable
t = cos θ, we can view the Sato-Tate measure for non-CM curves, stated in Theorem
1.1, as the measure on [0, π] given by

μST ([α, β]) =
2

π

∫ β

α

sin2 θ dθ

for [α, β] ⊆ [0, π]. To approximate the characteristic function of intervals in [0, π]
with respect to the Sato-Tate measure, one uses the Chebyshev polynomials of the
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second kind, denoted by Un and defined by the recurrence relation

U0(x) = 1,

U1(x) = 2x,

Un(x) = 2xUn−1(x)− Un−2(x).

We remark that the polynomials form an orthonormal basis with respect to the
Sato-Tate measure on [0, π]. We refer to [15] for the proof of the following lemma,
which follows directly from explicit uniform equidistribution.

Lemma 2.1 ([15, Lemma 1.3]). Let I = [α, β] ⊆ [0, π], and let M be a positive
integer. There exist trigonometric polynomials

F±
I,M (θ) =

M∑
n=0

F̂±
I,M (n)Un(cos θ)

that satisfy the following properties:

• For 0 ≤ θ ≤ π, we have

F−
I,M (θ) ≤ χI(θ) ≤ F+

I,M (θ).

• We have

|F̂±
I,M (0)− μST (I)| ≤

4

M + 1
.

• For 1 ≤ n ≤ M , we have

|F̂±
I,M (n)| ≤ 4

(
1

M + 1
+min

{
β − α

2π
,
1

πn

})
.

The above lemma is valid for any interval [α, β] ⊆ [0, π]. In our case, however, we
are interested in counting at the edge of the Sato-Tate interval, where the measure
is very small. More precisely, we will consider intervals where t = cos θ is close to 1,
i.e., where θ is close to 0. In this way, we obtain the following sharper estimate for
the Fourier coefficients F̂+

I,M (n), which will be key inputs in the proof of Theorem
1.2.

Proposition 2.2. Assume the setting and notation of Lemma 2.1. If I = [0, 1
M ] ⊆

[0, π], then for 0 ≤ n ≤ M ,

F̂+
I,M (n) 
 1

M2
.

Proof. Since the Un are an orthonormal basis, for 0 ≤ n ≤ M we have

F̂+
I,M (n) =

∫ π

0

F+
I,M (θ)Un(cos θ) sin

2 θ dθ

=

∫ π

0

χI(θ)Un(cos θ) sin
2 θ dθ(2.1)

+

∫ π

0

(
F+
I,M (θ)− χI(θ)

)
Un(cos θ) sin

2 θ dθ.

The first integral of (2.1) is easily bounded by using the fact that

Un(cos θ) =
sin ((n+ 1)θ)

sin θ
,
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EXTREMAL PRIMES FOR ELLIPTIC CURVES WITHOUT CM 5

yielding∫ π

0

χI(θ) Un(cos θ) sin
2 θ dθ =

∫ 1/M

0

sin ((n+ 1)θ) sin θ dθ 
 1

M2
.

For the second integral of (2.1), we must bound the distance between the ap-
proximation of length M and χI(θ). We recall the definition of F+

I,M (θ). For any

J = [0, β] ⊆ [0, 1], it is straightfoward to see that

χJ (x) = β + s(x− β) + s(−x),

where s(x) denotes the saw-tooth function

s(x) =

{
{x} − 1/2 if x �∈ Z,

0 if x ∈ Z.

Next, recall that the Beurling polynomial, BM (x), is defined by

BM (x) = VM (x) +
1

2(M + 1)
ΔM+1(x),

where ΔM (x) is the Fejer kernel given by

ΔM (x) =
1

M

(
sinπMx

sin πx

)2

,

and VM (x) is the Vaaler polynomial given by

VM (x) =
1

M + 1

M∑
k=1

(
k

M + 1
− 1

2

)
ΔM+1

(
x− k

M + 1

)

+
1

2π(M + 1)
sin(2π(M + 1)x)− 1

2π
ΔM+1(x) sin 2πx.

We set

S+
J,M (x) = β +BM (x− β) +BM (−x).

When I = [0, 1/M ], setting the interval J = [0, 1/(2πM)] ⊆ [0, 1/2], we have that

F+
I,M (θ) = S+

J,M

(
θ

2π

)
+ S+

J,M

(
− θ

2π

)
.

With the change of variable x = θ/2π and β = 1/(2πM), we find that

F+
I,M (θ)− χI(θ) = S+

J,M (x) + S+
J,M (−x)− χJ (x)− χJ(−x)

= BM (x− β)− s(x− β) +BM (−x)− s(−x)

+BM (−x− β)− s(−x− β) +BM (x)− s(x).

The second integral of (2.1) then writes as

2π

∫ 1/2

−1/2

(BM (x)− s(x)) Un(cos 2πx) sin2 (2πx) dx

+ 2π

∫ 1/2

−1/2

(BM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx.
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We now compute the second integral in the above expression, since upon taking
β = 0 we will recover the first integral. From the definition of the polynomial BM ,
we have ∫ 1/2

−1/2

(BM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx

=

∫ 1/2

−1/2

(VM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx(2.2)

+
1

2(M + 1)

∫ 1/2

−1/2

ΔM+1(x− β) Un(cos 2πx) sin2 (2πx) dx.(2.3)

To estimate (2.2), we use the bound (for |x| ≤ 1/2)

VM (x− β)− s(x− β) 
 min

(
1,

1

M3|x− β|3

)




⎧⎨
⎩
1 if |x− β| < 1/M,

(M |x− β|)−3 if 1/M ≤ |x− β| ≤ 1/2

and find, for β = 1/(2πM) 
 1/M , that

∫ 1/2

−1/2

(VM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx



∫ β+1/M

β−1/M

|sin ((n+ 1)2πx) sin (2πx)| dx

+
1

M3

(∫ 1/2

β+1/M

+

∫ β−1/M

−1/2

)
|x− β|−3 |sin ((n+ 1)2πx) sin (2πx)| dx



∫ β+1/M

0

x dx+
1

M3

∫ 1/2

β+1/M

x

(x− β)3
dx


 1

M2
+

1

M3

∫ 1/2

β+1/M

(
1

(x− β)2
+

β

(x− β)3

)
dx


 1

M2
.

It remains to show that the expression in (2.3) is also 
 1/M2. First note that we
may write

(2.4) Un(cos(2πx)) =
sin((n+ 1)2πx)

sin(2πx)
.

Moreover, the Fejer kernel may alternatively be expressed as

ΔM (x) =
1

M

M−1∑
k=0

Dk(x),
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EXTREMAL PRIMES FOR ELLIPTIC CURVES WITHOUT CM 7

where Dk(x) is the k-th order Dirichlet kernel that has a closed form expression
given by

Dk(x) = 1 + 2
k∑

j=1

cos(2πjx).

Thus, we may express ΔM+1(x) as

(2.5) ΔM+1(x) =
1

M + 1

M∑
k=0

⎛
⎝1 + 2

k∑
j=1

cos(2πjx)

⎞
⎠ .

From (2.4), (2.5), and a trigonometric sum-difference formula, we have

(M + 1)

∫ 1/2

−1/2

ΔM+1(x− β) Un(cos 2πx) sin2 (2πx) dx

= (M + 1)

1/2∫
−1/2

ΔM+1(x− β) sin((n+ 1)2πx) sin(2πx) dx

=
1

2

1/2∫
−1/2

⎛
⎝(M + 1) + 2

M∑
k=1

k∑
j=1

cos(2πj(x− β))

⎞
⎠ (cos(2πnx)

− cos(2π(n+ 2)x)) dx

=

M∑
k=1

k∑
j=1

∫ 1/2

−1/2

cos(2πj(x− β))
(
cos(2πnx)− cos(2π(n+ 2)x)

)
dx

=

M∑
k=1

k∑
j=1

∫ 1/2

−1/2

cos(2πj(x− β)) cos(2πnx) dx(2.6)

−
M∑
k=1

k∑
j=1

∫ 1/2

−1/2

cos(2πj(x− β)) cos(2π(n+ 2)x) dx.(2.7)

Using trigonometric identities, we can rewrite the sum in (2.6) as

M∑
k=1

k∑
j=1

∫ 1/2

−1/2

(cos(2πjβ) cos(2πjx) + sin(2πjβ) sin(2πjx)) cos(2πnx) dx.(2.8)

Recall that ∫ 1/2

−1/2

cos(mπx) cos(nπx) dx =

{
1
2 if m = n,

0 otherwise

and that for any m,n ∈ Z,∫ 1/2

−1/2

cos(mπx) sin(nπx) dx = 0.

Therefore, the only term that survives in the inner sum over j in (2.8) is the term
j = n. This gives

M∑
k=1

k∑
j=1

∫ 1/2

−1/2

cos(2πj(x− β)) cos(2πnx) dx =
M − n+ 1

2
cos(2πnβ),
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and a similar calculation gives that the sum in (2.7) is

M∑
k=1

k∑
j=1

∫ 1/2

−1/2

cos(2πj(x−β)) cos(2π(n+2)x) dx =
M − (n+ 2) + 1

2
cos(2π(n+2)β)

if 1 ≤ n ≤ M − 2 and equal to 0 if n = M − 1,M . Thus, for 1 ≤ n ≤ M − 2,

(M + 1)

∫ 1/2

−1/2

ΔM+1(x− β) Un(cos 2πx) sin2 (2πx) dx

=
M − n+ 1

2
cos(2πnβ)− M − (n+ 2) + 1

2
cos(2π(n+ 2)β)

= (M − n+ 1) sin(2π(n+ 1)β) sin(2πβ) + cos(2π(n+ 2)β),(2.9)

while for n = M − 1,M we have

(M + 1)

∫ 1/2

−1/2

ΔM+1(x− β) Un(cos 2πx) sin2 (2πx) dx

=
M − n+ 1

2
cos(2πnβ).(2.10)

Dividing by 2(M + 1)2, the integral in (2.3) is 
 1/M2 for β = 1/(2πM). Setting
β = 0 in (2.9) and (2.10), we find that for non-negative integers n,M with M ≥ 1,

1/2∫
−1/2

(
sin((M + 1)πx)

sin(πx)

)2

Un(cos 2πx) sin
2(2πx)dx =

{
1 if 0 ≤ n < M,
1
2 if n = M .

We have thus shown that for β = 1/(2πM),∫ 1/2

−1/2

(BM (x− β)− s(x− β)) Un(cos 2πx) sin2 (2πx) dx 
 1

M2
,

and using β = 0 in the above formulas, we have∫ 1/2

−1/2

(BM (x)− s(x)) Un(cos 2πx) sin2 (2πx) dx 
 1

M2
.

This completes the proof of the proposition. �

Remark. The results of Proposition 2.2 also hold for the coefficients F̂−
I,M (n), fol-

lowing appropriate minor changes, but this is not needed for our application.

3. Proof of Theorem 1.2

We adapt the arguments of [15] to prove Theorem 1.2, using the stronger bound
on the size of the Fourier coefficients computed in Proposition 2.2. To estimate the
prime counting function

#{x ≤ p < 2x : ap(E) = [2
√
p]},

we first perform the change of variable ap(E) = 2
√
p cos θp(E). Let Iε be an interval

of the form [0, ε] ⊆ [0, π/2] and I ′ε = [cos(ε), 1] is such that

cos θp(E) ∈ I ′ε ⇐⇒ θp(E) ∈ Iε.
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EXTREMAL PRIMES FOR ELLIPTIC CURVES WITHOUT CM 9

If ε = ε(x) is such that

(3.1) cos ε ≤ 1− x−1/2,

then using x ≤ p < 2x, we have

cos ε ≤ 1− 1

x1/2
< 1− 1

2
√
p
< 1−

{2√p}
2
√
p

< 1.

Using this, we obtain the upper bound

#{x ≤ p < 2x : ap(E) = [2
√
p]} = #

{
x ≤ p < 2x :

ap(E)

2
√
p

= 1−
{2√p}
2
√
p

}
≤ #{x ≤ p < 2x : cos θp(E) ∈ I ′ε}
= #{x ≤ p < 2x : θp(E) ∈ Iε}

=
∑

x≤p<2x

χIε(θp(E)),

where for any interval I, χI is the characteristic function of the interval.
Let ε = 1/M so that Iε = [0, 1/M ], where M is chosen later. Using the first

property in Lemma 2.1, we have

∑
x≤p<2x

χIε(θp) ≤
M∑
n=0

F̂+
Iε,M

(n)
∑

x≤p<2x

Un(cos θp(E))

≤
M∑
n=0

|F̂+
Iε,M

(n)|

∣∣∣∣∣∣
∑

x≤p<2x

Un(cos θp(E))

∣∣∣∣∣∣ .
(3.2)

To estimate the quantity
∑

x≤p<2x

Un(cos θp(E)), as in [15], we get sharper estimates

by weighting the contribution from primes using a test function which is a pointwise
upper bound for the characteristic function on [x, 2x]. Let

(3.3) g(y) =

{
exp

(
4
3 + 1

(y− 1
2 )(y−

5
2 )

)
if 1

2 < y < 5
2 ,

0 otherwise,

and gx(y) = g(y/x). Using the bound 1 ≤ log p
log x for all x ≤ p < 2x, this allows us to

write

(3.4)

∣∣∣∣∣∣
∑

x≤p<2x

Un(cos θp(E))

∣∣∣∣∣∣ ≤
1

log x

∣∣∣∣∣
∑
p

Un(cos θp(E))gx(p) log p

∣∣∣∣∣ .
We next use a result of [15] stated in the following form.

Proposition 3.1 ([15, Proposition 3.5]). For each n ≥ 0, assume that the L-
function L(s,Symn(E)) is entire (with the exception of a simple pole at s = 1
when n = 0), satisfies the functional equation (A.1) and the Generalized Riemann
Hypothesis. Then, we have

(3.5)
∑
p

Un(cos θp(E))gx(p) log p 
E δn,0x+
√
xn logn,

where δn,0 = 1 if n = 0 and 0 otherwise.
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Remark. Proposition 3.5 of [15] has the additional hypothesis that NE is square-
free. We describe how to remove this hypothesis in Appendix A.

Using (3.4) and (3.5) in (3.2) we now have

∑
x≤p<2x

χIε(θp(E)) 
 1

log x

M∑
n=0

|F̂+
Iε,M

(n)|
(
δn,0x+

√
xn logn

)
.

We now use Proposition 2.2 to bound the Fourier coefficients F̂+
Iε,M

(n). Doing so,
the right hand side of the above equation is


 1

M2 log x

(
x+

√
x

M∑
n=1

n logn

)


 x

M2 log x
+

x1/2 logM

log x
.

Letting M =

⌈
x1/4

(log x)1/2

⌉
, we see that (3.1) is satisfied, and we have

# {x ≤ p < 2x : ap(E) = [2
√
p]} ≤

∑
x≤p<2x

χIε(θp(E)) 
 x1/2,

which completes the proof of Theorem 1.2.

Appendix A

A.1. Proof of Proposition 3.1. We now extend the proof of Proposition 3.5 of
[15] to all non-CM elliptic curves over Q, without assuming that NE is square-free,
i.e., that the bad primes are primes of multiplicative reduction. This necessitates
a bound on the conductor of Symn(E) and computing the local factors at the bad
primes of all reduction types. We summarize in subsections A.2 and A.3 the work
of Martin and Watkins [11] which gives us these estimates.

Let NE,n be the conductor of Symn(E). Notice that in this notation, NE,1 = NE

(and NE,0 = 1). It is conjectured that the L(s, Symn(E)) satisfy the functional
equation

(A.1) Λ(s, Symn(E)) = εn Λ(1− s, Symn(E)),

where the root number εn ∈ C has absolute value 1 and the completed L-function
is

Λ(s, Symn(E)) = N
s/2
E,nγ(s, Sym

n(E))L(s, Symn(E)),

with the gamma factor

γ(s, Symn(E)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
21−sπ−s

)(n+1)/2
(n+1)/2∏

j=1

Γ (s+ (j−1/2)(n−1)) if n is odd

π−(s+n2)/2Γ((s+ n2)/2)
(
21−sπ−s

)n/2 n/2∏
j=1

Γ (s+ j(n− 1))

if n is even.

In the above, n2 = n/2 mod 2.
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As in [15], define the numbers ΛSymn(E)(j) by

−L′

L
(s, Symn(E)) =

∞∑
j=1

ΛSymn(E)(j)

js
, Re(s) > 1.

For primes p not dividing NE and m ≥ 1, it is a straightforward computation to
show that

(A.2) ΛSymn(E)(p
m) = Un(cos(mθp(E))) log p.

Also, ΛSymn(E)(j) is zero when j is not a power of a prime. Thus,

∑
p

Un(cos θp(E))gx(p) log p =
∞∑
j=1

ΛSymn(E)(j)gx(j)−
∑
j≥1

j=pm,m≥2
or j=p, p|NE

ΛSymn(E)(j)gx(j)

+
∑
p|NE

Un(cos θp(E))gx(p) log p.

We now show that for any integer j, we have

ΛSymn(E)(j) 
 (n+ 1)Λ(j),

where Λ(j) is the usual von Mangoldt function. If j = pm and p � NE , the result
is clear by (A.2). Suppose now that j = pm, for p | NE and m ≥ 1. Using the
formulas (A.6), (A.7), and (A.8) which give the Euler products at the bad primes

of −L′

L (s, Symn(E)) for multiplicative, potentially multiplicative, and potentially
good reduction, the result follows easily. Thus, we have∑

j≥1
j=pm,m≥2
or j=p, p|NE

ΛSymn(E)(j)gx(j)−
∑
p�NE

Un(cos θp(E))gx(p) log p


 (n+ 1)

⎛
⎜⎜⎜⎜⎜⎝

∑
x/2<pm<5x/2

m≥2
p�NE

log p+
∑

x/2≤pm<5x/2
p|NE

log p+
∑
p|NE

log p

⎞
⎟⎟⎟⎟⎟⎠


 (n+ 1)

⎛
⎜⎜⎝ ∑

x/2<pm<5x/2
m≥2

log p+ logNE

⎞
⎟⎟⎠ 
E n

√
x.

(A.3)

Then, as in [15], we have to estimate

∞∑
j=1

ΛSymn(E)(j) gx(j).

This is done by first writing an explicit formula for the non-smoothed sum

ψSymn(E)(x) =
∑
j≤x

ΛSymn(E)(j),
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and evaluating the residues at the poles, coming from the zeroes of L(s, Symn(E)) in
the critical strips. In all those estimates, the authors use the fact that NE,n = Nn

E ,
which leads to the bound log(NE,n) ≤ n logNE . From (A.5) of subsection A.2, it
follows that without any hypothesis on the reduction type of E at the bad primes,
we have

logNE,n 
 n logNE ,

where the implied constant is absolute. The argument of [15, Section 8] becomes
∞∑
j=1

ΛSymn(E)(j)gx(j) = δn,0x

∫ ∞

0

g(t) dt+O
(√

x (n logn+ logNE,n)
)


E δn,0x+
√
xn log(n),(A.4)

where we recall that g is defined by (3.3).
Comparing (A.4) and (A.3), we complete the proof of Proposition 3.1 without

assumption on NE .

A.2. The conductors NE,n. We now summarize the results concerning the con-
ductors NE,n from [11, Section 3]. For each prime p | N , fix � �= p, and let
T�(E) denote the Tate module at �. Let H�(E) = Hom(T�(E) ⊗ Q�,Q�) and let
Ip ≤ Gal(Qp/Qp) be the local inertia group at p. Define εn(Ip) to be the co-
dimension of the subspace of Symn(H�(E)) fixed by Ip. Then, we have that

NE,n =
∏
p|NE

pεn(Ip)+δn(p),

where δn(p) is the wild part of the conductor. If p is a prime of multiplicative
reduction, then εn(Ip) = n and δn(p) = 0 for all n, and then NE,n = Nn

E when NE

is square-free as assumed in [15, Conjecture 1.1(a)].
For the other cases, we first remark that the wild conductor δn(p) = 0 when

p ≥ 5 for all reduction types. For p a prime of potentially multiplicative reduction,
we have that εn(Ip) = n + 1 if n is odd and εn(Ip) = n if n is even. The wild
conductors δn(p) are always 0, except for the case p = 2 and n odd, where we have
δn(2) =

n+1
2 δ1(2).

For p a prime of potentially good reduction, the value of εn(p) depends on the
inertia group of the local extension Gp = Gal(Qp(E�)/Qp) and the congruence of n
modulo 12. The values of εn(p) in all cases that arise are given in Table 1 of [11], and
we always have 0 ≤ εn(p) ≤ n+ 1. The wild conductors δn(2) and δn(3) are given
in Tables 2 and 3 of [11], and we have that δn(2) ≤ 2(n+1) and δn(3) ≤ (n+1)/2.

We then have the bound

NE,n ≤ 26(n+1)3(n+1)/2
∏
p|NE

p(n+1) 
E N6n
E .(A.5)

We also remark that the computation of the conductor NE,n in [11] is the idea
presented in [14, Section 5] applied to the special case of elliptic curves.

A.3. The local factors at the bad primes. Next, we summarize the results
concerning the Euler factors at primes of bad reduction from [11, Section 3]. Since
we use the normalized L-function L(s, E) defined by (1.3), and Martin and Watkins
use the non-normalized L-function, we adjust their result accordingly using the fact
that

L(s, Symn(E)) = Lnon-norm(s+ n/2, Symn(E)).
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Let Lp(s, Sym
n(E)) be the Euler factors at the bad primes p of L(s, Symn(E)).

If p is a prime of multiplicative reduction or potentially multiplicative reduction,
then

Lp(s, Sym
n(E)) =

(
1− ap,n

ps+n/2

)−1

,

where ap,n ∈ {0,±1}, and then

(A.6)
∞∑

m=1

ΛSymn(E)(p
m)

pms
=

∞∑
m=1

log p

psm
amp,n
pnm/2

.

In the case where p is a prime with potentially good reduction, there are 2 cases
depending on whether or not the local decomposition group Gp is abelian. When
Gp is abelian, the local inertia group is cyclic of order d, where d = 2, 3, 4, or 6,
and

Lp(s, Sym
n(E)) =

∏
0≤k≤n

d|(2k−n)

(
1−

βp(E)n−kβp(E)k

ps+n/2

)−1

,

where βp(E) is obtained by counting points on a pr-th quadratic twist of E (which
is non-singular) where r depends on the p-valuation of the coefficients of E. It
follows that |βp(E)| = p1/2. Then,

(A.7)

∞∑
m=1

ΛSymn(E)(p
m)

pms
=

∞∑
m=1

log p

psm
1

pnm/2

∑
0≤k≤n
d|(2k−n)

(
βp(E)n−kβp(E)k

)m
.

On the other hand, when Gp is non-abelian, we have

Lp(s, Sym
n(E)) =

(
1− (±1)(−p)n/2

ps+n/2

)−(n+1−εn(Ip))

and

(A.8)

∞∑
m=1

ΛSymn(E)(p
m)

pms
=

∞∑
m=1

(±1)m(−1)mn/2 log p

psm
(n+ 1− εn(Ip)) .
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