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Abstract. In this paper, we prove several new parity results for broken k-diamond parti-
tions on certain types of arithmetic progressions. We also obtain bounds for the parity of
broken k-diamond partitions and more general colored partitions.

1. Introduction

Ramanujan’s beautiful work on congruences for the partition function has inspired many
mathematicians to further explore this area. Andrews, Paule and Riese [2] introduced “par-
tition diamonds” - a new variation of plane partitions studied by MacMahon in his book
“Combinatory Analysis” [10]. For plane partitions, the non-negative integer parts ai satisfy
the relations

a1 ≥ a2, a1 ≥ a3, a2 ≥ a4 and a3 ≥ a4. (1.1)
Pictorially, one can represent this as a directed graph with the arrows describing the

relation “≥”. The parts ai are placed at the vertices of a square and the arrow pointing from
ai to aj depicts the relation ai ≥ aj. For instance, Figure 1 represents the relations given in
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Figure 1

(1.1). For the generating function for such partitions, MacMahon considered the generating
series ∑

a1,a2,a3,a4

xa11 x
a2
2 x

a3
3 x

a4
4 =

1− x21x2x3
(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)

,

the sum being extended to all quadruples satisfying (1.1). Hence after substituting q to each
xj, the closed form of the generating function of the number A(n) of such quadruples is given
by

∞∑
n=0

A(n)qn =
1

(1− q)(1− q2)2(1− q3)
(|q| < 1).

Instead of using squares as building blocks of the chain, Andrews and Paule [1] considered
k-elongated diamonds of length m. A k- elongated diamond of length 1 and length m are
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shown below in Figure 2 and Figure 3 respectively. A broken k-diamond [Figure 4] consists
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of two separated k-elongated diamond partitions, each of length m, where in one of them
the source (vertex with no incoming arrows) is deleted. For an integer k ≥ 0, the number
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of broken k-diamond partitions of a non-negative integer n is denoted by ∆k(n) and its
generating function in [1] is given by

∞∑
n=0

∆k(n)qn =
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)
, |q| < 1. (1.2)

Throughout the paper, we assume |q| < 1. Andrews and Paule [1] made the following
conjectures about congruences satisfied by the broken 2-diamond partitions. For all non-
negative integers n,

∆2(10n+ 2) ≡ 0 (mod 2), (1.3)
∆2(25n+ 14) ≡ 0 (mod 5), (1.4)

and
∆2(625n+ 314) ≡ 0 (mod 52). (1.5)
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Hirschhorn and Sellers [9] proved (1.3) and more, including the following congruences. For
all non-negative integers n,

∆1(4n+ 2) ≡ 0 (mod 2),

∆1(4n+ 3) ≡ 0 (mod 2),

and
∆2(10n+ 6) ≡ 0 (mod 2).

Conjecture (1.4) was proved by Chan [6] who also gave a more general result involving
higher powers of 5 in the modulus. Radu and Sellers [11] extended this list of congruences
significantly. Their congruences concerned the parity of broken k-diamond partitions along
arithmetic progressions of the form an+ b, where a = 4k + 2.

In this paper, we discuss bounds on the parity of broken k-diamond partitions and prove
congruences modulo 2, including some ones for arithmetic progressions of the form M(2k +
1)n + b for M = 4 and M = 8. Notice that the case M = 2 has been considered by Radu
and Sellers [11].

We now state our main results where simultaneous congruences ∆k(an+bi) ≡ 0 (mod 2),
1 ≤ i ≤ l are denoted as ∆k(an+ b1, b2, . . . , bl) ≡ 0 (mod 2).

Theorem 1.1. For any non-negative integer n,

∆9(76n+ 11, 15, 27, 39, 43, 47, 51, 59, 67) ≡ 0 (mod 2), (1.6)
∆15(124n+ 10, 26, 30, 38, 42, 50, 54, 58, 62, 78, 86, 94, 98, 102, 122) ≡ 0 (mod 2). (1.7)

Theorem 1.2. For any non-negative integer n,

∆12(10n+ 9) ≡ 0 (mod 2).

Theorem 1.3. For any non-negative integer k, and for N large enough,

# {n ≤ N : ∆k(n) is odd} ≥ N
1
2
− c

log logN ,

for some positive real number c.

For k, a,N ∈ N and b ∈ Z≥0, define ρk(a, b,N) to be the density of even values of ∆k(an+b)
for n up to N , that is,

ρk(a, b,N) :=
# {n ∈ {0, ..., N − 1} : ∆k(an+ b) ≡ 0 (mod 2)}

N
.

For example, from (1.6), ρ9(76, 11, N) = 1 for each N .
A natural question that arises is whether more generally the limit lim

N→∞
ρk(a, b,N) exists

for any choice of k, a and b.
Question: Is it true that for any k, a ∈ N and any non-negative integer b, the limit
lim
N→∞

ρk(a, b,N) exists?
In favor of a positive answer, in Table 1, we present the values of ρk(1, 0, N) for 0 ≤ k ≤
10, a = 1, b = 0, and some values of N up to 20, 000.



4 SNEHA CHAUBEY, WEI CHENG, AMITA MALIK, AND ALEXANDRU ZAHARESCU

k N : 1000 2000 5000 10000 20000

0 0.7220 0.7355 0.7476 0.7459 0.7498

1 0.7410 0.7455 0.7476 0.7488 0.7518
2 0.5770 0.5840 0.5864 0.5922 0.5927
3 0.7510 0.7720 0.7926 0.8076 0.8172
4 0.4960 0.5015 0.4998 0.5059 0.5030
5 0.7510 0.7640 0.7816 0.7900 0.7958
6 0.6190 0.6270 0.6066 0.6135 0.6174
7 0.6230 0.6450 0.6634 0.6773 0.6864
8 0.7280 0.7240 0.7280 0.7378 0.7441
9 0.6710 0.6825 0.7002 0.7120 0.7203
10 0.4870 0.4860 0.4944 0.4930 0.4999

Table 1. Values of ρk(1, 0, N)

2. Congruences for ∆k((8k + 4)n+ b)

In this section, we consider the congruences for broken k-diamond partitions along arith-
metic progressions an+ b with modulus a = 8k+ 4. The arithmetic progressions in Theorem
1.1 are of this form for k = 9 and k = 15. To prove Theorem 1.1, we use the following
result which relates congruences along (8k + 4)n + b, for broken k-diamond partitions and
(2k + 1)-core partitions. For the definitions and more on t-core partitions, the reader is
referred to [3].

Lemma 2.1. For n, b, k ∈ N,

∆k((8k + 4)n+ b) ≡ 0 (mod 2) if and only if a2k+1((8k + 4)n+ b) ≡ 0 (mod 2),

where at(n) denotes the number of t-core partitions of n.

Proof. This follows immediately from Corollary 1.2 in [11]. �

Therefore, in order to obtain the congruences in Theorem 1.1, it suffices to prove the
following congruences for (2k + 1)-core partitions:

a19(76n+ 11, 15, 27, 39, 43, 47, 51, 59, 67) ≡ 0 (mod 2), (2.1)
a31(124n+ 10, 26, 30, 38, 42, 50, 54, 58, 62, 78, 86, 94, 98, 102, 122) ≡ 0 (mod 2). (2.2)

We begin by introducing some notations and definitions to be used in Lemma 2.3, which
plays a key role in proving these congruences.

Let Γ := SL2(Z), and for a positive integer N , let

Γ0(N) :=

{(
x y
z w

)
∈ Γ : N |z

}
and Γ∞ :=

{(
1 h
0 1

)
: h ∈ Z

}
.

For M ∈ N, let
R(M) := {r = (rδ1 , rδ2 , ..., rδD) : rδi ∈ Z, 1 ≤ i ≤ D},
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where δi runs over the set of positive divisors of M and D is the number of such divisors.
Next, for r ∈ R(M), we define

∞∑
n=0

cr(n)qn :=
∏
δ|M

∞∏
n=1

(1− qδn)
rδ . (2.3)

For m,M ∈ N, r ∈ R(M), t ∈ Zm, κ := gcd(m2 − 1, 24) and γ =

(
x y
z w

)
∈ Γ, let

Am,r(γ) := min
λ∈Zm

∑
δ|M

rδ
(gcd(δx+ δκλz,mz))2

24δm
, (2.4)

Br(γ) :=
∑
δ|M

rδ
(gcd(δ, z))2

24δ
. (2.5)

For r ∈ R(M), let π(M, r) be the tuple of non-negative integers (s, j) such that
∏

δ|M δ|rδ| =

2sj where j is odd. For such m,M,N, t and r ∈ R(M), we define the set Ω consisting of
elements of the form (m,M,N, t, r) with the conditions:

(1) κN
∑

δ|M rδ
mN
δ
≡ 0 (mod 24) and κN

∑
δ|M rδ ≡ 0 (mod 8);

(2) either 4 divides κN and 8 divides Ns, or 2 divides s and 8 divides N(1− j);

(3)
24m

gcd(−24κt− κ
∑

δ|M δrδ, 24m)
divides N ;

(4) p|m⇒ p|N for every prime p and δ|M ⇒ δ|mN for every δ with rδ 6= 0.

For a positive integer m, let Zm be the set of residue classes modulo m identified to the
(ordered) set {0, 1, . . . ,m− 1} and let Z∗m be the set of residues coprime to m. Let Sm be
the set of squares in Z∗m. For r ∈ R(M), define the function

� : S24m × Zm → Zm,

whose image is uniquely determined by the relation

[s]� t ≡ ts+
s− 1

24

∑
δ|M

δrδ (mod m).

For t ∈ Zm, let Pm,r(t) denote the set

Pm,r(t) := {[s]� t : [s] ∈ S24m}.

Now, we consider the generating function for t-core partitions at(n) given by
∞∑
n=0

at(n)qn =
∞∏
n=1

(1− qtn)t

1− qn
.

Observe that the above generating function for at(n) for t = 19 and t = 31 coincides with that
of cr(n) in (2.3) for r = (−1, 19) and r = (−1, 31), respectively. Recall that M = 19 = m
in the first case and M = 31 = m in the second one. Thus, proving congruences (2.1) and
(2.2) is equivalent to proving the following result.
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Theorem 2.2. For any non-negative integer n,

cr(76n+ 11, 15, 27, 39, 43, 47, 51, 59, 67) ≡ 0 (mod 2) for r = (−1, 19);

cr(124n+ 10, 26, 30, 38, 42, 50, 54, 58, 62, 78, 86, 94, 98, 102, 122) ≡ 0 (mod 2)

for r = (−1, 31).

We provide a proof of this theorem using the result below. With the help of this result, it
suffices to check the above congruences up to only a finite number of terms.

Lemma 2.3. [11, Lemma 1.8] Let l be a positive integer and (m,M,N, t, r) ∈ Ω. Let u ∈
R(N) and {γ1, γ2, ..., γn0} ⊆ Γ be a complete set of representatives of the double cosets
Γ0(N) \ Γ/Γ∞. Assume that Am,r(γi) + Bu(γi) ≥ 0 for all i ∈ {1, 2, ..., n0}. By tmin, denote
the minimum value of t′ ∈ Pm,r(t), and let

ν :=
1

24
[Γ : Γ0(N)]

∑
δ|N

uδ +
∑
δ|M

rδ

− 1

24

∑
δ|N

δuδ −
1

24m

∑
δ|M

δrδ −
tmin

m
. (2.6)

If

∀ (n, t′) ∈ {0, . . . , bν + 1c} × Pm,r(t),
∞∑
n=0

cr(mn+ t′)qn ≡ 0 (mod l),

then, for all non-negative integers n, the congruence

cr(mn+ t′) ≡ 0 (mod l)

holds for all t′ ∈ Pm,r(t).

In the above lemma, we set m = 4p,M = p and r = (−1, p), where p is a prime, and for
these values, we compute the sets Pm,r(t) using the following result.

Lemma 2.4. Let p ≥ 5 be a prime. Let r = (−1, p) ∈ R(p). Then

P4p,r(t) =

{
t′ ∈ Z4p

∣∣∣∣(24t′ − 1

p

)
=

(
24t− 1

p

)
and t′ ≡ t (mod 4)

}
,

where
(
·
p

)
denotes the Legendre symbol.

Proof. For r = (−1, p),m = 4p,M = p, we have
∑

δ|M δrδ = p2 − 1 and since gcd(p, 6) = 1,
we have 24|p2 − 1. Therefore,

P4p,r(t) =

{
t′ ∈ Z4p | t′ ≡ ts+ (s− 1)

p2 − 1

24
(mod 4p), [s] ∈ S96p

}
.

As [s] ∈ S96p, one has s ≡ 1 (mod 4) and by the Chinese remainder theorem, one has

P4p,r(t) =

{
t′ | t′ ≡ ts+ (s− 1)

p2 − 1

24
(mod p), t′ ≡ t (mod 4), [s] ∈ S96p

}
.

Notice that

t′ ≡ ts+ (s− 1)
p2 − 1

24
(mod p)⇔ 24t′ − 1 ≡ s(24t− 1) (mod p).
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Since the equality
(

24t′−1
p

)
=
(

24t−1
p

)
(respectively the congruence t′ ≡ t (mod 4)) means

that 24t − 1 and 24t′ − 1 are simultaneously square or non-square modulo p (respectively
modulo 96), one arrives to

P4p,r(t) =

{
t′ ∈ Z4p

∣∣∣∣ (24t′ − 1

p

)
=

(
24t− 1

p

)
and t′ ≡ t (mod 4)

}
.

�

Notice that the special case where p divides 24t− 1 corresponds to P4p,r(t) = {t}. We now
proceed to prove Theorem 2.2.

Proof of Theorem 2.2. As mentioned before, we set m = N = 4p,M = p and r = (−1, p) in
Lemma 2.3. In order to use this lemma, we first show that (4p, p, 4p, t, r) belongs to Ω and
then compute the sets Pm,r(t) for p = 19, t = 11 in the first case and for p = 31, t = 10 in
the other one.

Case I: p = 19, t = 11. Here, r = (−1, 19) ∈ R(19) and κ = gcd(762 − 1, 24) = 3. Also∏
δ|M δ|rδ| = 1919, therefore s = 0 and j = 1919. Thus, conditions (1) to (4) stated earlier are

easily verified, and we conclude that (76, 19, 76, 11, (−1, 19)) ∈ Ω.
Next, using Lemma 2.4, we compute the set P4p,r(t). Since,(

24× t− 1

p

)
=

(
263

19

)
= 1,

the set P4p,r(t), consisting of t′ ∈ Z4p for which
(

24t′ − 1

19

)
= 1 and t′ ≡ 11 (mod 4), is

given by {11, 15, 27, 39, 43, 47, 51, 59, 67}. Hence for r = (−1, 19),

P76,r(11) = {11, 15, 27, 39, 43, 47, 51, 59, 67}.

Case II: p = 31, t = 10. In this case, we find r = (−1, 31) ∈ R(31), κ = 3, s = 0 and
j = 3131. It can be verified that conditions (1) to (4) hold here as well. This shows that
(124, 31, 124, 10, (−1, 31)) ∈ Ω. To compute the set P4p,r(t), since(

24× t− 1

p

)
=

(
239

31

)
= −1,

we need to find all those t′ ∈ Z such that 0 ≤ t′ ≤ 4p − 1,

(
24t′ − 1

31

)
= −1 and t′ ≡ 10

(mod 4). This means t′ ∈ {10, 26, 30, 38, 42, 50, 54, 58, 62, 78, 86, 94, 98, 102, 122}. Therefore,
for r = (−1, 31),

P124,r(10) = {10, 26, 30, 38, 42, 50, 54, 58, 62, 78, 86, 94, 98, 102, 122}.

Next, we check the assumption in Lemma 2.3 that for prime p and u ∈ R(N), the inequality
Am,r(γ) +Bu(γ) ≥ 0 holds for all γ ∈ Γ. Choose u to be the zero tuple so that Bu(γ) = 0 for

all γ ∈ Γ. Therefore, it suffices to showAm,r(γ) ≥ 0 for all γ ∈ Γ. Let γ =

(
x y
z w

)
∈ Γ. From

the definition of Am,r(γ) in (2.4) and the fact that x and z are coprime, since wx− yz = 1,



8 SNEHA CHAUBEY, WEI CHENG, AMITA MALIK, AND ALEXANDRU ZAHARESCU

we have

A4p,r(γ) =
1

24
min
λ∈Z4p

(
−(gcd(x+ κλz, 4pz))2

4p
+ p

(gcd(px+ pκλz, 4pz))2

4p2

)

=
1

24
min
λ∈Z4p

1

24

(
−(gcd(x+ κλz, 4p))2

4p
+ p

(gcd(x+ κλz, 4))2

4

)
.

Let

F (γ, p, λ) :=
−(gcd(x+ κλz, 4p))2

4p
+
p (gcd(x+ κλz, 4))2

4
.

Now we consider all possibilities for gcd(x+ κλz, 4p), and this yields the following implica-
tions:

gcd(x+ κλz, 4p) = 1⇒ F (γ, p, λ) =
−1

4p
+
p

4
≥ 0,

gcd(x+ κλz, 4p) = 2⇒ F (γ, p, λ) =
−4

4p
+

4p

4
≥ 0,

gcd(x+ κλz, 4p) = 4⇒ F (γ, p, λ) =
−16

4p
+

16p

4
≥ 0,

gcd(x+ κλz, 4p) = p⇒ F (γ, p, λ) =
−p2

4p
+
p

4
= 0,

gcd(x+ κλz, 4p) = 2p⇒ F (γ, p, λ) =
−4p2

4p
+

4p

4
= 0,

gcd(x+ κλz, 4p) = 4p⇒ F (γ, p, λ) =
−16p2

4p
+

16p

4
= 0.

This proves that A4p,r(γ) ≥ 0 for each γ ∈ Γ.

Lastly, using the fact that [Γ : Γ0(N)] = N
∏

p|N

(
1 + 1

p

)
, we calculate ν in (2.6) for the

two cases. For p = 19, t = 11, r = (−1, 19),u = (0, 0, ..., 0) and tmin = 11,

ν = 90− 26

76
and hence bνc = 89.

For p = 31, t = 10, r = (−1, 31),u = (0, 0, ..., 0) and tmin = 10,

ν = 240− 50

124
, therefore bνc = 239.

Taking l = 2 in Lemma 2.3, we see that
• if cr(76n + t′) ≡ 0 (mod 2) for all 0 ≤ n ≤ 90 and t′ ∈ P76,r(11), r = (−1, 19), then
cr(76n+ t′) ≡ 0 (mod 2) for all n ≥ 0 and t′ ∈ P76,r(11).
• if cr(124n + t′) ≡ 0 (mod 2) for all 0 ≤ n ≤ 240 and t′ ∈ P124,r(10), r = (−1, 31),
then cr(124n+ t′) ≡ 0 (mod 2) for all n ≥ 0 and t′ ∈ P124,r(10).

Using Mathematica, we verify the calculations cr(76n + t′) ≡ 0 (mod 2) for 0 ≤ n ≤
90 and cr(124n+ t′) ≡ 0 (mod 2) for 0 ≤ n ≤ 240, and thus conclude that

cr(76n+ t′) ≡ 0 (mod 2) for all n ≥ 0 and t′ ∈ P76,r(11),

and cr(124n+ t′) ≡ 0 (mod 2) for all n ≥ 0 and t′ ∈ P124,r(10).

This completes the proof of Theorem 2.2. �
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Remark. In a similar fashion, one can prove congruences for broken k-diamond partitions
along arithmetic progressions (16k + 8)n + b by taking m in Lemma 2.3 and Lemma 2.4 to
be 8p instead of 4p. The proof works in a similar manner and one obtains, for instance, the
congruences

∆3(56n+ 2, 15, 20, 28, 29, 31, 34, 39, 42, 44, 45, 47, 53) ≡ 0 (mod 2) for all integers n ≥ 0.

3. Some congruences for broken 12-diamond partitions

Radu and Sellers [11] considered broken (2k + 1)-diamond partitions, where 2k + 1 is a
prime and 2 ≤ k ≤ 11. They obtained parity results for arithmetic progressions (4k +
2)n+ b. In fact, for each such k, there are exactly k many arithmetic progressions for which
∆k((4k + 2)n+ b) ≡ 0 (mod 2). We investigate such congruences for k = 12. In this case,
we find only five congruences, namely

∆12(50n+ 9, 19, 29, 39, 49) ≡ 0 (mod 2),

for all non-negative integers n. This is possibly due to the fact that 50 is not a prime number.
Notice that this result is equivalent to Theorem 1.2.

Proof of Theorem 1.2. We make use of the following result of Ramanujan, [8]:

1

(q; q)∞
=

(q25; q25)5∞
(q5; q5)6∞

{R(q5)4 + qR(q5)3 + 2q2R(q5)2 + 3q3R(q5) + 5q4

− 3q5R(q5)−1 + 2q6R(q5)−2 − q7R(q5)−3 + q8R(q5)−4}, (3.1)

where R(q) =
∏
n≥1

(1− q5n−3)(1− q5n−2)
(1− q5n−4)(1− q5n−1)

, and as usual (z; q)∞ :=
∞∏
l=0

(1− zql). From (1.2) and

(3.1), we have∑
n≥0

∆12(n)qn =
(−q; q)∞

(q; q)2∞(−q25; q25)∞

≡ 1

(q; q)∞(q25; q25)∞
(mod 2)

≡ (q25; q25)4∞
(q5; q5)6∞

{R(q5)4 + qR(q5)3 + q3R(q5) + q4

+ q5R(q5)−1 + q7R(q5)−3 + q8R(q5)−4} (mod 2).

It follows that∑
n≥0

∆12(5n+ 4)qn (mod 2)

≡ (q5; q5)4∞
(q; q)6∞

(mod 2) ≡
∏
n≥1

(1− q5n)4

(1− qn)6
(mod 2)

≡ 1/
∏
n≥1

(1− q5n−4)6(1− q5n−3)6(1− q5n−2)6(1− q5n−1)6(1− q5n)2 (mod 2)

≡ 1/
∏
n≥1

(1− q10n−8)3(1− q10n−6)3(1− q10n−4)3(1− q10n−2)3(1− q10n) (mod 2).
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Since the last expression is an even function of q, we conclude that

∆12(5(2n+ 1) + 4) = ∆12(10n+ 9) ≡ 0 (mod 2) for all integers n ≥ 0. �

4. A congruence for broken 3-diamond partitions

In this section, we prove a result for broken 3-diamond partitions along the arithmetic
progression 8n+ 7, which is not of the form (4k + 2)n+ b.

Theorem 4.1. For n ≥ 0, ∆3(8n+ 7) ≡ 0 (mod 2).

Proof. Let asct(n) denote the number of self-conjugate t-core partitions of n, [3]. Garvan,
Kim and Stanton [7, Equations (7.1a) and (7.1b)] give the generating function for asct(n) as

∞∑
n=0

asct(n)qn = (−q; q2)∞(q2t; q2t)t/2∞ , if t is even,

∞∑
n=0

asct(n)qn =
(−q; q2)∞(q2t; q2t)

(t−1)/2
∞

(−qt; q2t)∞
, if t is odd.

In particular,
∞∑
n=0

asc7(n)qn =
(−q; q2)∞(q14; q14)3∞

(−q7; q14)∞
.

Using (1.2) and above, we note that
∞∑
n=0

∆3(n)qn =
(−q; q)∞

(q; q)2∞(−q7; q7)∞
≡ (−q; q2)∞

(−q7; q7)∞
(mod 2)

≡ (−q; q2)∞
(q14; q14)∞(−q7; q14)∞

(mod 2)

≡ (−q; q2)∞(q14; q14)3∞
(q14; q14)4∞(−q7; q14)∞

(mod 2)

≡ 1

(q14; q14)4∞

∑
n≥0

asc7(n)qn (mod 2). (4.1)

Baruah and Sarmah [3, Theorem 3.1] show that asc7(8n+ 7) = 0 for all n ≥ 0, which along
with (4.1) implies that ∆3(8n+ 7) ≡ 0 (mod 2) for all integers n ≥ 0. �

5. Counts for odd values of ∆k(n)

In this section, we give a proof of Theorem 1.3, which provides a lower bound for the
number of odd values of ∆k(n) for n not exceeding N , where N is any large fixed positive
integer. We employ the methods developed in [4] and [5].

Proof of Theorem 1.3. We investigate the parity of ∆k(n), which is the same as the parity
of the coefficient of qn in the formal power series,

F (q) :=
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)
.
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By reducing the coefficients of F (q) modulo 2, we see that

F (q) ≡
∞∏
n=1

(1− qn)2(1− q(2k+1)n)

(1− qn)3(1− q(2k+1)n)2
(mod 2)

≡
∞∏
n=1

1

(1− qn)(1− q(2k+1)n)
(mod 2).

Let

G(q) :=
∞∏
n=1

1

(1− qn)(1− q(2k+1)n)
. (5.1)

Therefore, the parity of ∆k(n) is the same as that of the coefficient of qn in G(q), and we
have to prove that the desired lower bound holds for G(q). Passing to the formal logarithmic
derivative and then multiplying the resultant by q, equation (5.1) leads to

qG′(q)

G(q)
=
∞∑
n=1

∞∑
m=1

nqnm +
∞∑
n=1

∞∑
m=1

(2k + 1)nq(2k+1)nm

=
∞∑
h=1

qh
∑
n|h

n+ (2k + 1)
∞∑
h=1

q(2k+1)h
∑
n|h

n

=
∞∑
h=1

σ(h)qh + (2k + 1)
∞∑
h=1

σ(h)q(2k+1)h.

Now we work in the ring F2[[q]] and set H(q) :=
∞∑
h=1

σ(h)qh +
∞∑
h=1

σ(h)q(2k+1)h. Since, σ(h) is

odd if and only if each odd prime factor has an even exponent in the prime factorization of
h, in other words, h = 2r(2n+ 1)2 for some integers n, r ≥ 0, H(q) has the form

H(q) =
∑
n,r≥0

q2
r(2n+1)2 +

∑
n,r≥0

q(2k+1)2r(2n+1)2

=
∞∑
n=1

qn
2

+
∞∑
n=1

q2n
2

+
∞∑
n=1

q(2k+1)n2

+
∞∑
n=1

q2(2k+1)n2

. (5.2)

By reducing modulo 2, G(q) takes the form G(q) = 1 + qn1 + qn2 + · · · in F2[[q]]. Now, from
qG′(q) = G(q)H(q) and (5.2), we derive

qG′(q) + (qn1 + qn2 + · · · )H(q) =
∞∑
n=1

qn
2

+
∞∑
n=1

q2n
2

+
∞∑
n=1

q(2k+1)n2

+
∞∑
n=1

q2(2k+1)n2

. (5.3)

We now derive a lower bound for #{j : nj ≤ N}.
Case I. If at least half of the b

√
Nc terms of the form qn

2 for n2 ≤ N on the left side of
(5.3) are canceled by terms from the series qG′(q), then G′(q) has at least b

√
N/2c terms up

to qN . Hence, G(q) has at least b
√
N/2c terms up to qN and we obtain the desired lower

bound.
Case II. Assume that less than half of the terms of the form qn

2 for n2 ≤ N are canceled
by terms from qG′(q). This implies that at least b

√
N/2c such terms are left to be canceled

by terms from the series (qn1 + qn2 + · · · )H(q). To see how many terms of the form qm
2
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for m2 ≤ N may appear in a series of the form qnjH(q) for a fixed nj, we consider four
diophantine equations in positive integers n and m, namely,

nj + n2 = m2, (5.4)

nj + 2n2 = m2, (5.5)

nj + (2k + 1)n2 = m2, (5.6)

nj + 2(2k + 1)n2 = m2. (5.7)

Using arguments from [4], we find bounds (from above) for the number of solutions of these
equations. Equation (5.4) has at most N

2c1
log logN solutions for some constant c1 > 0. The

number of solutions of equation (5.5) is bounded by c2 logN , for some c2 > 0. In order to
bound the number of solutions of equations (5.6) and (5.7), we work in Q(

√
2k + 1), and

find the number of solutions to be at most N
c3

log logN , for some fixed c3 > 2 log 2. Similarly
for equation (5.7), the number of solutions is bounded by c4 logN . Therefore, the number of
solutions of (5.4), (5.5), (5.6) and (5.7) is at most N

c
log logN for some positive number c > 0.

Thus, we arrive at the desired bound,

#{n ≤ N : ∆k(n) is odd} ≥ N
1
2
− c

log logN .

�

Remark. For l,m ∈ N, let B1, B2, . . . , Bl;D1, D2, . . . , Dm be distinct positive integers. Let
C(n) denote the number of colored partitions of n in l+m colors with the following conditions:

(1) the parts appearing in the partitions are multiples of Bj’s and Di’s,
(2) the parts which appear as multiples of Bj’s are distinct.

Then, the associated generating function is given by
∞∑
n=0

C(n)qn =
∞∏
n=1

(1 + qB1n)(1 + qB2n) . . . (1 + qBln)

(1− qD1n)(1− qD2n) . . . (1− qDmn)
.

Note that for l = 1,m = 2 , B1 = 2k + 1, D1 = 1, D2 = 4k + 2, one obtains the generating
function for the broken k-diamond partitions modulo 2. Using similar arguments as above,
one concludes, for all N large enough,

# {n ≤ N : C(n) is odd} ≥ N
1
2
− c

log logN ,

for some positive real number c.

References

[1] G.E. Andrews and P. Paule, MacMahon’s partition analysis. XI. Broken diamonds and modular forms,
Acta Arith. 126 (2007), 281–294.

[2] G.E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis. VIII. Plane partition diamonds,
Adv. in Appl. Math. 27 (2001), 231–242.

[3] N.D. Baruah and B.K. Sarmah, Identities for self-conjugate 7- and 9-core partitions, Int. J. Number
Theory 8 (2012), 653–667.

[4] B.C. Berndt, A.J. Yee and A. Zaharescu, On the parity of partition functions, Internat. J. Math. 14
(2003), 437–459.

[5] B.C. Berndt, A.J. Yee and A. Zaharescu, New theorems on the parity of partition functions, J. Reine
Angew. Math. 566 (2004), 91–109.

[6] S.H. Chan, Some congruences for Andrews-Paule’s broken 2-diamond partitions, Discrete Math. 308
(2008), 5735–5741.



ON THE PARITY OF BROKEN k-DIAMOND PARTITIONS 13

[7] F. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1–17.
[8] M.D. Hirschhorn, An identity of Ramanujan, and applications. q-series from a contemporary perspective

(South Hadley, MA, 1998), Contemp. Math., vol. 254, Amer. Math. Soc., Providence, RI, 2000, 229–234.
[9] M.D. Hirschhorn and J.A. Sellers, On recent congruence results of Andrews and Paule for broken k-

diamonds, Bull. Austral. Math. Soc. 75 (2007), 121–126.
[10] P.A. MacMahon, Combinatory analysis, Cambridge Univ. Press, Cambridge, 1916.
[11] S. Radu and J.A. Sellers, Parity results for broken k-diamond partitions and (2k+1)-cores, Acta Arith.

146 (2011), 43–52.
[12] S. Radu, An algorithmic approach to Ramanujan’s congruences, Ramanujan J. 20 (2009), 215–251.

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL
61801, USA.

E-mail address: chaubey2@illinois.edu

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL
61801, USA.

E-mail address: cheng67@illinois.edu

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL
61801, USA.

E-mail address: amalik10@illinois.edu

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL
61801, USA.

E-mail address: zaharesc@illinois.edu


