
J. Math. Anal. Appl. 461 (2018) 1771–1785
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Zeros of normalized combinations of ξ(k)(s) on Re(s) = 1/2

Sneha Chaubey a, Amita Malik a,∗, Nicolas Robles a,1, Alexandru Zaharescu a,b

a Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801,
United States
b Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 
Bucharest, Romania

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 September 2016
Available online 27 December 2017
Submitted by R.M. Aron

Keywords:
Riemann ξ-function
Normalized combinations
Zeros
Critical line
Proportion
Mollifier

We consider functions of the form F�c,a,T (s) =
∑M

j=0
cj(−1)j

L2j ξ(a+2j)(s), with L =
log T

2π and cj real constants satisfying a certain constraint. We show that as T → ∞, 
the proportion of zeros of F�c,a,T (s) on the critical line Re(s) = 1/2 tends to 1.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let ζ(s) =
∑∞

n=1 n
−s for s = σ + it, σ > 1 and t ∈ R, denote the Riemann zeta-function. The analytic 

continuation of ζ(s) to a meromorphic function on the complex plane is achieved by the functional equation

ξ(s) = ξ(1 − s),

where, the Riemann ξ-function is defined as

ξ(s) = 1
2s(s− 1)π−s/2Γ

(
s

2

)
ζ(s).

For σ > 1, the Euler product is
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ζ(s) =
∏
p

(1 − p−s)−1,

where the product is taken over all the primes p. This links the Riemann zeta-function to multiplicative 
number theory [18, §1 and §2]. It is well understood from the work of Riemann and von Mangoldt that the 
non-trivial zeros ρ = β + iγ of ζ(s) are located inside the critical strip 0 < β < 1, see [18, §3]. From the fact 
that Γ has no zeros, and has simple poles at the trivial zeros of ζ(s), it follows that the zeros of ξ are the 
same as the non-trivial zeros of ζ. The Riemann hypothesis states that β = 1

2 .
Now let N(T ) denote the number of zeros of ξ(s) in the rectangle 0 < σ < 1 and 0 < t ≤ T , each zero 

counted with multiplicity. It is well-known that

N(T ) = T

2π

(
log T

2π − 1
)

+ 7
8 + S(T ) + O

(
1
T

)
, (1.1)

where

S(T ) = 1
π

arg ζ
(

1
2 + iT

)
� log T,

as T → ∞, see [18, §9]. Let us now define N (0)(T ) to be the number of zeros of ζ(s) with β = 1
2 on 0 < t ≤ T , 

where each zero is counted with multiplicity. We further set

κ = lim inf
T→∞

N (0)(T )
N(T ) .

In 1942, Selberg [15] showed that κ > 0, and later Levinson [10] showed that κ > 0.34. This was improved 
by Conrey [5] to κ > 0.4088. The history of these results and the current best bound can be found in [2,7,
9,11,14]. In particular, the current best bound κ > 0.4149 is presented in [11].

For a positive integer k, let ξ(k)(s) denote the kth derivative of the Riemann ξ-function. The Riemann 
hypothesis implies that for any positive integer k, all the zeros of ξ(k)(s) lie on the critical line. Suppose, in 
analogy to the above, that Nk(T ) denotes the number of zeros β + iγ of ξ(k)(s) in the rectangle 0 < β < 1
and 0 < γ ≤ T and that N (0)

k (T ) denotes the number of zeros of ξ(k)(s) with β = 1
2 and 0 < γ ≤ T . A result 

of Conrey [3] states that if T is positive and sufficiently large, L = log T
2π and U = TL−10, then

lim inf
T→∞

κk(T,U) = 1 + O(k−2) (1.2)

as k → ∞ and where

κk(T,U) =
N

(0)
k (T + U) −N

(0)
k (T )

Nk(T + U) −Nk(T ) .

Moreover, in [4], following work from Anderson [1] and Heath-Brown [8], Conrey also established corre-
sponding bounds for simple zeros. The coefficient of k−2 was computed in [3] for zeros with multiplicity and 
in [4] for simple zeros. It was remarked that the proportion of simple zeros was always a bit smaller than 
that of zeros with potential multiplicity. Nonetheless, from (1.2) as the order of the derivative of ξ increases, 
the proportion of zeros on the critical line increases to one. This strong result is due to Conrey [3].

Rezvyakova [12,13] computed the coefficients of k−2 in 2005 and her result holds uniformly for k in a 
certain range depending on T . In particular, Rezvyakova showed that the coefficient in front of k−2 could 
be taken to be e

2+2
16 for both simple as well as higher order zeros.

In the late 1990s, Selberg considered combinations of Dirichlet L-functions on the critical line. More 
specifically, let
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L(s, χ) =
∞∑

n=1
χ(n)n−s, σ > 1,

be a Dirichlet L-function of modulus q, where χ denotes a primitive character. The functional equation of 
L(s, χ) is given by

φ(s, χ) = επ−s/2qs/2Γ
(
s + a

2

)
L(s, χ) = φ(1 − s̄, χ),

where

a = 1 − χ(−1)
2 and |ε| = 1,

see e.g. [6]. If we have n distinct even characters (a similar result holds for odd characters) and form the 
function

F (s) =
n∑

j=1
cjεjq

s/2
j L(s, χj) (1.3)

for real cj �= 0, then

π−s/2Γ
(
s

2

)
F (s)

is real for s = 1
2 + it. In a series of unpublished notes [16], Selberg proved a beautiful result on the zeros of 

F (s). He derived a formula analogous to (1.1) for F (s), and also showed that N (0)(T, F ) > c(n)T log T for 
T > T0(F ), where c(n) is a positive constant that depends only on n. Moreover, in those lectures, there is 
mention of the conjecture that almost all the zeros have real part equal to 1

2 .
To state our results, we need to introduce some further notations. For a fixed positive integer M , let us 

fix a vector c = (c0, c1, · · · , cM ) such that cj ∈ R for all j and define

c∗ :=
M∑
j=0

(−1)jcj
4j . (1.4)

For all large numbers T , we set

L = log T

2π , and U = TL−10.

Then for each positive integer a, we consider the function

F�c,a,T (s) :=
M∑
j=0

cj(−1)j

L2j ξ(a+2j)(s). (1.5)

The presence of Lj has the effect of balancing the size of ξ(j)(s) in F�c,a,T (s), so that no one particular term 
dominates the entire combination. The constants appearing in the error terms may depend on the vector c
throughout the paper.

Inspired by the result of Selberg and the techniques of Levinson and Conrey, our object of study in this 
note is the number of zeros of F�c,a,T (s) on the critical line σ = 1

2 with imaginary part between T and T +U . 
With this in mind, we define the counting functions N�c,a(T ) and N (0)(T ) by
�c,a
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N�c,a(T ) =
∑

F�c,a,T (ρ)=0
0<Im ρ≤T

1, and N
(0)
�c,a (T ) =

∑
F�c,a,T (ρ)=0
Re ρ=1/2
0<Im ρ≤T

1.

Moreover, the proportion of zeros of F�c,a,T (s) in the above rectangle on the critical line is given by the 
quotient

κ�c,a,T :=
N

(0)
�c,a (T + U) −N

(0)
�c,a (T )

N�c,a(T + U) −N�c,a(T ) . (1.6)

Now we are ready to state our main result.

Theorem 1.1. For any positive integer M , fix a vector c = (c1, · · · , cM ) with real components such that c∗
as defined in (1.4) is nonzero. Also, for F�c,a,T (s) defined in (1.5), let κ�c,a,T be as in (1.6). Then

κ�c,a,T ≥ 1 − e2 + 2
16a2 + O�c

(
1
a3

)
, (1.7)

as a and T tend to infinity such that

a ≤ 1
2

log log T
log log log T .

Some comments are in order. The above result maintains the quality of the bounds and the uniformity 
achieved in [12,13]. The function F�c,a,T (s) satisfies a functional equation given by

F�c,a,T (s) = (−1)aF�c,a,T (1 − s). (1.8)

Moreover if all the zeros of F�c,a,T (s) satisfy σ2 ≤ Re(s) ≤ σ1 for some σ1, σ2 ∈ R, then so do the zeros of 
all its higher order derivatives. This follows from the arguments developed in [12].

In particular, when the linear combination in (1.5) consists of a single term, then under the Riemann 
hypothesis, all derivatives of ξ(s) will also have all their zeros on the critical line (see [3] and [12, Lemma 3]). 
The computations to follow show that the techniques from [3,10,12] can be applied in the same way to the 
function F�c,a,T (s) defined in (1.5), and the proportion of zeros on the critical line tends to 1 in this case as 
well, even if, evidently, such functions F�c,a,T (s) in general do not satisfy the Riemann hypothesis.

2. Zero free region, N�c,a(T ) and an inequality for κ�c,a,T

We first obtain a zero free region for our function F�c,a,T (s) and then we find an asymptotic formula for 
the number of zeros N�c,a(T ). Observe that the zeros of F�c,a,T (s) are the same as the zeros of the function

F1(s) := ia

La

M∑
j=0

cj(−1)j

L2j ξ(a+2j)(s)

and so we use the above function F1(s) to perform our computations. Let s = σ + it with σ > 1 and 
T ≤ t ≤ T + U . For some β�c 	 a, we now prove that

F�c,a,T (s) �= 0 whenever σ�c > β�c or σ�c < 1 − β�c.

From equation (20) of [12], we have
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F1(s) = H(s)
M∑
j=0

cji
a+2j

La+2j

(
1
2 log s

2π

)a+2j

(1 + Ra+2j,�c(s)), (2.1)

where H(s) = s
2 (s − 1)π−s/2Γ 

(
s
2
)
, and the remainder term Ra+2j,�c is given by

Ra+2j,�c(s) = ζ(s) − 1 +
a+2j∑
l=1

(
a + 2j

l

)(
1
2 log s

2π

)−l

ζ(l)(s)
(

1 + O

(
1

log2 t

))
+ O

(
1

log2 t

)
.

By equation (23) of [12], |Ra+2j,�c| < 1/2 for β�c 	 a. Using this in (2.1), we conclude that

F1(s) �= 0 for Re(s) > β�c,

which in turn implies from our earlier discussion about the zeros of F1(s) and F�c,a,T being the same that

F�c,a,T (s) �= 0 for Re(s) > β�c. (2.2)

The functional equation (1.8) yields,

F�c,a,T (s) = (−1)aF�c,a,T (1 − s) �= 0 for Re(s) < 1 − β�c. (2.3)

This completes the argument for F�c,a,T (s) �= 0 for Re(s) > β�c or when Re(s) < 1 − β�c.
In a standard way and using the arguments above, one can compute N�c,a(T +U) −N�c,a(T ), the number 

of zeros with imaginary part between T and T + U with U = T/L10, as claimed in the lemma below for 
which we omit the details. Note that it is enough to count the zeros in the rectangle with vertices as β�c+ iT , 
1 − β�c + iT , β�c + i(T + U), and 1 − β�c + i(T + iU). More precisely, one has the following.

Lemma 2.1. For T 	 0, and 0 < U ≤ T , we have

N�c,a(T + U) −N�c,a(T ) =
(
T + U

2π log T + U

2π − T + U

2π

)
−

(
T

2π log T

2π − T

2π

)
+ O�c (a log T ) .

This implies

N�c,a(T + U) −N�c,a(T ) = UL

π
+ O�c (aU) .

We now state an inequality satisfied by κ�c,a,T involving zeros of a certain arithmetic function V (s) which 
can be proved using Lemma 2.1 and arguments from [12].

Lemma 2.2. With the notations as above, one has

κ�c,a,T ≥ 1 − 4π
UL

N + O�c

( a

U

)
,

where N is the number of zeros of V (s) inside the rectangular contour R = [1/2 + iT, B + iT, B + i(T +U),
1/2 + i(T + U)] of the function V (s), for some B such that B > βc defined as

V (s) = 2a

H(s)

M∑
j=0

cji
2j

La+2j

( a+2j∑
m=0

(
a + 2j
m

)
H(m)(s)

∫
0↙1

z−seπiz
2

2i sin(πz) (− log z)a+2j−m

(
1 − log z

L

)
dz

+
a+2j∑
m=0

(−1)m
(
a + 2j
m

)
H(m)(1 − s)

∫
0↘1

zs−1e−πiz2

2i sin(πz) (log z)a+2j−m log z
L

)
dz, (2.4)
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where, as before H(s) is given by

H(s) = s(s− 1)
2 π−s/2Γ

(
s

2

)
.

The notation 
∫
0↘1 denotes an integral along a line directed from the upper right to lower left which is 

inclined at an angle of π/4 to the real axis and intersects it between 0 and 1, see [17] and [18, §2.10].

3. An upper bound for N

In this section we prove the following lemma which gives an upper bound on N , the number of zeros of 
V (s), defined in (2.4), inside the contour.

Lemma 3.1. Let N be as in the previous lemma. Then the following inequality holds

N ≤ UL

2π log
(
I

U

)
+ O�c (aU) .

Here

I = 1
|c∗|

T+U∫
T

|ψB(σa + it) + χ∗ψD(σa + it)|dt + O

(
U

L9/2

)
,

with

χ∗(t) = e
1+i

(
π
4 −t log

(
t

2πe
))
, σa = 1/2 − 1/L,

B(s) =
M∑
j=0

CjBj(s); D(s) =
M∑
j=0

CjDj(s)

Cj := cj(−1)j

4j , Bj(s) :=
∑

n≤
√

T
2π

(
1 + πi

2L − 2 logn
L

)a+2j (
1 − log n

L

)
n−s,

Dj(s) :=
∑

n≤
√

T
2π

log n
L

(
2 logn

L
+ πi

2L − 1
)a+2j

ns−1,

and

ψ(s) =
∑
n≤y

a(n)
ns

with a(n) = μ(n)
n1/Lh

(
log y/n
log y

)
,

and h is some polynomial satisfying h(0) = 0 as well as h(1) = 1 and here y = T 1/2L−20.

Proof. Notice that N , the number of zeros of V (s), as in (2.4), inside the contour R, is less than the number 
of zeros of V (s)ψ(s) therein where ψ(s) is a mollifying function which on average approximates the behavior 
of inverse of the function F�c,a,T (s). This mollifier is defined in the following way

ψ(s) =
∑ a(n)

ns

n≤y



S. Chaubey et al. / J. Math. Anal. Appl. 461 (2018) 1771–1785 1777
where

a(n) = μ(n)
n1/Lh

(
log y/n
log y

)

and h is a polynomial satisfying h(0) = 0 and h(1) = 1 to be chosen later. Therefore to bound N , we 
bound the number of zeros of 1

c∗V (s)ψ(s). For this we shall apply Littlewood’s lemma [10] to 1
c∗V (s)ψ(s)

on the rectangular contour Ω = [σa + iT, σ1 + iT, σ1 + i(T + U), σa + i(T + U)], where σ1 = logL/ log 2, 
σa = 1/2 − 1/L. Littlewood’s lemma gives

2πi
∑

ρ=β+iγ

(β − σa) = −
∮
Ω

log
(

1
c∗

ψ(s)V (s)
)
ds, (3.1)

where the summation is performed over all the zeros ρ of V (s)ψ(s) inside Ω and on its upper side. Using 
estimates from [12, §3] we get approximations for our integral in (3.1) along the right and horizontal sides 
of the contour Ω. In doing so, we note that

∣∣∣∣ 1
c∗

V (s)ψ(s) − 1
∣∣∣∣ = O�c

( a

L

)

on the right side of the contour. This implies that the change in argument of 1
c∗

V (s)ψ(s) is bounded by π

in absolute value on this side. Now the number of zeros of the product V (s)ψ(s) in a larger domain Ω is 
greater than or equal to the number of zeros of V (s) in a smaller domain R, the imaginary part of the left 
hand side of (3.1) is at least N

L
. Putting all these facts together, we conclude

N ≤ L

2π

T+U∫
T

log
∣∣∣∣ 1
c∗

ψ(σa + it)V (σa + it)
∣∣∣∣ dt + O�c (aU) .

Finally using Jensen’s inequality, we get an expression for the number of zeros in terms of an integral as

N ≤ UL

2π log
(
I

U

)
+ O�c (aU) , (3.2)

where

I = 1
|c∗|

T+U∫
T

|ψ(σa + it)V (σa + it)|dt. (3.3)

As in [12], we first write V (σa + it) as

V (σa + it) = B̃(σa + it) + χ(σa + it)D̃(σa + it),

where

B̃(σa + it) = B(σa + it)

+
M∑
j=0

cji
a+2j

2a+2j

( ∑
n≤

√
T

((
log(t/2π)

L
+ πi

2L − 2 logn
L

)a+2j

−
(

1 + πi

2L − 2 logn
L

)a+2j )
2π
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×
(

1 − logn
L

)
n−σa−it

)

+
M∑
j=0

cji
a+2j

2a+2j

( ∑
√

T
2π≤n≤

√
t

2π

(
log(t/2π)

L
+ πi

2L − 2 logn
L

)a+2j (
1 − logn

L

)
n−σa−it

)

+ O(aT−3/4), (3.4)

with

B(σa + it) =
M∑
j=0

Cj ·Bj :=
M∑
j=0

cji
2j

22j ·
( ∑

n≤
√

T
2π

(
1 + πi

2L − 2 logn
L

)a+2j (
1 − log n

L

)
n−σa−it

)
,

and D̃(σa + it) is the sum

M∑
j=0

cji
2j2a

La+2j

∑
n≤

√
t

2π

(
log n− 1

2 log
(

1 − σa − it

2π

)
+ O

(
1

|1 − t|

))a+2j ( logn
L

)
nσa+it−1.

Here

χ(s) = H(1 − s)
H(s) .

Let

D(σa + it) =
M∑
j=0

Cj ·Dj :=
∑

n≤
√

T
2π

cji
2j

22j · logn
L

(
2 logn

L
+ πi

2L − 1
)a+2j

nσa+it−1

Using the above notations in (3.3) we obtain

I = 1
|c∗|

T+U∫
T

|ψ(σa + it)V (σa + it)| dt

= 1
|c∗|

T+U∫
T

|ψB(σa + it) + χ∗ψD(σa + it)|dt + O

(
U

L9/2

)
,

where

χ∗(t) = e1+i(π
4 −t log( t

2πe )).

Thus using the above inequality and (3.2), the number of zeros is bounded by

N ≤ UL

2π log
(
I

U

)
+ O�c (aU) ,

which proves the lemma. �
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4. Proportion of zeros on the critical line

We now apply the results of the previous two sections to obtain the proportion of zeros of F�c,a,T (s) on 
Re(s) = 1

2 . As we shall see this proportion tends to 1, at a speed independent of the vector c. We start by 
denoting

J

U
:= 1

|c∗|2
M∑

j,l=0

CjClAj,l, (4.1)

where

Aj,l = 1
U

T+U∫
T

(Bj + χ∗Dj)ψ(σa + it)(Bl + χ∗Dlψ(σa + it))dt. (4.2)

As in [3] and [12], using the Cauchy–Schwarz equality and Lemma 3.1, we conclude that

N ≤ UL

4π log
(
J

U

)
+ O�c (aU) . (4.3)

Let

φk(x) := (1 − x)
(

1 − 2x + πi

2L

)a+2k

for 0 ≤ k ≤ M.

Using simplifications as in [12] we express the integral in (4.2) as the sum

Aj,l =
∑

n3,n4≤y

a(n3)a(n4)
(n3n4)2σa

m∗2σa

2a+2j+2l+2∑
n=0

(−1)n

2n

( n∑
v=0

(
n

v

)
φj

(v)
(

1
L

log
(
xn4

m∗

))

× φl
(n−v)

(
1
L

log
(
xn3

m∗

))
x−2a

)∣∣∣∣
T
2π

m∗2
n3n4

1
+ O�c

( a

L

)
, (4.4)

with m∗ = gcd(n3, n4). Let

Ha =
1∫

0

h2(x)dx and H ′
a =

1∫
0

h′ 2(x)dx,

where the polynomial h(x) satisfying h(0) = 0 and h(1) = 1 is chosen as

h(x) =
b̃∑

r=ã

c̃rx
r, (4.5)

such that c̃r ∈ R and ã = a − X ≤ a ≤ a + 2M ≤ a + X = b̃ for some constant X = X(M). Using the 
Taylor series expansion of φ(v)

j (x) and φ(n−v)
l (x) at x = 1 and at x = 0, and generalizations of Lemmas 18 

and 20 from [12], (4.4) becomes
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Aj,l = 1
2

j+l+2∑
n=0

(−1)n

2n

(
e2(φj(x)φl(x))(n)

∣∣∣∣
x=1

− (φj(x)φl(x))(n)
∣∣∣∣
x=0

)(
Ha

2 + 2H ′
a

)

+ 1
2

j+l+2∑
n=0

(
e2(φj(x)φl

′(x) + φj
′(x)φl(x))(n)

∣∣∣∣
x=1

− (φj(x)φl
′(x) + φj

′(x)φl(x))(n)
∣∣∣∣
x=0

)
Ha

2

+ 1
2

j+l+2∑
n=0

(−1)n

2n

(
e2(φj

′(x)φ′
l(x))(n)

∣∣∣∣
x=1

− (φj
′(x)φl

′(x))(n)
∣∣∣∣
x=0

)
Ha

2

+
b̃∑

r,m=ã

c̃r c̃mU + O((2a)2a+4L−1 log5 L),

where U is defined by

U := e2

2

j+l+2∑
n=0

(−1)n

2n ×

×
(

(φj(x))φl(x))(n)
∣∣∣∣
x=1

+ (φj(x))φl
′(x))(n)

∣∣∣∣
x=1

r

r + m
+ (φj

′(x))φl(x))(n)
∣∣∣∣
x=1

m

r + m

)

+ 1
2

j+l+2∑
n=0

(−1)n

2n

×
(

(φj(x))φl(x))(n)
∣∣∣∣
x=0

+ (φj(x))φl
′(x))(n)

∣∣∣∣
x=0

r

r + m
+ (φj

′(x))φl(x))(n)
∣∣∣∣
x=0

m

r + m

)
. (4.6)

Lemma 28 from [12] and some simplifications yield

Aj,l = 1
2

⎛
⎝(

4H ′
a −Ha

)
Φa + Ha (Φ′

a − 1) +
b̃∑

r,m=ã

2c̃r c̃mU

⎞
⎠ + O�c

(
(2a)2a+4 log5 L

L

)
, (4.7)

where

Φa =
1∫

0

e2xφ2(x)dx, and Φ′
a =

1∫
0

e2xφ′ 2(x)dx,

where

φ(x) =
M∑
j=0

(1 − x)(1 − 2x)a+2j .

We write a formula for Φa using repeated integration by parts and obtain,

1∫
0

e2x(1 − x)2(1 − 2x)2a+2j+2l dx

= 1
2(2a + 2j + 2l) − 1

2(2a + 2j + 2l)2 + (e2 + 1)
4(2a + 2j + 2l)3 + O

(
a−4) . (4.8)

For Φ′
a, we have
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Φ′
a = 2(a + 2j)(a + 2l)

2a + 2j + 2l
+ 2(a + 2j)(a + 2l)

(2a + 2j + 2l)2 + 1

+
(

(a + 2j)(a + 2l)
(2a + 2j + 2l)2 + 1 + (a + 2j)(a + 2l)(e2 − 1)

(2a + 2j + 2l)2

)
1

2a + 2j + 2l

+
(
−2(3e2 + 1)(a + 2j)(a + 2l)

(2a + 2j + 2l)2 + e2 − 1 + 4(a + 2j)(a + 2l)
(2a + 2j + 2l)2

)
1

2(2a + 2j + 2l)2 + O(a−3). (4.9)

We now expand the terms involving r and m in (4.7), and substitute (4.8), (4.9) in (4.7) to obtain

Aj,l =
b̃∑

r,m=ã

c̃r c̃mU + (rm + (a + 2j)(a + 2l))
(2a + 2j + 2l)(r + m) + (rm− (a + 2j)(a + 2l))

(2a + 2j + 2l)(r + m)

(
1

r + m
− 1

2a + 2j + 2l

)

+ rm

(2a + 2j + 2l)(r + m)3 − rm

(2a + 2j + 2l)2(r + m)2 + (e2 + 1)rm
2(2a + 2j + 2l)3(r + m)

− 1
4(2a + 2j + 2l)(r + m) + (a + 2j)(a + 2l)

(2a + 2j + 2l)(r + m)3 −
(

2jl
(2a + 2j + 2l)2 + 1

)
1

2(r + m)2

+
(

2(a + 2j)(a + 2l)
(2a + 2j + 2l)2 + 1 + (a + 2j)(a + 2l)(e2 − 1)

(2a + 2j + 2l)2

)
1

2(2a + 2j + 2l)(r + m)

+ 1
2(r + m)2

)
+ O�c

(
(2a)2a+4 log5 L

L

)
. (4.10)

We compute the term corresponding to U in Aj,l separately below.

b̃∑
r,m=ã

c̃r c̃mU = e2

2

b̃∑
r=ã

c̃2r

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x)φl(x))(n) + 1

2(φj(x)φl
′(x))(n) + (φj

′(x)φl(x))(n)
)∣∣∣∣

x=1

+ e2

2

b̃∑
r=ã

b̃∑
m=ã
m	=r

c̃r c̃m

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) + r

r + m
(φj(x)φl

′(x))(n) + m

r + m
(φj

′(x)φl(x))(n)
)∣∣∣∣

x=1

+ 1
2

b̃∑
r=ã

c̃2r

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) + 1
2((φj(x)φl

′(x))(n) + (φj
′(x)φl(x))(n)

)∣∣∣∣
x=0

+ 1
2

b̃∑
r=ã

b̃∑
m=ã
m	=r

c̃r c̃m

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) + r

r + m
(φj(x)φl

′(x))(n) + m

r + m
(φj

′(x)φl(x))(n)
) ∣∣∣∣

x=0
. (4.11)

Using Lemmas 1 and 29 from [12], we combine first and third terms together, and pair the second and 
fourth terms to yield
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b̃∑
r,m=ã

c̃r c̃mU = 1
2

b̃∑
r=ã

c̃2r + 1
2

b̃∑
r=ã

b̃∑
m=ã
m	=r

c̃r c̃m + O�c

( a

L

)

= 1
2

( b̃∑
r=ã

c̃r

)2

+ O�c

( a

L

)
= 1

2
+ O�c

( a

L

)
. (4.12)

Next, we focus on the sums not involving U occurring in (4.10). Let r = a +u, m = a +v for −X ≤ u, v ≤ X. 
Note that

b̃∑
r,m=ã

c̃r c̃m
(rm− (2j + a)(2l + a))
(2j + 2l + 2a)(r + m)

(
1

r + m
− 1

2j + 2l + 2a

)

=
b̃∑

r,m=ã

c̃r c̃m

(
(a + u)(a + v) − (2j + a)(2l + a)

(2j + 2l + 2a)(2a + u + v)

(
1

2a + u + v
− 1

2a + 2j + 2l

))

=
b̃∑

r,m=ã

c̃r c̃m

(
a2(1 + u

a )(1 + v
a ) − a2(1 + 2j

a )(1 + 2l
a )

4a2(1 + j+l
a )(1 + u+v

2a )

)
1
2a

(
1

1 + u+v
2a

− 1
1 + j+l

a

)

= O�c

(
1
a3

)
, (4.13)

by expanding with the use of geometric series. Similarly

b̃∑
r,m=ã

c̃r c̃m

(
rm

(2j + 2l + 2a)(r + m)3 − rm

(2j + 2l + 2a)2(r + m)2 + (e2 + 1)rm
(2j + 2l + 2a)32(r + m)

− 1
4(2j + 2l + 2a)(r + m) + (2j + a)(2l + a)

(2j + 2l + 2a)(r + m)3 −
(

2(2j + a)(2l + a)
(2j + 2l + 2a)2 + 1

)
1

2(r + m)2

+
(

2(2j + a)(2l + a)
(2j + 2l + 2a)2 + 1 + (2j + a)(2l + a)(e2 − 1)

(2j + 2l + 2a)2

)
1

2(2j + 2l + 2a)(r + m)

+ 1
2(r + m)2

)
+ O�c

(
1
a3

)
=

b̃∑
r,m=ã

c̃r c̃m

(
e2 + 2

16

)
1
a2 + O�c

(
1
a3

)

= e2 + 2
16

1
a2 + O�c

(
1
a3

)
. (4.14)

Note that we have employed h(1) = 1 in (4.10), (4.12), (4.13) and (4.14). As before substituting r = a + u, 
m = a + v for −X ≤ u, v ≤ X.

b̃∑
r,m=ã

c̃r c̃m(rm + (2j + a)(2l + a))
(2j + 2l + 2a)(r + m) =

∑
−X≤u,v≤X

c̃a+uc̃a+v
2a2 + a(u + v + 2j + 2l) + (uv + 4jl)

4a2(1 + 2j+2l
2a )(1 + u+v

2a )
.

Expanding the denominators using power series, we see that the above expression reduces to

∑
−X≤u,v≤X

c̃a+uc̃a+v

(
1
2 +

(
−(u + v)(2j + 2l)

4 + uv + 4jl
4

)
1
a2

)
+ O�c

(
1
a3

)
.

Simplifying this term by term, we obtain
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b̃∑
r,m=ã

c̃r c̃m(rm + (2j + a)(2l + a))
(2j + 2l + 2a)(r + m) = 1

2
∑

−X≤u,v≤X

c̃a+uc̃a+v + jl

a2

∑
−X≤u,v≤X

c̃a+uc̃a+v

− (j + l)
2a2

∑
−X≤u,v≤X

c̃a+uc̃a+v(u + v)

+ 1
4a2

∑
−X≤u,v≤X

c̃a+uc̃a+vuv + O�c

(
1
a3

)
. (4.15)

Now let

S =
∑

−X≤t≤X

tc̃a+t. (4.16)

Since h(1) = 1 equation (4.15) becomes

b̃∑
r,m=ã

c̃r c̃m(rm + (2j + a)(2l + a))
(2j + 2l + 2a)(r + m) = 1

2 + (4jl − 2(j + l)S + S2) 1
4a2 + O�c

(
1
a3

)
. (4.17)

Collecting the simplified expressions obtained in (4.12), (4.13), (4.14) and (4.17) and substituting them in 
the expression for Aj,l as in (4.2), we arrive at

Aj,l = 1 + (4jl − 2(j + l)S + S2) 1
4a2 +

(
e2 + 2

16

)
1
a2 + O�c

(
1
a3

)
.

Also recall from (4.1) that

J

U
= 1

|c∗|2
M∑

j,l=0

CjClAj,l.

On substituting Aj,l here and using the definition of c∗, we obtain

J

U
= 1 + e2 + 2

16a2 +
(

4
M∑

j,l=0

CjCljl − 2
M∑

j,l=0

CjCl(j + l)S + |c∗|2S2
)

1
|c∗|24a2

+ O�c

(
1
a3

)
. (4.18)

Here we would like to point out to the reader that although one has flexibility in choosing S, the expression 
inside the parenthesis on the right side of (4.18) cannot be decreased below zero. For example, it is 1/4
when one considers F�c,a,T (s) = ξ(a)(s) and chooses h(x) in (4.5) to be x

a−1

2 + xa

2 , in which case

J

U
= 1 + e2 + 3

16a2 + O�c

(
1
a3

)
.

For F�c,a,T (s) = ξ(a)(s) + ξ(a+2)(s)/L2 and h(x) = xa−2

4 + xa

2 + xa+1

4 , one obtains S = −1
4 , C0 = 1, C1 = 1/4, 

c∗ = 5/4 and the coefficient attached to 1
a2 in J

U in (4.18) becomes e
2+2
16 + 169

1600 .
The minimum of the expression inside the parenthesis on the right side of (4.18) is actually zero, and is 

attained at
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S = 1
|c∗|2

M∑
j,l=0

CjCl(j + l). (4.19)

Let us also remark that our mollifier does allow one to arrange for such a condition to hold: there exist 
coefficients c̃a+t such that the minimum is attained and such that c̃a+t also satisfies

∑
−X≤t≤X

˜ca+t = 1. (4.20)

For example, if one chooses constants c̃a+t = 0 for −X ≤ t ≤ −2, c̃a = 1, c̃a+t = 0 for 2 ≤ t ≤ X, and

c̃a+1 = 1
2|c∗|2

M∑
j,l=0

CjCl(j + l), c̃a−1 = −1
2|c∗|2

M∑
j,l=0

CjCl(j + l),

then

S =
X∑

t=−X

tc̃a+t = −c̃a−1 + c̃a+1 = − −1
2|c∗|2

M∑
j,l=0

CjCl(j + l) + 1
2|c∗|2

M∑
j,l=0

CjCl(j + l)

= 1
|c∗|2

M∑
j,l=0

CjCl(j + l).

Therefore, in this example, with the choice of coefficients c̃j as above, the minimum is attained and (4.20)
also holds true.

Finally, we compute the expression for J/U in (4.18) by substituting the minimum value of S from (4.19)
in (4.18) and arrive at

J

U
= 1 + e2 + 2

16a2 + 1
a2|c∗|2

M∑
j,l=0

CjCljl −
1

4a2

(
1

|c∗|2
M∑

j,l=0

CjCl(j + l)
)2

+ O�c

(
1
a3

)
.

The two sums involving Cj , Cl cancel each other since

(
1

|c∗|2
M∑

j,l=0

CjCl(j + l)
)2

=
(

1
|c∗|2

M∑
j,l=0

jCjCl + 1
|c∗|2

M∑
j,l=0

lCjCl

)2

= 4
|c∗|4

( M∑
j,l=0

jCjCl

)2

= 4
|c∗|4

( M∑
j=0

jCj

)2( M∑
l=0

Cl

)2

= 4(−1)a

|c∗|4
( M∑

j=0
jCj

)2

|c∗|2 = 4(−1)a

|c∗|2
( M∑

j=0
jCj

)2

= 1
|c∗|2

M∑
j,l=0

4CjCljl.

Consequently, this yields
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J

U
= 1 + e2 + 2

16a2 + O�c

(
1
a3

)
.

Finally, by putting (4.3), Lemmas 2.2 and 3.1 together, we complete the proof of Theorem 1.1.

Remark 4.1. Using the same techniques, one can get a similar result on the proportion of simple zeros of 
F�c,a,T (s) on the critical line.
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