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Abstract. In this paper, we investigate a problem on the distribution of Ford circles,
which concerns moments of distances between centers of these circles that lie above a given
horizontal line.

1. Introduction

Introduced in 1938 by Lester R. Ford [8], a Ford circle is a circle tangent to the x-axis at
a given point with rational coordinates (p/q, 0) in reduced form, centered at (p/q, 1/(2q2)).
Any two Ford circles are either disjoint or tangent to each other. In the present paper, we
study a question concerning the distribution of Ford circles.

For a fixed interval I := [α, β] ⊆ [0, 1] with rational end points and for each large positive
integer Q, we consider the set FI,Q consisting of Ford circles with centers lying between the
vertical lines x = α and x = β or possibly on the line x = β but not below the line y = 1

2Q2 .
Note that these are the Ford circles that are tangent to the real axis at the rational points
(a/q, 0) with a/q in the interval I = [α, β] and q ≤ Q. Let NI(Q) denote the number of
elements in FI,Q. The circles CQ,1, CQ,2, · · · , CQ,NI(Q) in FI,Q are arranged in such a way
that any two consecutive circles are tangent to each other. For each j in {1, 2, · · · , NI(Q)},
denote the center of CQ,j by OQ,j and the radius of CQ,j by rQ,j.

For any positive integer k, consider the k-moment

Mk,I(Q) :=
1

|I|

NI(Q)−1∑
j=1

(D(OQ,j, OQ,j+1))
k, (1.1)

where D(OQ,j, OQ,j+1) denotes the Euclidean distance between the centers OQ,j and OQ,j+1.
For all large X, we consider the average

Ak,I(X) :=
1

X

∫ 2X

X

Mk,I(Q) dY, (1.2)

where here and in what follows, Y denotes a real variable and the positive integer Q is a
function of Y ; more precisely, Q is the integer part of Y . Although, as Q increases, the
sequence of individual distances D(QQ,j, OQ,j+1) changes wildly as more and more circles
of various sizes appear between any two given circles, the k-averages Ak,I(X) satisfy nice
asymptotic formulas.
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Theorem 1.1. Fix an interval I := [α, β] ⊆ [0, 1] with α, β ∈ Q, and let Ak,I(X) be defined
as in (1.2). Then, for k = 1,

A1,I(X) =
6

π2
log 4X +B1(I) + O

(
log2X

X

)
, (1.3)

where B1(I) is a constant depending only on the interval I.

We remark that when I = [0, 1], the constant B1(I) is given by

B1([0, 1]) =
γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
,

where ζ(s) denotes the Riemann zeta function and γ denotes Euler’s constant. In this case,
we also obtain a better bound for the error term in (1.3), namely,

A1,[0,1](X) =
6

π2
log 4X +

γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
+ O

(
1

Xec0(logX)3/5(log logX)−1/5

)
, (1.4)

where c0 > 0 is an absolute constant.

Theorem 1.2. For I as in Theorem 1.1 and k = 2 in (1.2),

A2,I(X) = B2(I) +
3

π2

logX

X2
+
D2(I)

X2
+ Oε

(
X−21/10+ε

)
,

where B2(I) and D2(I) are constants depending only on the interval I.

In particular, for I = [0, 1], one has

B2([0, 1]) =
ζ(3)

2ζ(4)
and D2([0, 1]) =

3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
.

In this case also, we obtain a better bound for the error term,

A2,[0,1](X) =
ζ(3)

2ζ(4)
+

3

π2

logX

X2
+

3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
1

X2

+ Oε

(
log5/3X(log logX)1+ε

X3

)
. (1.5)

Theorem 1.3. For I as in Theorem 1.1 and k ≥ 3 in (1.2),

Ak,I(X) = Bk(I) + Ok

(
1

X2

)
,

where Bk(I) is a constant depending on k and the interval I.

In particular, for the full interval I = [0, 1], one has

Bk([0, 1]) =
ζ(2k − 1)

2k−1ζ(2k)
.

In this case, we obtain a second order term and a better bound for the error term,

Ak,[0,1](X) =
ζ(2k − 1)

2k−1ζ(2k)
+
kζ(2k − 3)

2kζ(2k − 2)

1

X2
+ Ok

(
1

X3

)
. (1.6)

It would be interesting to investigate similar questions for Apollonian circle packings.
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2. General Setup

In this section, we fix a positive integer k and express the k-th moment Mk,I in terms
of the Euler-phi function and the Mobius function. Next, we rewrite Ak,I as an integral
involving the Riemann zeta function, and then shift the path of integration based on the
Vinogradov-Korobov zero free region. To proceed, we first review some facts about Farey
fractions. Given a positive integer Q, by a Farey fraction of order Q, we mean a rational
number in reduced form in the interval [0, 1] with denominator at most Q. We denote by FQ
the sequence of Farey fractions of order Q, arranged in order of increasing size. Two Farey
fractions a/b < c/d in FQ are neighbours if and only if bc−ad = 1 and b+d > Q. The Farey
sequence FQ is in bijection with the set of Ford circles tangent to the real line at points in
the interval [0, 1] and radius at least 1

2Q2 . Therefore, the distance between the centers OQ,j

and OQ,j+1 of two consecutive Ford circles CQ,j and CQ,j+1 is given by

D(QQ,j, OQ,j+1) =
1

2q2j
+

1

2q2j+1

, (2.1)

where aj/qj and aj+1/qj+1 are neighbours in FQ and correspond to a pair of Ford circles
tangent to the x-axis at x = aj/qj and x = aj+1/qj+1 respectively. Thus, NI(Q) is same as
the number of Farey fractions of order Q inside the interval I = [α, β]. For two neighbouring
Farey fractions a′/q′ < a/q of order Q in the interval I, we note that a′ ≡ −q̄ (mod q′), since
q′a − qa′ = 1. The notation x̄ (mod n) is used for the multiplicative inverse of x (mod n)
in the interval [1, n] for positive integers x and n with gcd(x, n) = 1. Thus, the conditions
a′/q′ ∈ (α, β] and a/q ∈ (α, β] are equivalent to

q̄ ∈ [q′ − q′β, q′ − q′α), and q̄′ ∈ (qα, qβ], (2.2)

respectively. Questions on the distribution of Farey fractions have been studied extensively,
see for example [1], [2], [4], [9] and the references therein.

For a fixed k and the interval I, from (1.1) and (2.1), one has

|I|Mk,I(Q) =

NI(Q)−1∑
j=1

(
1

2q2j
+

1

2q2j+1

)k

=
1

2k−1

NI(Q)∑
j=2

1

q2kj
+

1

2kq2k1
− 1

2kq2kNI(Q)

+
1

2k

NI(Q)−1∑
j=1

k−1∑
i=1

(
k

i

)(
1

qijq
k−i
j+1

)2

=
1

2k−1

∑
1≤q≤Q

1

q2k

∑
αq<a≤βq
(a,q)=1

1 +
1

2k

k−1∑
i=1

(
k

i

)NI(Q)−1∑
j=1

1

q2ij q
2k−2i
j+1

+

(
1

2kq2k1
− 1

2kq2kNI(Q)

)

=: Sk + S ′k +Rk(I), (2.3)

where in the last inequality, without loss of generality, we assume that for large Q, the end-
points of the interval I = [α, β] are Farey fractions of order Q since α, β ∈ Q. This implies
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Rk(I) in (2.3) is a constant depending only on k and end-points of the interval I. Therefore,

|I|Ak,I =
1

X

∫ 2X

X

(Sk + S ′k +Rk(I)) dY

=
1

X

∫ 2X

1

Sk dY −
1

X

∫ X

1

Sk dY +
1

X

∫ 2X

X

S ′k dY +Rk(I). (2.4)

Consider,

1

X

∫ X

1

Sk dY =
1

2k−1X

∫ X

1

∑
1≤q≤Q

1

q2k

∑
αq<a≤βq
(a,q)=1

1 dY

=
1

2k−1X

∫ X

1

∑
q≤Q

1

q2k

∑
αq<a≤βq

1
∑
d|(a,q)

µ(d) dY

=
1

2k−1X

∫ X

1

∑
q≤Q

1

q2k

∑
d|q

µ(d)
∑

αq
d
<l≤βq

d

1 dY

=
1

2k−1X

∫ X

1

∑
q≤Q

1

q2k

∑
d|q

µ(d)
(β − α)q

d
−
∑
d|q

µ(d)

({
βq

d

}
−
{αq
d

}) dY

=
1

2k−1X

∫ X

1

|I|∑
q≤Q

φ(q)

q2k
−
∑
d≤Q

µ(d)

d2k

∑
m≤Q

d

(
{βm} − {αm}

m2k

) dY

=
|I|

2k−1

∑
1≤q≤X

φ(q)

q2k

(
1− q

X

)
− 1

2k−1X

∫ X

1

∑
d,m≥1
dm≤Y

µ(d)

d2km2k
({βm} − {αm}) dY

=
|I|

2k−1

∑
1≤q≤X

φ(q)

q2k

(
1− q

X

)
− 1

2k−1

∑
1≤d≤X

µ(d)

d2k

∑
1≤m≤X

d

{βm} − {αm}
m2k

+
1

2k−1X

∑
1≤d≤X

µ(d)

d2k−1

∑
1≤m≤X

d

{βm} − {αm}
m2k−1

=: Sk,1 − Sk,2 + Sk,3. (2.5)

We first estimate the sums Sk,2 and Sk,3. Since for x ≥ 1, and a ≥ 2,

∑
n≥x

1

na
= O

(
x1−a

)
,
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one has

Sk,2 =
1

2k−1

∑
1≤d≤X

µ(d)

d2k

∑
m≥1

{βm} − {αm}
m2k

−
∑

m>X/d

{βm} − {αm}
m2k


=
C2k,I

2k−1

∑
1≤d≤X

µ(d)

d2k
+ O

 ∑
1≤d≤X

|µ(d)|
d2k

∑
m>X/d

|{βm} − {αm}|
m2k


=

C2k,I

2k−1ζ(2k)
+ O

(
logX

X2k−1

)
, (2.6)

where for a natural number j, we denote

Cj,I :=
∑
m≥1

{βm} − {αm}
mj

.

Similarly for k ≥ 2,

Sk,3 =
1

2k−1X

∑
1≤d≤X

µ(d)

d2k−1

∑
m≥1

{βm} − {αm}
m2k−1 −

∑
m>X/d

{βm} − {αm}
m2k−1


=
C2k−1,I

2k−1
1

X

∑
1≤d≤X

µ(d)

d2k−1
+ O

 1

X

∑
1≤d≤X

|µ(d)|
d2k−1

∑
m>X/d

|{βm} − {αm}|
m2k−1


=

C2k−1,I

2k−1ζ(2k − 1)

1

X
+ O

(
logX

X2k−1

)
. (2.7)

In a similar fashion one estimates Sk,3 for k = 1,

|S1,3| =

∣∣∣∣∣∣ 1

X

∑
1≤d≤X

µ(d)

d

∑
m<X/d

{βm} − {αm}
m

∣∣∣∣∣∣
≤ 1

X

∑
1≤d≤X

|µ(d)|
d

∑
m<X/d

∣∣∣∣{βm} − {αm}m

∣∣∣∣ = O

(
log2X

X

)
. (2.8)

Next we consider the sum

Sk,1 =
|I|

2k−1

∑
1≤q≤X

φ(q)

q2k

(
1− q

X

)
.

The arithmetic function φ(n)n−2k is multiplicative and its Dirichlet series is given by
∞∑
n=1

φ(n)n−2k

ns
=
ζ(s+ 2k − 1)

ζ(s+ 2k)
,

which converges for <(s) > 2−2k. For a complex number s, we write s = σ+it. By Perron’s
formula ([12, page 130]), for c > 0,

1

X

∑
q≤X

φ(q)

q2k
(X − q) =

1

2πi

∫ c+i∞

c−i∞

Xsζ(s+ 2k − 1)

s(s+ 1)ζ(s+ 2k)
ds. (2.9)
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Fix T, U > 0 such that 2 ≤ T ≤ X, X2 ≤ U ≤ X2k and c =
a

logX
for some absolute

constant a > 0. Let

d = −2k + 1− A

(log 2T )2/3(log log 2T )1/3
,

where A will be a suitably chosen absolute constant. In order to evaluate the above integral,
we modify the path of integration from c− iU to c+ iU along the line segments lj, 1 ≤ j ≤ 9
described below.
We let l1 be the half line from c+ iU to c+ i∞, l2 be the line segment from −2k+ 1 + iU to
c+ iU , l3 be the line segment from −2k+1+ iT to −2k+1+ iU, l4 be the line segment from
d+ iT to −2k+ 1 + iT , l5 be the line segment from d− iT to d+ iT, l6 be the line segment
from −2k+ 1− iT to d− iT , l7 be the line segment from −2k+ 1− iU to −2k+ 1− iT, l8
be the line segment with endpoints −2k + 1 − iU and c − iU , and lastly let l9 be the half
line from c− i∞ to c− iU . The main contribution on the right side of (2.9) comes from the
residues at the poles of the function

fk(s) :=
Xsζ(s+ 2k − 1)

s(s+ 1)ζ(s+ 2k)
,

encountered when we modified the path of integration. By the residue theorem,

1

2πi

∫ c+i∞

c−i∞
fk(s) ds =

∑
Res(fk(s)) +

9∑
m=1

Jm, (2.10)

where Ji is the integral of fk(s) along li. Here the sum
∑

Res(fk(s)) is taken over all the
poles of fk(s) inside the region bounded by segments l2, l3, . . . , l8 and the vertical segment
joining c− iU and c+ iU . To estimate the integrals J1, . . . , J9, we use standard bounds for

ζ(s) and
1

ζ(s)
([13, page 47]),

ζ(σ + it) =


O
(
tσ−

1
2 log t

)
, −1 ≤ σ ≤ 0,

O
(
t
1−σ
2 log t

)
, 0 ≤ σ ≤ 1,

O (log t) , 1 ≤ σ ≤ 2,
O (1) , σ ≥ 2,

and
1

ζ(σ + it)
=

{
O (log t) , 1 ≤ σ ≤ 2,
O (1) , σ ≥ 2.

We also use the Vinogradov-Koroborov zero free region ([14], [11]),

σ ≥ 1−B(log t)−
2
3 (log log t)−

1
3 ,

where
1

ζ(s)
= O

(
(log t)

2
3 (log log t)

1
3

)
,

and B is an absolute constant.
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3. First Moment

In this section we provide a proof of Theorem 1.1. For the first moment, we set k = 1 in
Section 2.

Proof of Theorem 1.1. From (2.3), we note that

|I|M1,I =
∑
q≤Q

1

q2

∑
αq<a≤βq
(a,q)=1

1 +

(
− 1

2q21
+

1

2q2NI(Q)

)
= S1 +R1(I).

Therefore, as in (2.4) we have

|I|A1,I =
1

X

∫ 2X

1

S1 dY −
1

X

∫ X

1

S1 dY +R1(I). (3.1)

Now from (2.5),

1

X

∫ X

1

S1 dY = S1,1 − S1,2 + S1,3. (3.2)

The sums S1,2 and S1,3 have already been estimated in (2.6) and (2.8) respectively. In order
to estimate S1,1, we bound the integrals Jm in (2.10) as follows. One has

|J1|, |J9| = O

(∫ ∞
U

|Xc+it||ζ(c+ 1 + it)|
|c+ it||c+ 1 + it||ζ(c+ 2 + it)|

dt

)
= O

(
Xc

∫ ∞
U

log t

t2
dt

)
= O

(
logU

U

)
.

And,

|J2|, |J8| = O

(∫ c

−1

|Xσ+iU ||ζ(1 + σ + iU)|
|σ + iU ||σ + 1 + iU ||ζ(2 + σ + iU)|

dσ

)
= O

(
(logU)2

U2

∫ 0

−1

(
X√
U

)σ
dσ +

logU

U2

∫ c

0

Xσ dσ

)
= O

(
log2 U

U2

)
.

Next,

|J3|, |J7| = O

(∫ U

T

|X−1+it||ζ(it)|
| − 1 + it||it||ζ(1 + it)|

dt

)
= O

(
X−1

∫ U

T

log t

t3/2
dt

)
= O

(
log2 T

X
√
T

)
.

Also,

|J4|, |J6| = O

(∫ −1
d

|Xσ+iT ||ζ(1 + σ + iT )|
|σ + 1 + iT ||σ + iT ||ζ(σ + 2 + iT )|

dσ

)
= O

(
(log T )

2
3 (log log T )

1
3

T 2

∫ −1
d

Xσ|ζ(1 + σ + iT )| dσ

)

= O

(
(log T )

5
3 (log log T )

1
3

T 2

∫ −1
d

(
X√
T

)σ
dσ

)
= O

(
(log T )

2
3 (log log T )

1
3

XT 3/2

)
.
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Lastly,

|J5| = O

(∫ T

−T

|Xd+it||ζ(1 + d+ it)|
|d+ it||d+ 1 + it||ζ(d+ 2 + it)|

dt

)
= O

(
Xd

∫ T

−T

t−1/2−d(log(2 + |t|)5/3(log log(3 + |t|))1/3

1 + t2
dt

)
= O

(
Xd
)
.

Collecting all the above estimates and setting U = X2 and T = exp

(
c1(logX)3/5

(log logX)1/5

)
, one

obtains

S1,1 = |I|Res(f1(s)) + O

(
1

Xec0(logX)3/5(log logX)−1/5

)
, (3.3)

where c0 and c1 are suitable positive absolute constants. Here, in the prescribed region, f1(s)
has only one pole at s = 0 of order two with residue

Res(f1(s)) =
logX

ζ(2)
+
γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
.

From (2.6), (2.8), (3.1), (3.2), (3.3) and above,

A1,I(X) =
6

π2
log 4X +

γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
− C2,I

|I|ζ(2)
+
R1(I)

|I|
+ O

(
log2X

X

)
.

This concludes the proof of Theorem 1.1. �

Remark. In the case of the full interval I = [0, 1], we observe that R1([0, 1]) = 0 in (2.3) and
S1,2 = 0 = S1,3 in (2.5). Therefore, S1,1 in (3.2) is the only term which contributes to the
average A1,[0,1] in (3.1) and we obtain

A1,[0,1](X) =
6

π2
log 4X +

γ − 1

ζ(2)
− ζ ′(2)

ζ2(2)
+ O

(
1

Xec0(logX)3/5(log logX)−1/5

)
,

as claimed in (1.4).

4. Higher Moments

In this section, we prove Theorem 1.2 and Theorem 1.3. We first estimate the integral
1

X

∫ X

1

Sk dY for k ≥ 2 in (2.4). From (2.5),

1

X

∫ X

1

Sk dY = Sk,1 − Sk,2 + Sk,3.

Estimates for Sk,2 and Sk,3 for k ≥ 2 have already been obtained in (2.6) and (2.7). For
k ≥ 2, estimates for

Sk,1 =
|I|

2k−1X

∑
q≤X

φ(q)

q2k
(X − q)
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can be obtained as before where we set U = X2k. In this case, the corresponding function
fk(s) has poles at s = 0, s = −1 and s = 2 − 2k in the region described before. All these
poles are simple and the sum of the residues of fk(s) at these poles is given by∑

Res(fk(s)) =
ζ(2k − 1)

ζ(2k)
− ζ(2k − 2)

ζ(2k − 1)

1

X
+

1

(2k − 3)(2k − 2)ζ(2)

1

X2k−2 .

One can estimate the line integrals Jm of the function f1(s) along li for 1 ≤ i ≤ 9 in (2.10)
as before. In this case one has

1

2πi

∫ c+i∞

c−i∞

Xsζ(s+ 2k − 1)

s(s+ 1)ζ(s+ 2k)
ds =

ζ(2k − 1)

ζ(2k)
− ζ(2k − 2)

ζ(2k − 1)

1

X
+

1

(2k − 3)(2k − 2)ζ(2)X2k−2

+ O

(
1

X2k−1ec0(logX)3/5(log logX)−1/5

)
.

Therefore, from (2.9) and the above equation, we obtain

Sk,1 =
|I|ζ(2k − 1)

2k−1ζ(2k)
− |I|ζ(2k − 2)

2k−1ζ(2k − 1)

1

X
+

|I|
2k−1(2k − 3)(2k − 2)ζ(2)X2k−2

+ O

(
1

X2k−1ec0(logX)3/5(log logX)−1/5

)
.

From (2.5), (2.6), (2.7) and above, we derive

1

X

∫ 2X

X

Sk dY =
|I|ζ(2k − 1)

2k−1ζ(2k)
− C2k,I

2k−1ζ(2k)
+

|I|(1− 22k−3)

23k−4(2k − 3)(2k − 2)ζ(2)X2k−2

+ O

(
logX

X2k−1

)
. (4.1)

In order to prove Theorem 1.2 and Theorem 1.3, it remains to estimate the remaining integral

1

X

∫ 2X

X

S ′k dY

for k ≥ 2 in (2.4).

Proof of Theorem 1.2. For k = 2 in (2.3), we have

|I|M2,I(Q) =

NI(Q)−1∑
j=1

(
1

2q2j
+

1

2q2j+1

)2

=
1

2

∑
q≤Q

1

q4

∑
αq<a≤βq
(a,q)=1

1 +
1

2

NI(Q)−1∑
j=1

(
1

qjqj+1

)2

+

(
− 1

4q41
+

1

4q4NI(Q)

)

= S2 + S ′2 +R2(I).

Therefore,

|I|A2,I =
1

X

∫ 2X

X

S2 dY +
1

X

∫ 2X

X

S ′2 dY +R2(I). (4.2)

From [3, Theorem 2], we obtain

S ′2 =
|I|
2
S0(Q) +

C2,I

Q2
+ Oε

(
Q−21/10+ε

)
,
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where

S0(Q) =
12

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2

)
+ Oε

(
log5/3Q(log logQ)1+ε

Q3

)
.

We remark in passing that the saving in the exponent above (from −2 to −21/10) was
obtained by employing Weil type estimates ([7], [10], [15]) for Kloosterman sums.

Next, we have

1

|I|X

∫ 2X

X

S ′2 dY =
3

π2

logX

X2
+

(
3

π2

(
γ − ζ ′(2)

ζ(2)
+

3

2
− log 2

)
+
C2,I

2|I|

)
1

X2
+ Oε

(
X−21/10+ε

)
.

Combining (4.1), (4.2) and above, we conclude that

A2,I =
|I|ζ(3)− C4,I

2|I|ζ(4)
+
R2(I)

|I|
+

3

π2

logX

X2
+

(
3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
+
C2,I

2|I|

)
1

X2

+ Oε

(
X−21/10+ε

)
.

This completes the proof of Theorem 1.2. �

Remark. For the full interval I = [0, 1], observe that R2(I) = 0, and

S ′2 =
6

π2Q2

(
logQ+ γ − ζ ′(2)

ζ(2)
+

1

2

)
+ Oε

(
log5/3Q(log logQ)1+ε

Q3

)
.

This along with (4.1) and (4.2) proves (1.5),

A2,[0,1](X) =
ζ(3)

2ζ(4)
− 1

2
+

3

π2

logX

X2
+

3

π2

(
γ − ζ ′(2)

ζ(2)
+

5

4
− log 2

)
1

X2

+ Oε

(
log5/3X(log logX)1+ε

X3

)
.

Proof of Theorem 1.3. For k ≥ 3,

|I|Mk,I(Q) =

NI(Q)−1∑
j=1

(
1

2qj2
+

1

2qj+1
2

)k

=
∑
q≤Q

1

q2k

∑
αq<a≤βq
(a,q)=1

|I|
2k−1

+
1

2k

k−1∑
i=1

(
k

i

)NI(Q)−1∑
j=1

(
1

qijq
k−i
j+1

)2

−

(
1

2kq2k1
+

1

2kq2kNI(Q)

)

= Sk + S ′k +Rk(I).

Therefore,

|I|Ak,I =
1

X

∫ 2X

X

Sk dY +
1

X

∫ 2X

X

S ′k dY +Rk(I). (4.3)

For each 1 ≤ i ≤ k − 1, consider the sum

Sk,i :=

NI(Q)−1∑
j=1

1

q2ij q
2k−2i
j+1

.
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For any positive integer m, let Lm denote the set

Lm :=

{
l ∈ N : l > m,Q−m < l ≤ Q, gcd(m, l) = 1,

l̄ (mod m) ∈ (mα,mβ], m̄ (mod l) ∈ [l − lβ, l − lα)

}
.

Employing (2.2), we have

Sk,i =
∑

1≤r≤Q

∑
q∈Lr

1

q2ir2k−2i
+
∑

1≤q≤Q

∑
r∈Lq

1

q2ir2k−2i
.

As noted earlier in Section 2, when q and r are denominators of neighbouring Farey fractions
in FQ, then r + q > Q. Therefore, q > r implies q > Q/2 and for r > q, we have r > Q/2.
Also, ∑

q∈Lr

1 = O (φ(r)) and
∑
r∈Lq

1 = O (φ(q)) .

Using the above relations and the fact that for x ≥ 2 and a ≥ 3,

∑
1≤n≤x

φ(n)

na
=
ζ(a− 1)

ζ(a)
+ O

(
x2−a

)
, (4.4)

we obtain

Sk,i ≤
(

2

Q

)2i∑
r≤Q

1

r2k−2i

∑
q∈Lr

1 +

(
2

Q

)2k−2i∑
q≤Q

1

q2i

∑
r∈Lq

1

= O

(
1

Q2i

∑
r≤Q

1

r2k−2i
φ(r)

)
+ O

(
1

Q2k−2i

∑
q≤Q

1

q2i
φ(q)

)

= O

(
logQ

Q2i

)
+ O

(
logQ

Q2k−2i

)
.

Here on the far right side, the first logQ may be replaced by 1 unless i = k − 1, and the
second logQ may be replaced by 1 unless i = 1. Hence,

1

X

∫ 2X

X

S ′k dY =
1

X

∫ 2X

X

1

2k

k−1∑
i=1

(
k

i

)
Sk,i dY = O

(
1

X2

)
.

This combined with (4.1) and (4.3) yields

Ak,I =
|I|ζ(2k − 1)− C2k,I

|I|2k−1ζ(2k)
+
Rk(I)

|I|
+ Ok

(
1

X2

)
for k ≥ 3,

which completes the proof of Theorem 1.3. �
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Remark. In the case of the full interval I = [0, 1], note that Rk([0, 1]) = 0, and

Sk,i =
∑

1≤q,r≤Q
gcd(q,r)=1,
q+r>Q

1

q2ir2k−2i

=
∑

1≤q,r≤Q
gcd(q,r)=1,
r<Q/2,
q+r>Q

1

q2ir2k−2i
+

∑
1≤q,r≤Q

gcd(q,r)=1,
q<Q/2,
q+r>Q

1

q2ir2k−2i
+

∑
1≤q,r≤Q

gcd(q,r)=1,
q,r≥Q/2

1

q2ir2k−2i

=: Σ1,i + Σ2,i + Σ3,i.

First we estimate the sum Σ1,i for 1 ≤ i ≤ k − 2. Note that in this case r < Q/2, therefore

q > Q/2 since r + q > Q. Also,
1

q
=

1

Q

(
1 + O

(
Q− q
Q

))
gives,

Σ1,i =
∑

1≤r<Q/2

1

r2k−2i

 ∑
gcd(q,r)=1
Q−r<q≤Q

1

Q2i
+ O

(
Q− q
Q2i+1

)

=
∑

1≤r<Q/2

1

r2k−2i

∑
gcd(q,r)=1
Q−r<q≤Q

1

Q2i
+ O

 1

Q2i+1

∑
1≤r<Q/2

1

r2k−2i−1

∑
gcd(q,r)=1
Q−r<q≤Q

1


=

1

Q2i

∑
1≤r<Q/2

φ(r)

r2k−2i
+ O

 1

Q2i+1

∑
1≤r<Q/2

φ(r)

r2k−2i−1

 .

Using (4.4), for 1 ≤ i ≤ k − 2,

Σ1,i =
ζ(2k − 2i− 1)

ζ(2k − 2i)

1

Q2i
+ O

(
1

Q2i+1

)
.

Using ∑
n≤x

φ(n)

n2
=

log x

ζ(2)
+ O (1) , and

∑
n≤x

φ(n)

n
= O (x) ,

we have, for i = k − 1,

Σ1,k−1 =
1

ζ(2)

log(Q/2)

Q2k−2 + O

(
1

Q2k−2

)
.

Similarly, for the sum Σ2,i for 2 ≤ i ≤ k − 1,

Σ2,i =
ζ(2i− 1)

ζ(2i)

1

Q2k−2i + O

(
1

Q2k−2i+1

)
,

and

Σ2,1 =
1

ζ(2)

log(Q/2)

Q2k−2 + O

(
1

Q2k−2

)
.
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Lastly, for 1 ≤ i ≤ k − 1,

Σ3,i = O

(
1

Q2k−2

)
.

Therefore,

S ′k =
kζ(2k − 3)

2k−1ζ(2k − 2)

1

Q2
+ O

(
1

Q3

)
.

This combined with (4.3) gives (1.6),

Ak,[0,1] =
ζ(2k − 1)

2k−1ζ(2k)
− 1

2k−1
+
kζ(2k − 3)

2kζ(2k − 2)

1

X2
+ Ok

(
1

X3

)
.
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