k-MOMENTS OF DISTANCES BETWEEN CENTERS OF FORD CIRCLES

SNEHA CHAUBEY, AMITA MALIK, AND ALEXANDRU ZAHARESCU

Abstract

In this paper, we investigate a problem on the distribution of Ford circles, which concerns moments of distances between centers of these circles that lie above a given horizontal line.

1. Introduction

Introduced in 1938 by Lester R. Ford [8], a Ford circle is a circle tangent to the x-axis at a given point with rational coordinates $(p / q, 0)$ in reduced form, centered at $\left(p / q, 1 /\left(2 q^{2}\right)\right)$. Any two Ford circles are either disjoint or tangent to each other. In the present paper, we study a question concerning the distribution of Ford circles.

For a fixed interval $I:=[\alpha, \beta] \subseteq[0,1]$ with rational end points and for each large positive integer Q, we consider the set $\mathcal{F}_{I, Q}$ consisting of Ford circles with centers lying between the vertical lines $x=\alpha$ and $x=\beta$ or possibly on the line $x=\beta$ but not below the line $y=\frac{1}{2 Q^{2}}$. Note that these are the Ford circles that are tangent to the real axis at the rational points $(a / q, 0)$ with a / q in the interval $I=[\alpha, \beta]$ and $q \leq Q$. Let $N_{I}(Q)$ denote the number of elements in $\mathcal{F}_{I, Q}$. The circles $C_{Q, 1}, C_{Q, 2}, \cdots, C_{Q, N_{I}(Q)}$ in $\mathcal{F}_{I, Q}$ are arranged in such a way that any two consecutive circles are tangent to each other. For each j in $\left\{1,2, \cdots, N_{I}(Q)\right\}$, denote the center of $C_{Q, j}$ by $O_{Q, j}$ and the radius of $C_{Q, j}$ by $r_{Q, j}$.

For any positive integer k, consider the k-moment

$$
\begin{equation*}
\mathcal{M}_{k, I}(Q):=\frac{1}{|I|} \sum_{j=1}^{N_{I}(Q)-1}\left(D\left(O_{Q, j}, O_{Q, j+1}\right)\right)^{k} \tag{1.1}
\end{equation*}
$$

where $D\left(O_{Q, j}, O_{Q, j+1}\right)$ denotes the Euclidean distance between the centers $O_{Q, j}$ and $O_{Q, j+1}$. For all large X, we consider the average

$$
\begin{equation*}
\mathcal{A}_{k, I}(X):=\frac{1}{X} \int_{X}^{2 X} \mathcal{M}_{k, I}(Q) d Y \tag{1.2}
\end{equation*}
$$

where here and in what follows, Y denotes a real variable and the positive integer Q is a function of Y; more precisely, Q is the integer part of Y. Although, as Q increases, the sequence of individual distances $D\left(Q_{Q, j}, O_{Q, j+1}\right)$ changes wildly as more and more circles of various sizes appear between any two given circles, the k-averages $\mathcal{A}_{k, I}(X)$ satisfy nice asymptotic formulas.

[^0]Theorem 1.1. Fix an interval $I:=[\alpha, \beta] \subseteq[0,1]$ with $\alpha, \beta \in \mathbb{Q}$, and let $\mathcal{A}_{k, I}(X)$ be defined as in (1.2). Then, for $k=1$,

$$
\begin{equation*}
\mathcal{A}_{1, I}(X)=\frac{6}{\pi^{2}} \log 4 X+B_{1}(I)+\mathrm{O}\left(\frac{\log ^{2} X}{X}\right) \tag{1.3}
\end{equation*}
$$

where $B_{1}(I)$ is a constant depending only on the interval I.
We remark that when $I=[0,1]$, the constant $B_{1}(I)$ is given by

$$
B_{1}([0,1])=\frac{\gamma-1}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)},
$$

where $\zeta(s)$ denotes the Riemann zeta function and γ denotes Euler's constant. In this case, we also obtain a better bound for the error term in (1.3), namely,

$$
\begin{equation*}
\mathcal{A}_{1,[0,1]}(X)=\frac{6}{\pi^{2}} \log 4 X+\frac{\gamma-1}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)}+\mathrm{O}\left(\frac{1}{X e^{c_{0}(\log X)^{3 / 5}(\log \log X)^{-1 / 5}}}\right) \tag{1.4}
\end{equation*}
$$

where $c_{0}>0$ is an absolute constant.
Theorem 1.2. For I as in Theorem 1.1 and $k=2$ in (1.2),

$$
\mathcal{A}_{2, I}(X)=B_{2}(I)+\frac{3}{\pi^{2}} \frac{\log X}{X^{2}}+\frac{D_{2}(I)}{X^{2}}+\mathrm{O}_{\epsilon}\left(X^{-21 / 10+\epsilon}\right),
$$

where $B_{2}(I)$ and $D_{2}(I)$ are constants depending only on the interval I.
In particular, for $I=[0,1]$, one has

$$
B_{2}([0,1])=\frac{\zeta(3)}{2 \zeta(4)} \text { and } D_{2}([0,1])=\frac{3}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{5}{4}-\log 2\right)
$$

In this case also, we obtain a better bound for the error term,

$$
\begin{align*}
\mathcal{A}_{2,[0,1]}(X)= & \frac{\zeta(3)}{2 \zeta(4)}+\frac{3}{\pi^{2}} \frac{\log X}{X^{2}}+\frac{3}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{5}{4}-\log 2\right) \frac{1}{X^{2}} \\
& +\mathrm{O}_{\epsilon}\left(\frac{\log ^{5 / 3} X(\log \log X)^{1+\epsilon}}{X^{3}}\right) \tag{1.5}
\end{align*}
$$

Theorem 1.3. For I as in Theorem 1.1 and $k \geq 3$ in (1.2),

$$
\mathcal{A}_{k, I}(X)=B_{k}(I)+\mathrm{O}_{k}\left(\frac{1}{X^{2}}\right),
$$

where $B_{k}(I)$ is a constant depending on k and the interval I.
In particular, for the full interval $I=[0,1]$, one has

$$
B_{k}([0,1])=\frac{\zeta(2 k-1)}{2^{k-1} \zeta(2 k)}
$$

In this case, we obtain a second order term and a better bound for the error term,

$$
\begin{equation*}
\mathcal{A}_{k,[0,1]}(X)=\frac{\zeta(2 k-1)}{2^{k-1} \zeta(2 k)}+\frac{k \zeta(2 k-3)}{2^{k} \zeta(2 k-2)} \frac{1}{X^{2}}+\mathrm{O}_{k}\left(\frac{1}{X^{3}}\right) . \tag{1.6}
\end{equation*}
$$

It would be interesting to investigate similar questions for Apollonian circle packings.

2. General Setup

In this section, we fix a positive integer k and express the k-th moment $\mathcal{M}_{k, I}$ in terms of the Euler-phi function and the Mobius function. Next, we rewrite $\mathcal{A}_{k, I}$ as an integral involving the Riemann zeta function, and then shift the path of integration based on the Vinogradov-Korobov zero free region. To proceed, we first review some facts about Farey fractions. Given a positive integer Q, by a Farey fraction of order Q, we mean a rational number in reduced form in the interval $[0,1]$ with denominator at most Q. We denote by F_{Q} the sequence of Farey fractions of order Q, arranged in order of increasing size. Two Farey fractions $a / b<c / d$ in F_{Q} are neighbours if and only if $b c-a d=1$ and $b+d>Q$. The Farey sequence F_{Q} is in bijection with the set of Ford circles tangent to the real line at points in the interval $[0,1]$ and radius at least $\frac{1}{2 Q^{2}}$. Therefore, the distance between the centers $O_{Q, j}$ and $O_{Q, j+1}$ of two consecutive Ford circles $C_{Q, j}$ and $C_{Q, j+1}$ is given by

$$
\begin{equation*}
D\left(Q_{Q, j}, O_{Q, j+1}\right)=\frac{1}{2 q_{j}^{2}}+\frac{1}{2 q_{j+1}^{2}} \tag{2.1}
\end{equation*}
$$

where a_{j} / q_{j} and a_{j+1} / q_{j+1} are neighbours in F_{Q} and correspond to a pair of Ford circles tangent to the x-axis at $x=a_{j} / q_{j}$ and $x=a_{j+1} / q_{j+1}$ respectively. Thus, $N_{I}(Q)$ is same as the number of Farey fractions of order Q inside the interval $I=[\alpha, \beta]$. For two neighbouring Farey fractions $a^{\prime} / q^{\prime}<a / q$ of order Q in the interval I, we note that $a^{\prime} \equiv-\bar{q}\left(\bmod q^{\prime}\right)$, since $q^{\prime} a-q a^{\prime}=1$. The notation $\bar{x}(\bmod n)$ is used for the multiplicative inverse of $x(\bmod n)$ in the interval $[1, n]$ for positive integers x and n with $\operatorname{gcd}(x, n)=1$. Thus, the conditions $a^{\prime} / q^{\prime} \in(\alpha, \beta]$ and $a / q \in(\alpha, \beta]$ are equivalent to

$$
\begin{equation*}
\bar{q} \in\left[q^{\prime}-q^{\prime} \beta, q^{\prime}-q^{\prime} \alpha\right), \text { and } \overline{q^{\prime}} \in(q \alpha, q \beta], \tag{2.2}
\end{equation*}
$$

respectively. Questions on the distribution of Farey fractions have been studied extensively, see for example [1], [2], [4], [9] and the references therein.

For a fixed k and the interval I, from (1.1) and (2.1), one has

$$
\begin{align*}
|I| \mathcal{M}_{k, I}(Q) & =\sum_{j=1}^{N_{I}(Q)-1}\left(\frac{1}{2 q_{j}^{2}}+\frac{1}{2 q_{j+1}^{2}}\right)^{k} \\
& =\frac{1}{2^{k-1}} \sum_{j=2}^{N_{I}(Q)} \frac{1}{q_{j}^{2 k}}+\frac{1}{2^{k} q_{1}^{2 k}}-\frac{1}{2^{k} q_{N_{I}(Q)}^{2 k}}+\frac{1}{2^{k}} \sum_{j=1}^{N_{I}(Q)-1} \sum_{i=1}^{k-1}\binom{k}{i}\left(\frac{1}{q_{j}^{i} q_{j+1}^{k-i}}\right)^{2} \\
& =\frac{1}{2^{k-1}} \sum_{1 \leq q \leq Q} \frac{1}{q^{2 k}} \sum_{\substack{\alpha q<a \leq \beta q \\
(a, q)=1}} 1+\frac{1}{2^{k}} \sum_{i=1}^{k-1}\binom{k}{i} \sum_{j=1}^{N_{I}(Q)-1} \frac{1}{q_{j}^{2 i} q_{j+1}^{2 k-2 i}}+\left(\frac{1}{2^{k} q_{1}^{2 k}}-\frac{1}{2^{k} q_{N_{I}(Q)}^{2 k}}\right) \\
& =: S_{k}+S_{k}^{\prime}+R_{k}(I), \tag{2.3}
\end{align*}
$$

where in the last inequality, without loss of generality, we assume that for large Q, the endpoints of the interval $I=[\alpha, \beta]$ are Farey fractions of order Q since $\alpha, \beta \in \mathbb{Q}$. This implies
$R_{k}(I)$ in (2.3) is a constant depending only on k and end-points of the interval I. Therefore,

$$
\begin{align*}
|I| \mathcal{A}_{k, I} & =\frac{1}{X} \int_{X}^{2 X}\left(S_{k}+S_{k}^{\prime}+R_{k}(I)\right) d Y \\
& =\frac{1}{X} \int_{1}^{2 X} S_{k} d Y-\frac{1}{X} \int_{1}^{X} S_{k} d Y+\frac{1}{X} \int_{X}^{2 X} S_{k}^{\prime} d Y+R_{k}(I) \tag{2.4}
\end{align*}
$$

Consider,

$$
\begin{align*}
& \frac{1}{X} \int_{1}^{X} S_{k} d Y= \frac{1}{2^{k-1} X} \int_{1}^{X} \sum_{1 \leq q \leq Q} \frac{1}{q^{2 k}} \sum_{\substack{\alpha q<a \leq \beta q \\
(a, q)=1}} 1 d Y \\
&= \frac{1}{2^{k-1} X} \int_{1}^{X} \sum_{q \leq Q} \frac{1}{q^{2 k}} \sum_{\alpha q<a \leq \beta q} 1 \sum_{d \mid(a, q)} \mu(d) d Y \\
&= \frac{1}{2^{k-1} X} \int_{1}^{X} \sum_{q \leq Q} \frac{1}{q^{2 k}} \sum_{d \mid q} \mu(d) \sum_{\frac{\alpha q}{d}<l \leq \frac{\beta q}{d}} 1 d Y \\
&= \frac{1}{2^{k-1} X} \int_{1}^{X} \sum_{q \leq Q} \frac{1}{q^{2 k}}\left(\sum_{d \mid q} \mu(d) \frac{(\beta-\alpha) q}{d}-\sum_{d \mid q} \mu(d)\left(\left\{\frac{\beta q}{d}\right\}-\left\{\frac{\alpha q}{d}\right\}\right)\right) d Y \\
&= \frac{1}{2^{k-1} X} \int_{1}^{X}\left(|I| \sum_{q \leq Q} \frac{\phi(q)}{q^{2 k}}-\sum_{d \leq Q} \frac{\mu(d)}{d^{2 k}} \sum_{m \leq \frac{Q}{d}}\left(\frac{\{\beta m\}-\{\alpha m\}}{m^{2 k}}\right)\right) d Y \\
&= \frac{|I|}{2^{k-1}} \sum_{1 \leq q \leq X} \frac{\phi(q)}{q^{2 k}}\left(1-\frac{q}{X}\right)-\frac{1}{2^{k-1} X} \int_{1}^{X} \sum_{d, m \geq 1} \frac{\mu(d)}{d^{2 k} m^{2 k}}(\{\beta m\}-\{\alpha m\}) d Y \\
&= \frac{|I|}{2^{k-1}} \sum_{1 \leq q \leq X} \frac{\phi(q)}{q^{2 k}}\left(1-\frac{q}{X}\right)-\frac{1}{2^{k-1}} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k}} \sum_{1 \leq m \leq \frac{X}{d}} \underline{\{\beta m\}-\{\alpha m\}} \\
& m^{2 k} \\
&+\frac{1}{2^{k-1} X} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k-1}} \sum_{1 \leq m \leq \frac{X}{d}} \frac{\{\beta m\}-\{\alpha m\}}{m^{2 k-1}} \tag{2.5}\\
&=: S_{k, 1}-S_{k, 2}+S_{k, 3} .
\end{align*}
$$

We first estimate the sums $S_{k, 2}$ and $S_{k, 3}$. Since for $x \geq 1$, and $a \geq 2$,

$$
\sum_{n \geq x} \frac{1}{n^{a}}=\mathrm{O}\left(x^{1-a}\right)
$$

one has

$$
\begin{align*}
S_{k, 2} & =\frac{1}{2^{k-1}} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k}}\left(\sum_{m \geq 1} \frac{\{\beta m\}-\{\alpha m\}}{m^{2 k}}-\sum_{m>X / d} \frac{\{\beta m\}-\{\alpha m\}}{m^{2 k}}\right) \\
& =\frac{C_{2 k, I}}{2^{k-1}} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k}}+\mathrm{O}\left(\sum_{1 \leq d \leq X} \frac{|\mu(d)|}{d^{2 k}} \sum_{m>X / d} \frac{|\{\beta m\}-\{\alpha m\}|}{m^{2 k}}\right) \\
& =\frac{C_{2 k, I}}{2^{k-1} \zeta(2 k)}+\mathrm{O}\left(\frac{\log X}{X^{2 k-1}}\right), \tag{2.6}
\end{align*}
$$

where for a natural number j, we denote

$$
C_{j, I}:=\sum_{m \geq 1} \frac{\{\beta m\}-\{\alpha m\}}{m^{j}} .
$$

Similarly for $k \geq 2$,

$$
\begin{align*}
S_{k, 3} & =\frac{1}{2^{k-1} X} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k-1}}\left(\sum_{m \geq 1} \frac{\{\beta m\}-\{\alpha m\}}{m^{2 k-1}}-\sum_{m>X / d} \frac{\{\beta m\}-\{\alpha m\}}{m^{2 k-1}}\right) \\
& =\frac{C_{2 k-1, I}}{2^{k-1}} \frac{1}{X} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d^{2 k-1}}+\mathrm{O}\left(\frac{1}{X} \sum_{1 \leq d \leq X} \frac{|\mu(d)|}{d^{2 k-1}} \sum_{m>X / d} \frac{|\{\beta m\}-\{\alpha m\}|}{m^{2 k-1}}\right) \\
& =\frac{C_{2 k-1, I}^{2^{k-1} \zeta(2 k-1)} \frac{1}{X}+\mathrm{O}\left(\frac{\log X}{X^{2 k-1}}\right) .}{} . \tag{2.7}
\end{align*}
$$

In a similar fashion one estimates $S_{k, 3}$ for $k=1$,

$$
\begin{align*}
\left|S_{1,3}\right| & =\left|\frac{1}{X} \sum_{1 \leq d \leq X} \frac{\mu(d)}{d} \sum_{m<X / d} \frac{\{\beta m\}-\{\alpha m\}}{m}\right| \\
& \leq \frac{1}{X} \sum_{1 \leq d \leq X} \frac{|\mu(d)|}{d} \sum_{m<X / d}\left|\frac{\{\beta m\}-\{\alpha m\}}{m}\right|=\mathrm{O}\left(\frac{\log ^{2} X}{X}\right) . \tag{2.8}
\end{align*}
$$

Next we consider the sum

$$
S_{k, 1}=\frac{|I|}{2^{k-1}} \sum_{1 \leq q \leq X} \frac{\phi(q)}{q^{2 k}}\left(1-\frac{q}{X}\right) .
$$

The arithmetic function $\phi(n) n^{-2 k}$ is multiplicative and its Dirichlet series is given by

$$
\sum_{n=1}^{\infty} \frac{\phi(n) n^{-2 k}}{n^{s}}=\frac{\zeta(s+2 k-1)}{\zeta(s+2 k)}
$$

which converges for $\Re(s)>2-2 k$. For a complex number s, we write $s=\sigma+i t$. By Perron's formula ([12, page 130]), for $c>0$,

$$
\begin{equation*}
\frac{1}{X} \sum_{q \leq X} \frac{\phi(q)}{q^{2 k}}(X-q)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{X^{s} \zeta(s+2 k-1)}{s(s+1) \zeta(s+2 k)} d s \tag{2.9}
\end{equation*}
$$

Fix $T, U>0$ such that $2 \leq T \leq X, X^{2} \leq U \leq X^{2 k}$ and $c=\frac{a}{\log X}$ for some absolute constant $a>0$. Let

$$
d=-2 k+1-\frac{A}{(\log 2 T)^{2 / 3}(\log \log 2 T)^{1 / 3}},
$$

where A will be a suitably chosen absolute constant. In order to evaluate the above integral, we modify the path of integration from $c-i U$ to $c+i U$ along the line segments $l_{j}, 1 \leq j \leq 9$ described below.
We let l_{1} be the half line from $c+i U$ to $c+i \infty, l_{2}$ be the line segment from $-2 k+1+i U$ to $c+i U, l_{3}$ be the line segment from $-2 k+1+i T$ to $-2 k+1+i U, l_{4}$ be the line segment from $d+i T$ to $-2 k+1+i T, l_{5}$ be the line segment from $d-i T$ to $d+i T, l_{6}$ be the line segment from $-2 k+1-i T$ to $d-i T, l_{7}$ be the line segment from $-2 k+1-i U$ to $-2 k+1-i T, l_{8}$ be the line segment with endpoints $-2 k+1-i U$ and $c-i U$, and lastly let l_{9} be the half line from $c-i \infty$ to $c-i U$. The main contribution on the right side of (2.9) comes from the residues at the poles of the function

$$
f_{k}(s):=\frac{X^{s} \zeta(s+2 k-1)}{s(s+1) \zeta(s+2 k)},
$$

encountered when we modified the path of integration. By the residue theorem,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f_{k}(s) d s=\sum \operatorname{Res}\left(f_{k}(s)\right)+\sum_{m=1}^{9} J_{m} \tag{2.10}
\end{equation*}
$$

where J_{i} is the integral of $f_{k}(s)$ along l_{i}. Here the sum $\sum \operatorname{Res}\left(f_{k}(s)\right)$ is taken over all the poles of $f_{k}(s)$ inside the region bounded by segments $l_{2}, l_{3}, \ldots, l_{8}$ and the vertical segment joining $c-i U$ and $c+i U$. To estimate the integrals J_{1}, \ldots, J_{9}, we use standard bounds for $\zeta(s)$ and $\frac{1}{\zeta(s)}([13$, page 47$])$,

$$
\zeta(\sigma+i t)=\left\{\begin{array}{l}
\mathrm{O}\left(t^{\sigma-\frac{1}{2}} \log t\right),-1 \leq \sigma \leq 0 \\
\mathrm{O}\left(t^{\frac{1-\sigma}{2}} \log t\right), 0 \leq \sigma \leq 1 \\
\mathrm{O}(\log t), 1 \leq \sigma \leq 2 \\
\mathrm{O}(1), \sigma \geq 2
\end{array}\right.
$$

and

$$
\frac{1}{\zeta(\sigma+i t)}=\left\{\begin{array}{lr}
\mathrm{O}(\log t), & 1 \leq \sigma \leq 2 \\
\mathrm{O}(1), & \sigma \geq 2
\end{array}\right.
$$

We also use the Vinogradov-Koroborov zero free region ([14], [11]),

$$
\sigma \geq 1-B(\log t)^{-\frac{2}{3}}(\log \log t)^{-\frac{1}{3}}
$$

where

$$
\frac{1}{\zeta(s)}=\mathrm{O}\left((\log t)^{\frac{2}{3}}(\log \log t)^{\frac{1}{3}}\right)
$$

and B is an absolute constant.

3. First Moment

In this section we provide a proof of Theorem 1.1. For the first moment, we set $k=1$ in Section 2.

Proof of Theorem 1.1. From (2.3), we note that

$$
|I| \mathcal{M}_{1, I}=\sum_{q \leq Q} \frac{1}{q^{2}} \sum_{\substack{\alpha q<a \leq \beta q \\(a, q)=1}} 1+\left(-\frac{1}{2 q_{1}^{2}}+\frac{1}{2 q_{N_{I}(Q)}^{2}}\right)=S_{1}+R_{1}(I)
$$

Therefore, as in (2.4) we have

$$
\begin{equation*}
|I| \mathcal{A}_{1, I}=\frac{1}{X} \int_{1}^{2 X} S_{1} d Y-\frac{1}{X} \int_{1}^{X} S_{1} d Y+R_{1}(I) \tag{3.1}
\end{equation*}
$$

Now from (2.5),

$$
\begin{equation*}
\frac{1}{X} \int_{1}^{X} S_{1} d Y=S_{1,1}-S_{1,2}+S_{1,3} \tag{3.2}
\end{equation*}
$$

The sums $S_{1,2}$ and $S_{1,3}$ have already been estimated in (2.6) and (2.8) respectively. In order to estimate $S_{1,1}$, we bound the integrals J_{m} in (2.10) as follows. One has

$$
\begin{aligned}
\left|J_{1}\right|,\left|J_{9}\right| & =\mathrm{O}\left(\int_{U}^{\infty} \frac{\left|X^{c+i t}\right||\zeta(c+1+i t)|}{|c+i t||c+1+i t||\zeta(c+2+i t)|} d t\right) \\
& =\mathrm{O}\left(X^{c} \int_{U}^{\infty} \frac{\log t}{t^{2}} d t\right)=\mathrm{O}\left(\frac{\log U}{U}\right)
\end{aligned}
$$

And,

$$
\begin{aligned}
\left|J_{2}\right|,\left|J_{8}\right| & =\mathrm{O}\left(\int_{-1}^{c} \frac{\left|X^{\sigma+i U}\right||\zeta(1+\sigma+i U)|}{|\sigma+i U||\sigma+1+i U||\zeta(2+\sigma+i U)|} d \sigma\right) \\
& =\mathrm{O}\left(\frac{(\log U)^{2}}{U^{2}} \int_{-1}^{0}\left(\frac{X}{\sqrt{U}}\right)^{\sigma} d \sigma+\frac{\log U}{U^{2}} \int_{0}^{c} X^{\sigma} d \sigma\right)=\mathrm{O}\left(\frac{\log ^{2} U}{U^{2}}\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
\left|J_{3}\right|,\left|J_{7}\right| & =\mathrm{O}\left(\int_{T}^{U} \frac{\left|X^{-1+i t}\right||\zeta(i t)|}{|-1+i t||i t||\zeta(1+i t)|} d t\right)=\mathrm{O}\left(X^{-1} \int_{T}^{U} \frac{\log t}{t^{3 / 2}} d t\right) \\
& =\mathrm{O}\left(\frac{\log ^{2} T}{X \sqrt{T}}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|J_{4}\right|,\left|J_{6}\right| & =\mathrm{O}\left(\int_{d}^{-1} \frac{\left|X^{\sigma+i T}\right||\zeta(1+\sigma+i T)|}{|\sigma+1+i T||\sigma+i T||\zeta(\sigma+2+i T)|} d \sigma\right) \\
& =\mathrm{O}\left(\frac{(\log T)^{\frac{2}{3}}(\log \log T)^{\frac{1}{3}}}{T^{2}} \int_{d}^{-1} X^{\sigma}|\zeta(1+\sigma+i T)| d \sigma\right) \\
& =\mathrm{O}\left(\frac{(\log T)^{\frac{5}{3}}(\log \log T)^{\frac{1}{3}}}{T^{2}} \int_{d}^{-1}\left(\frac{X}{\sqrt{T}}\right)^{\sigma} d \sigma\right)=\mathrm{O}\left(\frac{(\log T)^{\frac{2}{3}}(\log \log T)^{\frac{1}{3}}}{X T^{3 / 2}}\right)
\end{aligned}
$$

Lastly,

$$
\begin{aligned}
\left|J_{5}\right| & =\mathrm{O}\left(\int_{-T}^{T} \frac{\left|X^{d+i t}\right||\zeta(1+d+i t)|}{|d+i t||d+1+i t||\zeta(d+2+i t)|} d t\right) \\
& =\mathrm{O}\left(X^{d} \int_{-T}^{T} \frac{t^{-1 / 2-d}\left(\log (2+|t|)^{5 / 3}(\log \log (3+|t|))^{1 / 3}\right.}{1+t^{2}} d t\right)=\mathrm{O}\left(X^{d}\right)
\end{aligned}
$$

Collecting all the above estimates and setting $U=X^{2}$ and $T=\exp \left(\frac{c_{1}(\log X)^{3 / 5}}{(\log \log X)^{1 / 5}}\right)$, one obtains

$$
\begin{equation*}
S_{1,1}=|I| \operatorname{Res}\left(f_{1}(s)\right)+\mathrm{O}\left(\frac{1}{X e^{c_{0}(\log X)^{3 / 5}(\log \log X)^{-1 / 5}}}\right) \tag{3.3}
\end{equation*}
$$

where c_{0} and c_{1} are suitable positive absolute constants. Here, in the prescribed region, $f_{1}(s)$ has only one pole at $s=0$ of order two with residue

$$
\operatorname{Res}\left(f_{1}(s)\right)=\frac{\log X}{\zeta(2)}+\frac{\gamma-1}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)}
$$

From (2.6), (2.8), (3.1), (3.2), (3.3) and above,

$$
\mathcal{A}_{1, I}(X)=\frac{6}{\pi^{2}} \log 4 X+\frac{\gamma-1}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)}-\frac{C_{2, I}}{|I| \zeta(2)}+\frac{R_{1}(I)}{|I|}+\mathrm{O}\left(\frac{\log ^{2} X}{X}\right) .
$$

This concludes the proof of Theorem 1.1.
Remark. In the case of the full interval $I=[0,1]$, we observe that $R_{1}([0,1])=0$ in (2.3) and $S_{1,2}=0=S_{1,3}$ in (2.5). Therefore, $S_{1,1}$ in (3.2) is the only term which contributes to the average $\mathcal{A}_{1,[0,1]}$ in (3.1) and we obtain

$$
\mathcal{A}_{1,[0,1]}(X)=\frac{6}{\pi^{2}} \log 4 X+\frac{\gamma-1}{\zeta(2)}-\frac{\zeta^{\prime}(2)}{\zeta^{2}(2)}+\mathrm{O}\left(\frac{1}{X e^{c_{0}(\log X)^{3 / 5}(\log \log X)^{-1 / 5}}}\right)
$$

as claimed in (1.4).

4. Higher Moments

In this section, we prove Theorem 1.2 and Theorem 1.3. We first estimate the integral $\frac{1}{X} \int_{1}^{X} S_{k} d Y$ for $k \geq 2$ in (2.4). From (2.5),

$$
\frac{1}{X} \int_{1}^{X} S_{k} d Y=S_{k, 1}-S_{k, 2}+S_{k, 3}
$$

Estimates for $S_{k, 2}$ and $S_{k, 3}$ for $k \geq 2$ have already been obtained in (2.6) and (2.7). For $k \geq 2$, estimates for

$$
S_{k, 1}=\frac{|I|}{2^{k-1} X} \sum_{q \leq X} \frac{\phi(q)}{q^{2 k}}(X-q)
$$

can be obtained as before where we set $U=X^{2 k}$. In this case, the corresponding function $f_{k}(s)$ has poles at $s=0, s=-1$ and $s=2-2 k$ in the region described before. All these poles are simple and the sum of the residues of $f_{k}(s)$ at these poles is given by

$$
\sum \operatorname{Res}\left(f_{k}(s)\right)=\frac{\zeta(2 k-1)}{\zeta(2 k)}-\frac{\zeta(2 k-2)}{\zeta(2 k-1)} \frac{1}{X}+\frac{1}{(2 k-3)(2 k-2) \zeta(2)} \frac{1}{X^{2 k-2}}
$$

One can estimate the line integrals J_{m} of the function $f_{1}(s)$ along l_{i} for $1 \leq i \leq 9$ in (2.10) as before. In this case one has

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{X^{s} \zeta(s+2 k-1)}{s(s+1) \zeta(s+2 k)} d s & =\frac{\zeta(2 k-1)}{\zeta(2 k)}-\frac{\zeta(2 k-2)}{\zeta(2 k-1)} \frac{1}{X}+\frac{1}{(2 k-3)(2 k-2) \zeta(2) X^{2 k-2}} \\
& +\mathrm{O}\left(\frac{1}{\left.X^{2 k-1} e^{c_{0}(\log X)^{3 / 5}(\log \log X)^{-1 / 5}}\right)}\right.
\end{aligned}
$$

Therefore, from (2.9) and the above equation, we obtain

$$
\begin{aligned}
S_{k, 1} & =\frac{|I| \zeta(2 k-1)}{2^{k-1} \zeta(2 k)}-\frac{|I| \zeta(2 k-2)}{2^{k-1} \zeta(2 k-1)} \frac{1}{X}+\frac{|I|}{2^{k-1}(2 k-3)(2 k-2) \zeta(2) X^{2 k-2}} \\
& +\mathrm{O}\left(\frac{1}{X^{2 k-1} e^{c_{0}(\log X)^{3 / 5}(\log \log X)^{-1 / 5}}}\right) .
\end{aligned}
$$

From (2.5), (2.6), (2.7) and above, we derive

$$
\begin{align*}
\frac{1}{X} \int_{X}^{2 X} S_{k} d Y & =\frac{|I| \zeta(2 k-1)}{2^{k-1} \zeta(2 k)}-\frac{C_{2 k, I}}{2^{k-1} \zeta(2 k)}+\frac{|I|\left(1-2^{2 k-3}\right)}{2^{3 k-4}(2 k-3)(2 k-2) \zeta(2) X^{2 k-2}} \\
& +\mathrm{O}\left(\frac{\log X}{X^{2 k-1}}\right) \tag{4.1}
\end{align*}
$$

In order to prove Theorem 1.2 and Theorem 1.3, it remains to estimate the remaining integral

$$
\frac{1}{X} \int_{X}^{2 X} S_{k}^{\prime} d Y
$$

for $k \geq 2$ in (2.4).
Proof of Theorem 1.2. For $k=2$ in (2.3), we have

$$
\begin{aligned}
|I| \mathcal{M}_{2, I}(Q) & =\sum_{j=1}^{N_{I}(Q)-1}\left(\frac{1}{2 q_{j}^{2}}+\frac{1}{2 q_{j+1}^{2}}\right)^{2} \\
& =\frac{1}{2} \sum_{q \leq Q} \frac{1}{q^{4}} \sum_{\substack{\alpha q<a \leq \beta q \\
(a, q)=1}} 1+\frac{1}{2} \sum_{j=1}^{N_{I}(Q)-1}\left(\frac{1}{q_{j} q_{j+1}}\right)^{2}+\left(-\frac{1}{4 q_{1}^{4}}+\frac{1}{4 q_{N_{I}(Q)}^{4}}\right) \\
& =S_{2}+S_{2}^{\prime}+R_{2}(I) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
|I| \mathcal{A}_{2, I}=\frac{1}{X} \int_{X}^{2 X} S_{2} d Y+\frac{1}{X} \int_{X}^{2 X} S_{2}^{\prime} d Y+R_{2}(I) \tag{4.2}
\end{equation*}
$$

From [3, Theorem 2], we obtain

$$
S_{2}^{\prime}=\frac{|I|}{2} S_{0}(Q)+\frac{C_{2, I}}{Q^{2}}+\mathrm{O}_{\epsilon}\left(Q^{-21 / 10+\epsilon}\right)
$$

where

$$
S_{0}(Q)=\frac{12}{\pi^{2} Q^{2}}\left(\log Q+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{1}{2}\right)+\mathrm{O}_{\epsilon}\left(\frac{\log ^{5 / 3} Q(\log \log Q)^{1+\epsilon}}{Q^{3}}\right)
$$

We remark in passing that the saving in the exponent above (from -2 to $-21 / 10$) was obtained by employing Weil type estimates ([7], [10], [15]) for Kloosterman sums.

Next, we have
$\frac{1}{|I| X} \int_{X}^{2 X} S_{2}^{\prime} d Y=\frac{3}{\pi^{2}} \frac{\log X}{X^{2}}+\left(\frac{3}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{3}{2}-\log 2\right)+\frac{C_{2, I}}{2|I|}\right) \frac{1}{X^{2}}+\mathrm{O}_{\epsilon}\left(X^{-21 / 10+\epsilon}\right)$.
Combining (4.1), (4.2) and above, we conclude that

$$
\begin{aligned}
\mathcal{A}_{2, I}= & \frac{|I| \zeta(3)-C_{4, I}}{2|I| \zeta(4)}+\frac{R_{2}(I)}{|I|}+\frac{3}{\pi^{2}} \frac{\log X}{X^{2}}+\left(\frac{3}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{5}{4}-\log 2\right)+\frac{C_{2, I}}{2|I|}\right) \frac{1}{X^{2}} \\
& +\mathrm{O}_{\epsilon}\left(X^{-21 / 10+\epsilon}\right) .
\end{aligned}
$$

This completes the proof of Theorem 1.2.
Remark. For the full interval $I=[0,1]$, observe that $R_{2}(I)=0$, and

$$
S_{2}^{\prime}=\frac{6}{\pi^{2} Q^{2}}\left(\log Q+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{1}{2}\right)+\mathrm{O}_{\epsilon}\left(\frac{\log ^{5 / 3} Q(\log \log Q)^{1+\epsilon}}{Q^{3}}\right)
$$

This along with (4.1) and (4.2) proves (1.5),

$$
\begin{aligned}
\mathcal{A}_{2,[0,1]}(X)= & \frac{\zeta(3)}{2 \zeta(4)}-\frac{1}{2}+\frac{3}{\pi^{2}} \frac{\log X}{X^{2}}+\frac{3}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{5}{4}-\log 2\right) \frac{1}{X^{2}} \\
& +\mathrm{O}_{\epsilon}\left(\frac{\log ^{5 / 3} X(\log \log X)^{1+\epsilon}}{X^{3}}\right)
\end{aligned}
$$

Proof of Theorem 1.3. For $k \geq 3$,

$$
\begin{aligned}
|I| \mathcal{M}_{k, I}(Q) & =\sum_{j=1}^{N_{I}(Q)-1}\left(\frac{1}{2 q_{j}{ }^{2}}+\frac{1}{2 q_{j+1}{ }^{2}}\right)^{k} \\
& =\sum_{q \leq Q} \frac{1}{q^{2 k}} \sum_{\substack{\alpha q<a \leq \beta q \\
(a, q)=1}} \frac{|I|}{2^{k-1}}+\frac{1}{2^{k}} \sum_{i=1}^{k-1}\binom{k}{i} \sum_{j=1}^{N_{I}(Q)-1}\left(\frac{1}{q_{j}^{i} q_{j+1}^{k-i}}\right)^{2}-\left(\frac{1}{2^{k} q_{1}^{2 k}}+\frac{1}{2^{k} q_{N_{I}(Q)}^{2 k}}\right) \\
& =S_{k}+S_{k}^{\prime}+R_{k}(I) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
|I| \mathcal{A}_{k, I}=\frac{1}{X} \int_{X}^{2 X} S_{k} d Y+\frac{1}{X} \int_{X}^{2 X} S_{k}^{\prime} d Y+R_{k}(I) \tag{4.3}
\end{equation*}
$$

For each $1 \leq i \leq k-1$, consider the sum

$$
S_{k, i}:=\sum_{j=1}^{N_{I}(Q)-1} \frac{1}{q_{j}^{2 i} q_{j+1}^{2 k-2 i}} .
$$

For any positive integer m, let \mathcal{L}_{m} denote the set

$$
\mathcal{L}_{m}:=\left\{\begin{aligned}
& l \in \mathbb{N}: l>m, Q-m<l \leq Q, \operatorname{gcd}(m, l)=1 \\
& \quad \bar{l}(\bmod m) \in(m \alpha, m \beta], \bar{m}(\bmod l) \in[l-l \beta, l-l \alpha)
\end{aligned}\right\} .
$$

Employing (2.2), we have

$$
S_{k, i}=\sum_{1 \leq r \leq Q} \sum_{q \in \mathcal{L}_{r}} \frac{1}{q^{2 i} r^{2 k-2 i}}+\sum_{1 \leq q \leq Q} \sum_{r \in \mathcal{L}_{q}} \frac{1}{q^{2 i} r^{2 k-2 i}}
$$

As noted earlier in Section 2, when q and r are denominators of neighbouring Farey fractions in F_{Q}, then $r+q>Q$. Therefore, $q>r$ implies $q>Q / 2$ and for $r>q$, we have $r>Q / 2$. Also,

$$
\sum_{q \in \mathcal{L}_{r}} 1=\mathrm{O}(\phi(r)) \text { and } \sum_{r \in \mathcal{L}_{q}} 1=\mathrm{O}(\phi(q)) .
$$

Using the above relations and the fact that for $x \geq 2$ and $a \geq 3$,

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \frac{\phi(n)}{n^{a}}=\frac{\zeta(a-1)}{\zeta(a)}+\mathrm{O}\left(x^{2-a}\right) \tag{4.4}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
S_{k, i} & \leq\left(\frac{2}{Q}\right)^{2 i} \sum_{r \leq Q} \frac{1}{r^{2 k-2 i}} \sum_{q \in \mathcal{L}_{r}} 1+\left(\frac{2}{Q}\right)^{2 k-2 i} \sum_{q \leq Q} \frac{1}{q^{2 i}} \sum_{r \in \mathcal{L}_{q}} 1 \\
& =\mathrm{O}\left(\frac{1}{Q^{2 i}} \sum_{r \leq Q} \frac{1}{r^{2 k-2 i}} \phi(r)\right)+\mathrm{O}\left(\frac{1}{Q^{2 k-2 i}} \sum_{q \leq Q} \frac{1}{q^{2 i}} \phi(q)\right) \\
& =\mathrm{O}\left(\frac{\log Q}{Q^{2 i}}\right)+\mathrm{O}\left(\frac{\log Q}{Q^{2 k-2 i}}\right) .
\end{aligned}
$$

Here on the far right side, the first $\log Q$ may be replaced by 1 unless $i=k-1$, and the second $\log Q$ may be replaced by 1 unless $i=1$. Hence,

$$
\frac{1}{X} \int_{X}^{2 X} S_{k}^{\prime} d Y=\frac{1}{X} \int_{X}^{2 X} \frac{1}{2^{k}} \sum_{i=1}^{k-1}\binom{k}{i} S_{k, i} d Y=\mathrm{O}\left(\frac{1}{X^{2}}\right)
$$

This combined with (4.1) and (4.3) yields

$$
\mathcal{A}_{k, I}=\frac{|I| \zeta(2 k-1)-C_{2 k, I}}{|I| 2^{k-1} \zeta(2 k)}+\frac{R_{k}(I)}{|I|}+\mathrm{O}_{k}\left(\frac{1}{X^{2}}\right) \quad \text { for } k \geq 3
$$

which completes the proof of Theorem 1.3.

Remark. In the case of the full interval $I=[0,1]$, note that $R_{k}([0,1])=0$, and

$$
\begin{aligned}
S_{k, i} & =\sum_{\substack{1 \leq q, r \leq Q \\
\operatorname{scd}(q, r)=1, q+r>Q}} \frac{1}{q^{2 i} r^{2 k-2 i}} \\
& =\sum_{\substack{1 \leq q, r \leq Q \\
\operatorname{gcd}(q, r)=1, r<Q / 2, q+r>Q}} \frac{1}{q^{2 i} r^{2 k-2 i}}+\sum_{\substack{1 \leq q, r \leq Q \\
\operatorname{gcd}(q, r)=1, q<Q / 2, q+r>Q}} \frac{1}{q^{2 i} r^{2 k-2 i}}+\sum_{\substack{1 \leq q, r \leq Q \\
\operatorname{gcd}(q, r)=1, q, r \geq Q / 2}} \frac{1}{q^{2 i} r^{2 k-2 i}} \\
& =: \Sigma_{1, i}+\Sigma_{2, i}+\Sigma_{3, i} .
\end{aligned}
$$

First we estimate the sum $\Sigma_{1, i}$ for $1 \leq i \leq k-2$. Note that in this case $r<Q / 2$, therefore $q>Q / 2$ since $r+q>Q$. Also, $\frac{1}{q}=\frac{1}{Q}\left(1+\mathrm{O}\left(\frac{Q-q}{Q}\right)\right)$ gives,

$$
\begin{aligned}
\Sigma_{1, i} & =\sum_{1 \leq r<Q / 2} \frac{1}{r^{2 k-2 i}}\left(\sum_{\substack{\operatorname{gcd}(q, r)=1 \\
Q-r<q \leq Q}} \frac{1}{Q^{2 i}}+\mathrm{O}\left(\frac{Q-q}{Q^{2 i+1}}\right)\right) \\
& =\sum_{1 \leq r<Q / 2} \frac{1}{r^{2 k-2 i}} \sum_{\substack{\operatorname{gcd}(q, r)=1 \\
Q-r<q \leq Q}} \frac{1}{Q^{2 i}}+\mathrm{O}\left(\frac{1}{Q^{2 i+1}} \sum_{1 \leq r<Q / 2} \frac{1}{r^{2 k-2 i-1}} \sum_{\substack{\operatorname{gcd}(q, r)=1 \\
Q-r<q \leq Q}} 1\right) \\
& =\frac{1}{Q^{2 i}} \sum_{1 \leq r<Q / 2} \frac{\phi(r)}{r^{2 k-2 i}}+\mathrm{O}\left(\frac{1}{Q^{2 i+1}} \sum_{1 \leq r<Q / 2} \frac{\phi(r)}{r^{2 k-2 i-1}}\right) .
\end{aligned}
$$

Using (4.4), for $1 \leq i \leq k-2$,

$$
\Sigma_{1, i}=\frac{\zeta(2 k-2 i-1)}{\zeta(2 k-2 i)} \frac{1}{Q^{2 i}}+\mathrm{O}\left(\frac{1}{Q^{2 i+1}}\right) .
$$

Using

$$
\sum_{n \leq x} \frac{\phi(n)}{n^{2}}=\frac{\log x}{\zeta(2)}+\mathrm{O}(1), \text { and } \sum_{n \leq x} \frac{\phi(n)}{n}=\mathrm{O}(x)
$$

we have, for $i=k-1$,

$$
\Sigma_{1, k-1}=\frac{1}{\zeta(2)} \frac{\log (Q / 2)}{Q^{2 k-2}}+\mathrm{O}\left(\frac{1}{Q^{2 k-2}}\right) .
$$

Similarly, for the sum $\Sigma_{2, i}$ for $2 \leq i \leq k-1$,

$$
\Sigma_{2, i}=\frac{\zeta(2 i-1)}{\zeta(2 i)} \frac{1}{Q^{2 k-2 i}}+\mathrm{O}\left(\frac{1}{Q^{2 k-2 i+1}}\right),
$$

and

$$
\Sigma_{2,1}=\frac{1}{\zeta(2)} \frac{\log (Q / 2)}{Q^{2 k-2}}+\mathrm{O}\left(\frac{1}{Q^{2 k-2}}\right) .
$$

Lastly, for $1 \leq i \leq k-1$,

$$
\Sigma_{3, i}=\mathrm{O}\left(\frac{1}{Q^{2 k-2}}\right)
$$

Therefore,

$$
S_{k}^{\prime}=\frac{k \zeta(2 k-3)}{2^{k-1} \zeta(2 k-2)} \frac{1}{Q^{2}}+\mathrm{O}\left(\frac{1}{Q^{3}}\right)
$$

This combined with (4.3) gives (1.6),

$$
\mathcal{A}_{k,[0,1]}=\frac{\zeta(2 k-1)}{2^{k-1} \zeta(2 k)}-\frac{1}{2^{k-1}}+\frac{k \zeta(2 k-3)}{2^{k} \zeta(2 k-2)} \frac{1}{X^{2}}+\mathrm{O}_{k}\left(\frac{1}{X^{3}}\right) .
$$

References

[1] J. S. Athreya, Y. Cheung, A Poincaré section for horocycle flow on the space of lattices, to appear in Int. Math. Res. Not. IMRN.
[2] A. D. Badziahin, A. K. Haynes, A note on Farey fractions with denominators in arithmetic progressions, Acta Arith. 147 (2011), 205-215.
[3] F. Boca, C. Cobeli and A. Zaharescu, A conjecture of R.R. Hall on Farey points, J. Reine Angew. Math. 535 (2001), 207-236.
[4] F. Boca and A. Zaharescu, The correlations of Farey fractions, J. London Math. Soc. 72 (2005), 25-39.
[5] C. Cobeli, M. Vâjâitu and A. Zaharescu, A density theorem on even Farey fractions, Rev. Roumaine Math. Pures Appl. 55 (2010), 447-481.
[6] C. Cobeli and A. Zaharescu, The Haros-Farey sequence at two hundred years, Acta Univ. Apulensis Math. Inform. 5 (2003), 1-38.
[7] T. Estermann, On Kloosterman's sum, Mathematika 8 (1961), 83-86.
[8] L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), 586-601.
[9] A. K. Haynes, A note on Farey fractions with odd denominators, J. Number Theory 98 (2003), 89-104.
[10] C. Hooley, An asymptotic formula in the theory of numbers, Proc. London Math. Soc. 7 (1957), 396-413.
[11] N. M. Korobov, Estimates of trigonometric sums and their applications, Uspehi Mat. Nauk 13 (1958), 185-192. (Russian)
[12] G. Tenenbaum, Introduction to analytic and probabilistic number theory, (Translated from the second French edition by C. B. Thomas), Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press, (Cambridge, 1995).
[13] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. (Edited and with a preface by D. R. Heath-Brown), The Clarendon Press, Oxford University Press (New York, 1986).
[14] I. M. Vinogradov, A new estimate for $\zeta(1+i t)$, Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 161-164. (Russian)
[15] A. Weil, On some exponential sums, Proc. Nat. Acad. U.S.A. 34 (1948), 204-207.
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA.

E-mail address: chaubey2@illinois.edu
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA.

E-mail address: amalik10@illinois.edu
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA.

E-mail address: zaharesc@illinois.edu

[^0]: 2010 Mathematics Subject Classification. 11B57, 11M06.
 Key words and phrases. Ford circles, Farey Fractions, Riemann zeta function, Kloosterman sums.

