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Abstract G. H. Hardy and S. Ramanujan established an asymptotic formula for the
number of unrestricted partitions of a positive integer, and claimed a similar asymptotic
formula for the number of partitions into perfect kth powers, which was later proved by
E. M. Wright. Recently, R. C. Vaughan provided a simpler asymptotic formula in the case
k = 2. In this paper, we consider partitions into parts from a specific set Ak(a0, b0) :={
mk : m ∈ N,m ≡ a0 (mod b0)

}
, for fixed positive integers k, a0, and b0. We give an asymp-

totic formula for the number of such partitions, thus generalizing the results of Wright and
Vaughan.Moreover, we prove that the number of such partitions is even (odd) infinitely often,
which generalizes O. Kolberg’s theorem for the ordinary partition function p(n).
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1 Introduction

For any non-negative integer n, and A ⊆ N, let pA(n) denote the number of partitions of
n with parts in the set A. Note that for A = N, the quantity pA(n) counts the number of
unrestricted partitions of n, and is usually denoted by p(n). This function has been studied
extensively. However, it was not known that p(n) takes even (odd) values infinitely often
even until 1959, when Kolberg [8] established these facts. Other proofs of Kolberg’s theorem
were later found by Newman [9], and by Fabrykowski and Subbarao [5]. It is conjectured
that p(n) is even (odd) approximately half the time. Even though many results have been
proved in this direction, for example, Ono [16], Nicolas et al. [11], and Ahlgren [1], the best
known results are far from the estimates expected.

For fixed positive integers k, a0, and b0, define the subset Ak(a0, b0) of positive integers
by Ak(a0, b0): = {

mk : m ∈ N,m ≡ a0 (mod b0)
}
. Denote by pAk (a0,b0)(n) the number of

partitions of n where the parts are taken from the subset Ak(a0, b0). Hardy and Ramanujan
[7] initiated the study of p(n) from an analytic point of view. They proved an asymptotic
formula for p(n), as n approaches infinity, and stated (without proof) a similar result for
pAk (1,1)(n), the number of partitions of n into perfect kth powers, for any k ≥ 2. Later a
proof was supplied for the case k ≥ 2 by Wright [23] in 1934. His proof uses the ideas
of Hardy and Ramanujan for the case k = 1, but relies heavily on a transformation for
the generating function of pAk (1,1)(n) involving generalized Bessel functions. In the case
k = 2, a simpler aymptotic formula has recently been given by Vaughan [21], and has been
generalized for any integer k ≥ 2 by Gafni [6]. For asymptotics of some other restricted
partitions, the reader is referred to [12] and [13].

In this paper, we focus our attention on the more general function pAk (a0,b0)(n). In Sect. 2,
we work in the ring of formal power series in one variable over the field of two elements
Z/2Z. Using elementary differential equations and algebraic tools such as Hensel’s lemma,
we develop a new method to prove that this partition function assumes even (odd) values for
infinitely many positive integers. This generalizes the result of Kolberg [8] for the ordinary
partition function p(n). In fact, our method works in more generality and can be applied to
certain other restricted partition functions, including plane partitions for which there are no
congruence results known, to obtain corresponding parity results. Yee along with the first
and third authors [3] obtained a similar result in the case of k = 1 using more advanced tools
such as the Prime Number Theorem for arithmetic progressions and properties of Dirichlet
L-functions.

In the later sections,we provide an asymptotic expansion for pAk (a0,b0)(n), as n approaches
infinity. This extends results of Hardy and Ramanujan [7], Vaughan [21], and Wright [23].
Our proof is based on the Hardy–Littlewood circle method. A fine analysis and modification
of results pertaining to exponential sums help us overcome the complications posed by
the general arithmetic progression a0 (mod b0) when b0 > 1. Moreover, following similar
arguments as in the proof of Theorem 1.2, one can also obtain asymptotics for the difference
of the number of such partitions of two consecutive positive integers as they grow large.

In the last section, we mention possible future directions for this research.
Now we state the main results of this paper. We reiterate definitions from the second

paragraph above. For fixed positive integers k, a0, and b0, define Ak(a0, b0) ⊆ N by

Ak(a0, b0): =
{
mk : m ∈ N,m ≡ a0 (mod b0)

}
. (1.1)

Also, let
pAk (a0,b0)(n): = #{partitions of n into parts from Ak(a0, b0)}. (1.2)
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Partitions into kth powers of terms in an arithmetic progression 1279

The first result is about the parity of pAk (a0,b0)(n).

Theorem 1.1 Let k, a0, and b0 be fixed positive integers satisfying a0 ≤ b0, and (a0, b0) = 1.
Let Ak(a0, b0) and pAk (a0,b0)(n) be defined as in (1.1) and (1.2), respectively. Then, there
are infinitely many positive integers n such that pAk (a0,b0)(n) is even, and there are infinitely
many positive integers m for which pAk (a0,b0)(m) is odd.

In the next result, we show that

pAk (a0,b0)(n) ∼ B exp
(
Mn

1
k+1

)
n

− b0+b0k+2a0k
2b0(k+1) ,

where B and M are constants depending on the parameters a0, b0 and k ≥ 2.

Theorem 1.2 Fix positive integers k, a0, and b0 with k ≥ 2, a0 ≤ b0, and (a0, b0) = 1, let
Ak(a0, b0) and pAk (a0,b0)(n) be defined as in (1.1) and (1.2), respectively. Set β0 = a0/b0,
and let ζ(s) and ζ(s, β0) denote the Riemann zeta function and the Hurwitz zeta function,
respectively. Let M be a fixed positive integer with

M ≤ 1

2016k2

(
1

b0k2
ζ

(
k + 1

k

)
�

(
1

k

))− k
k+1

n
1

k+1 . (1.3)

Then, for any positive integer J , there exist constants μ1, . . . , μJ−1 such that as n → ∞,

pAk (a0,b0)(n) =
exp

(
k+1
b0k2

ζ
( k+1

k

)
�
( 1
k

)
X

1
k + ζ(0, β0)(1 − log bk0) + kζ ′(0, β0)

)

2
√

π
√
Y X1−ζ(0,β0)

× exp

(
M−1∑

m=1

b2mk
0

(2m)! (1 − 2m)ζ(1 − 2m)ζ(−2mk, β0)X
−2m

)

×
⎛

⎝1 +
J−1∑

j=1

μ j

Y j
+ Ok,a0,b0

(
Y−J

)
+ Ok,a0,b0

(
X−2M+1

)
⎞

⎠ ,

where X and Y satisfy

n

X
= 1

b0k2
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k + ζ(0, β0) − bk0

2
ζ(−k, β0)

1

X

−
M∑

m=1

b2mk
0

(2m − 1)!ζ(−2m + 1)ζ(−2km, β0)
1

X2m , (1.4)

Y = k + 1

2b0k3
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k + ζ(0, β0)

2

+
M∑

m=1

m(2m − 1)b2mk
0 ζ(−2m + 1)ζ(−2mk, β0)

(2m)!X2m , (1.5)

and the terms (including the error term) involving M occur only when β0 �= 1/2, 1.

Remarks:

• For (a0, b0) = d0 > 1, the number pAk (a0,b0)(n) is zero unless n is a multiple of dk0 .
In fact, pAk (a0,b0)(n) = pAk (a0/d0,b0/d0)(n/dk0 ). Also, note that a0/d0 and b0/d0 are
relatively prime. Therefore, it is sufficient to consider only those integers a0, b0 which
are coprime to each other and satisfy 1 ≤ a0 ≤ b0.
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1280 B. C. Berndt et al.

• Note that in Theorem 1.2, X ∼ SY k ∼ T nk/(k+1), for some constants S and T . In fact,
these constants can be computed explicitly from (1.4) and (1.5). Moreover, one can show
that M ≤ (2(4π/5)k+1X)1/k/(4k2), which is used in Sect. 4.

• In the case β0 = 1, we recover Gafni’s result [6, Theorem 1], and if we further set k = 2,
we recover Vaughan’s result [21, Theorem 1.5]. In these cases, β0 = 1, and therefore as
mentioned in Theorem 1.2, the expression for pAk (1,1)(n) becomes much simpler since
all the terms involving M disappear.

• Following the arguments in the proof of Theorem 1.2, one can obtain an asymptotic result
for the difference pAk (a0,b0)(n + 1) − pAk (a0,b0)(n) as n approaches infinity.

2 Parity

In this section, we give a proof of Theorem 1.1. First, we prove two propositions which are
later used in the proof, but are also interesting in their own right. For brevity, we also set
A = Ak(a0, b0), defined in (1.1).

For any positive integer l, and any set A ⊆ N, define

σA(l) :=
∑

d|l
d∈A

d.

Proposition 2.1 Let c be an odd positive integer such that c ≡ a0 (mod b0). Suppose that
for any positive integer B, there are distinct primes q1, . . . , qB, and a positive integer l j such
that for each j = 1, . . . , B,

q j � B + 1, q
l j
j ≡ 1 (mod b0), (2.1)

c2k + j ≡ 0 (mod q
k(2l j−1)
j ), and c2k + j �≡ 0 (mod q

2k(2l j−1)
j ). (2.2)

Then, σA(c2k) is odd, and σA(c2k + j) is even for all j = 1, . . . , B.

Proof Note that

σA(l) =
∑

d

d : d ∈ N, d|l, d = mk,m ≡ a0 (mod b0)

≡ #
{
d ∈ N : d|l, d is odd and d = mk,m ≡ a0 (mod b0)

}
(mod 2)

≡ #
{
m ∈ N : mk |l,m is odd and m ≡ a0 (mod b0)

}
(mod 2). (2.3)

Also, let l have the prime factorization

l = 2α0 pα1
1 · · · pαr

r ,

where p1, . . . , pr are distinct odd primes, α1, . . . , αr are positive integers, and α0 is a non-
negative integer. We consider the function fk : N → N given by

fk(l) := p[α1/k]
1 · · · p[αr /k]

r .

Therefore, using (2.3), we can rewrite σA(l) as

σA(l) ≡ # {m ∈ N : m ≡ a0 (mod b0),m| fk(l)} (mod 2). (2.4)

123



Partitions into kth powers of terms in an arithmetic progression 1281

First, we show that σA(c2k + j) is even for each j = 1, . . . , B. Note that (2.2) implies the
exponent of q j in c2k + j is at least k(2l j − 1) but at most 2k(2l j − 1)− 1, i.e., the exponent
of q j in fk(c2k + j) is exactly 2l j − 1. In other words, for fixed j ∈ {1, . . . , B}, there exists
a positive integer m j , coprime to q j , such that

fk(c
2k + j) = m jq

2l j−1
j . (2.5)

Let d j be any divisor of fk(c2k + j) satisfying d j ≡ a0 (mod b0). Therefore,

d j = d̃ j q
β j
j ≡ a0 (mod b0),

for some d̃ j coprime to q j , and 0 ≤ β j < 2l j . If β j < l j , then from (2.5), we see that

d̃ j q
β j+l j
j also divides fk(c2k + j), and

d̃ j q
β j+l j
j �= d̃ j q

β j
j , and d̃ j q

β j+l j
j = d̃ j q

β j
j q

l j
j ≡ a0 (mod b0).

Similarly, if β j > l j , then d jq
β j−l j
j ≡ a0 (mod b0), and is a factor of fk(c2k + j). Thus the

divisors congruent to a0 (mod b0) of fk(c2k + j) appear in pairs, and from (2.4) we conclude
that σA(c2k + j) is even for all j = 1, . . . , B.

Next, we show that σA(c2k) is odd. Note that since c is odd, fk(c2k) = c2. Let u be any
divisor of fk(c2k) so that u ≡ a0 (mod b0). Then, uv = c2 for some v ∈ N. Also,

a20 ≡ c2 = uv ≡ a0v (mod b0).

Since (a0, b0) = 1, we conclude that v0 = a0 (mod b0). Moreover, u �= v unless u = c.
Therefore, once again by (2.4), we deduce that σA(c2k) is odd. This completes the proof of
the proposition. �
Proposition 2.2 For fixed positive integers k, a0, and b0 such that (a0, b0) = 1, let A :={
mk : m ∈ N,m ≡ a0 (mod b0)

}
. For any positive integer l, let

σA(l) :=
∑

d|l
d∈A

d.

Then, for any fixed positive integer B, there exists an odd positive integer lB such that σA(lB)

is odd, and σA(lB + j) is even for j = 1, . . . , B.

Proof Notice that once the existence of c, q j for j = 1, . . . , B, as in Proposition 2.1, are
established, we can simply let lB = c2k , and conclude the proof by invoking Proposition
2.1. Therefore, we only need to show that for each j = 1, . . . , B, there exist distinct primes
q1, . . . , qB , and positive integers l j satisfying

q j ≥ B + 1, q
l j
j ≡ 1 (mod b0), c ≡ a0 (mod b0), (2.6)

c2k + j ≡ 0 (mod q
k(2l j−1)
j ), and c2k + j �≡ 0 (mod q

2k(2l j−1)
j ). (2.7)

We construct the q j ’s inductively. For a fixed j ∈ {1, . . . , B}, assume q1, . . . , q j−1 are
already chosen, and set q0 := 1. Define

K j :=
∏

pr � j
pr−prime

pr |B!2kb0q1...q j−1

pr .
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1282 B. C. Berndt et al.

Fix any prime factor q j of K 2k
j + j . Then,

• (q j , j) = 1, for if q j | j , then q j |K j , which further implies q j = pr � j ,
• q j ≥ B + 1, as q j � B implies q j divides K j , and hence j ,
• q j /∈ {q1, . . . , q j−1},
• q j � k,
• (q j , b0) = 1.

Thus, for each j = 1, . . . , B, the congruence x2k + j ≡ 0 (mod q j ) has a solution; for

example, one can take x = K j . Also, let l j ∈ N so that q
l j
j ≡ 1 (mod b0).

Next, for a fixed j ∈ {1, . . . , B}, we define a polynomial g j (x) ∈ Z[x] by

g j (x) := x2k + j + q
k(2l j−1)
j . (2.8)

Then,

g j (K j ) ≡ 0 (mod q j ), and g′
j (K j ) = 2kK 2k−1

j �= 0 (mod q j ).

Therefore, by Hensel’s Lemma, for m j ∈ N, there exists β j,m j ∈ Z such that

β j,m j ≡ K j (mod q j ) and g j (β j,m j ) ≡ 0 (mod q
m j
j ).

In particular, set m j = k(2l j − 1) + 1. Thus using (2.8) in the last congruence above, we
deduce that β j,k(2l j−1)+1 satisfies

β2k
j,k(2l j−1)+1 + j ≡ 0 (mod q

k(2l j−1)
j ) and β2k

j,k(2l j−1)+1 + j �≡ 0 (mod q
k(2l j−1)+1
j ).

(2.9)

Using the Chinese Remainder Theorem, choose a positive integer c such that for all
j = 1, . . . , B,

• c ≡ 1 (mod 2),
• c ≡ a0 (mod b0),

• c ≡ β j,k(2l j−1)+1 (mod q
k(2l j−1)+1
j ).

Note that if b0 is even, a0 must be odd, and therefore c ≡ a0 (mod b0) implies that c ≡
1 (mod 2), and thus the Chinese Remainder Theorem does apply here. This implies that there
exists an odd positive integer c such that c ≡ a0 (mod b0), and for j = 1, . . . , B,

c2k + j ≡ β2k
k(2l j−1)+1 + j (mod q

k(2l j−1)+1
j ).

This shows the existence of c and q j ’s as claimed in (2.6) and (2.7). From the discussion in
the beginning of the proof, we are done. �
2.1 Proof of Theorem 1.1

Now, we give a proof of Theorem 1.1.

Proof Recall that the generating function for pA(n) is given by

FA(q) :=
∞∑

n=0

pA(n)qn =
∏

m∈A

1

(1 − qm)
.
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Partitions into kth powers of terms in an arithmetic progression 1283

Consider the formal power series F(X) in the variable X defined as

F(X) :=
∏

m∈A

1

1 − Xm
.

Taking the logarithmic derivative of F(X) and then multiplying both sides by X , we obtain

X
F ′(X)

F(X)
=
∑

m∈A

m
∞∑

n=1

Xmn

=
∞∑

l=1

Xl
∑

m|l
m∈A

m

=
∞∑

l=1

σA(l)Xl

=: H(X), (2.10)

where for any positive integer l, σA(l) := ∑
d|l,d∈A d. Therefore,

XF ′(X) = F(X)H(X). (2.11)

�
Claim 2.3 pA(n) is odd for infinitely many n ∈ N.

Proof Assume the contrary, and let, if possible, pA(n) be odd only for ni , i = 1, . . . , r,
for some fixed positive integer r . Also, without loss of generality, we can assume that n1 <

· · · < nr . Therefore,

F(X) ≡
r∑

j=1

Xn j (mod 2).

Using this in (2.11), and the definition of H(X) in (2.10), we see that

r∑

j=1

n j X
n j ≡

r∑

j=1

Xn j

∞∑

l=1

σA(l)Xl (mod 2). (2.12)

For B = nr in Proposition 2.2, we obtain a positive integer lnr so that σA(lnr ) is odd, and
σA(lnr + j) is even for all j = 1, . . . , nr . Therefore, comparing the coefficients of Xlnr +nr

on both sides of (2.12) yields

0 ≡
r∑

j=1
l+n j=lnr +nr

σA(l) (mod 2)

≡
r∑

j=1

σA(lnr + nr − n j ) (mod 2)

≡ σA(lnr ) ≡ 1 (mod 2),

which is a contradiction. This completes the proof of Claim 2.3. �
Claim 2.4 pA(n) is even for infinitely many n ∈ N.
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1284 B. C. Berndt et al.

Proof Assume that pA(n) is even only for n = m1 < · · · < mv for some fixed positive
integer v. Therefore,

F(X) ≡
v∑

j=1
n �=m j

Xn (mod 2).

In other words,

F(X) ≡
∞∑

n=0

Xn +
v∑

j=1

Xm j (mod 2).

This implies

(1 − X)F(X) ≡ 1 − (1 − X)

v∑

j=1

Xm j (mod 2). (2.13)

Differentiating, and then multiplying both sides by (1 − X), we observe that

(1 − X)2F ′(X) − (1 − X)F(X) ≡ (1 − X)

v∑

j=1

Xm j − (1 − X)2
v∑

j=1

m j X
m j−1 (mod 2).

Using (2.13), we find that the above congruence becomes

(1 − X)2F ′(X) ≡ 1 − (1 − X)2
v∑

j=1

m j X
m j−1 (mod 2). (2.14)

Also, recall from (2.11),

X (1 − X)2F ′(X) = (1 − X)2F(X)H(X).

Employing this along with (2.10), (2.13) and (2.14), we obtain

X − (1 − X)2
v∑

j=1

m j X
m j ≡ (1 − X)

⎧
⎨

⎩
1 − (1 − X)

v∑

j=1

Xm j

⎫
⎬

⎭

∞∑

l=1

σA(l)Xl (mod 2)

≡
⎧
⎨

⎩
1 + X +

v∑

j=1

Xm j +
v∑

j=1

Xm j+2

⎫
⎬

⎭

∞∑

l=1

σA(l)Xl (mod 2).

Let B = mv + 2 in Proposition 2.2. So, we can find a positive integer lmv+2 so that
σA(lmv+2) is odd, while σA(lmv+2 + j) is even for j = 1, . . . ,mv + 2. Hence, a comparison
of coefficients of Xlmv+2+mv+2 on both sides above yields

0 ≡ σA(lmv+2 + mv + 2) + σA(lmv+2 + mv + 1) +
v∑

j=1

σA(lmv+2 + mv + 2 − m j )

+
v∑

j=1

σA(lmv+2 + mv − m j ) (mod 2)

≡ σA(lmv+2) (mod 2),
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Partitions into kth powers of terms in an arithmetic progression 1285

which is a contradiction. Thus, pA(n) is even for infinitely many positive integers n, which
completes the proof of Claim 2.4. �

From Claims 2.3 and 2.4, we obtain Theorem 1.1. �

3 Asymptotics

In this section, we prove two lemmas to be used in the following section in order to compute
an asymptotic formula for pAk (a0,b0)(n), as n → ∞. Recall that for a fixed integer k ≥ 2,
pAk (a0,b0)(n) denotes the number of partitions of nwith parts in Ak(a0, b0), where for integers
k, a0, and b0 satisfying 0 < a0 ≤ b0, (a0, b0) = 1, and k ≥ 2,

A := Ak(a0, b0) =
{
mk ∈ N : m ≡ a0 (mod b0)

}
. (3.1)

Also, recall that the generating function �(z; A) is given by

�(z; A) =
∞∑

n=0

pA(n)zn =
∏

m∈A

1

1 − zm
, |z| < 1. (3.2)

For |z| < 1, define the function 	(z; A) by

�(z; A) = exp(	(z; A)). (3.3)

Therefore,

	(z; A) =
∞∑

j=1

∑

m∈A

z jm

j
, |z| < 1. (3.4)

Throughout the remainder of the paper, we use the standard notation e(x) for exp(2π i x) for
any real number x .

Now, we move on to state and prove the results used in the proof of Theorem 1.2 in the
next section.

Lemma 3.1 For each sufficiently large positive number X and
 ∈ [−3/(8πX), 3/(8πX)],
define

� = (1 + 4π2
2X2)−1/2. (3.5)

Let R := R(k, X, θ) be defined as

R = (2(π�)k+1X)1/k

2k2
. (3.6)

Let ρ = e−1/X , and for a0, b0 ∈ N with 1 ≤ a0 ≤ b0 and (a0, b0) = 1, let β0 = a0/b0. For
any complex number s = σ + i t , let ζ(s) and ζ(s, β0) denote the Riemann zeta function and
the Hurwitz zeta function, respectively. Then, for A and 	(z; A) defined in (3.1) and (3.4),
respectively, as X → ∞,

	(ρe2π i
; A) = 1

b0k
ζ(1 + 1/k)�(1/k)

(
X

1 − 2π i X


)1/k

+ ζ(0, β0) log

(
b−k
0 X

1 − 2π i X


)

+ kζ ′(0, β0) + bk0
2

ζ(−k, β0)

(
1 − 2π i X


X

)
+

�R/2�∑

m=1

b2mk
0

(2m)!ζ(−2m + 1)
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1286 B. C. Berndt et al.

× ζ(−2km, β0)

(
1 − 2π i X


X

)2m

+ Ok,a0,b0

(
exp

(
− (2(4π/5)k+1X)1/k

2k

))
, (3.7)

where the expression immediately before the error term occurs only when β0 �= 1/2, 1.

Proof The series for the Riemann zeta function ζ(s + 1) and the Hurwitz zeta function
ζ(ks, β0) converge absolutely and uniformly for Re s > 1/k + δ for any fixed positive
number δ. Therefore, using Mellin’s transform, we have, for a real number c > 1/k,

	(ρe(
); A) =
∞∑

j=1

∞∑

m=1,
m≡a0 (mod b0)

ρ jmk
e( jmk
)

j

=
∞∑

j=1

∞∑

m=1,
m≡a0 (mod b0)

1

j
exp

(− jmk

X
+ 2π i jmk


)

=
∞∑

j=1

∞∑

m=1,
m≡a0 (mod b0)

1

j
exp

(
− jmk 1 − 2π i X


X

)

= 1

2π i

∞∑

j=1

1

j

∞∑

m=1,
m≡a0 (mod b0)

∫ c+i∞

c−i∞

(
jmk 1 − 2π i X


X

)−s

�(s) ds

= 1

2π i

∫ c+i∞

c−i∞
b−ks
0

(
1 − 2π i X


X

)−s

�(s)

×
∞∑

j=1

1

j s+1

∞∑

m=0

1

(m + a0/b0)ks
ds.

We notice that the series above can be written in terms of the Riemann and the Hurwitz
zeta functions. Thus,

	(ρe(
); A) = 1

2π i

∫ c+i∞

c−i∞
b−ks
0 ζ(s + 1)ζ(ks, β0)�(s)

(
X

1 − 2π i X


)s

ds

=: 1

2π i

(∫ c−i R

c−i∞
+
∫ c+i R

c−i R
+
∫ c+i∞

c+i R

)
Js ds, (3.8)

where R is defined in (3.6). We compute these integrals using the residue theorem. For the
middle integral on the far right side of (3.8), consider the rectangleRm with vertices−R±i R
and c ± i R. Therefore, by the residue theorem,

1

2π i

∫ c+i R

c−i R
Js ds =

∑

poles in Rm

ResJs −
(∫ −R+i R

c+i R
+
∫ −R−i R

−R+i R
+
∫ c−i R

−R−i R

)
Js ds. (3.9)
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In order to compute the first integral on the far right side of (3.8), for any real number
L > 0, we define the rectangle RL with vertices −R − i(R + L),−R − i R, c − i R, and
c − i(R + L). Thus, by the residue theorem,

1

2π i

∫ c−i R

c−i(R+L)

Js ds =
∑

poles
in RL

ResJs −
(∫ −R−i R

c−i R
+
∫ −R−i(R+L)

−R−i R
+
∫ c−i(R+L)

−R−i(R+L)

)

Js ds.

(3.10)

Finally, for the last integral on the far right side of (3.8), for any real numberU > 0, we define
the rectangle RU given by the vertices −R + i R,−R + i(R + U ), c + i(R + U ), c + i R.
Once again, by the residue theorem,

1

2π i

∫ c+i(R+U )

c+i R
Js ds =

∑

poles
in RU

ResJs −
(∫ −R+i(R+U )

c+i(R+U )

+
∫ −R+i R

−R+i(R+U )

+
∫ c+i R

−R+i R

)

Js ds.

(3.11)

Here, we can assume that the integrand Js defined in (3.8) has no zeros on any of the sides
of the rectangles Rm, RL , RU .

The only possible poles of the integrand Js are at s = 1/k, 0,−1, and −2 j , for each
positive integer j . Thus, all the poles are real, which means Js is holomorphic within the
rectangles RL and RU . Therefore, the sum of the residues in (3.10) and (3.11) is zero. Thus,
by letting L and U tend to infinity, we have
∫ c−i R

c−i∞
Js ds = −

∫ −R−i R

c−i R
Js ds − lim

L→∞

(∫ −R−i(R+L)

−R−i R
+
∫ c−i(R+L)

−R−i(R+L)

)

Js ds, (3.12)

and
∫ c+i∞

c+i R
Js ds = −

∫ c+i R

−R+i R
Js ds − lim

U→∞

(∫ −R+i(R+U )

c+i(R+U )

+
∫ −R+i R

−R+i(R+U )

)

Js ds. (3.13)

Using (3.9), (3.12), and (3.13) in (3.8), we deduce that

	(ρe(
); A) = − lim
L→∞

(∫ −R−i(R+L)

−R−i R
+
∫ c−i(R+L)

−R−i(R+L)

)

Js ds +
∑

poles in Rm

ResJs

−
∫ −R−i R

−R+i R
Js ds − lim

U→∞

(∫ −R+i(R+U )

c+i(R+U )

+
∫ −R+i R

−R+i(R+U )

)

Js ds. (3.14)

Now, we show that the two integrals along the horizontal lines above approach zero as U
and L approach infinity. Also,

∣∣∣∣

(
X

1 − 2π i X


)s ∣∣∣∣ = (X�)σ exp(−tφ),

where φ is the argument of Xs/(1− 2π i X
)s . Therefore, tan(π/2− φ) = 1/(2πX
), and
sin(π/2 − φ) = �. Using estimates for the sine function, we see that π/2 − φ > �, and
therefore,

∣∣∣∣

(
X

1 − 2π i X


)s ∣∣∣∣ � (X�)σ exp(|t |(π/2 − �)). (3.15)
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Also, by Stirling’s formula in a vertical strip, for s = σ + i t and α ≤ σ ≤ β,

|�(s)| � |s|σ−1/2 exp(−π |t |/2). (3.16)

Combining this with (3.15) and standard bounds for ζ(s) and ζ(s, β0) (for example, see [19,
p. 81], [2, p. 270]), we deduce that there exist constants B and C such that

∫ c−i(R+L)

−R−i(R+L)

Js ds � (R + L)Be−(R+L)�+R,

and
∫ −R+i(R+U )

c+i(R+U )

Js ds � (R +U )Ce−(R+U )�+R,

which both tend to zero as L andU approach infinity, since R and � are both fixed, positive
real numbers. Therefore, from (3.14),

	(ρe(
); A) = −
∫ −R−i∞

−R−i R
Js ds +

∑

poles in Rm

ResJs −
∫ −R−i R

−R+i R
Js ds

−
∫ −R+i R

−R+i∞
Js ds

=
∑

poles in Rm

ResJs +
(∫ −R−i R

−R−i∞
+
∫ −R+i R

−R−i R
+
∫ −R+i∞

−R+i R

)
Js ds. (3.17)

Next, we find bounds for the integrandJs in order to estimate the integrals in (3.17). Using
the functional equation (in its asymmetric form) for the Riemann zeta function [4, p. 73],
[19, p. 16] and the functional equation for the Hurwitz zeta function [4, p. 72], [19, p. 37],
we have

ζ(s + 1)ζ(ks, β0) = 4

{

sin

(
πks

2

) ∞∑

m=1

cos(2mπβ0)

m1−ks
+ cos

(
πks

2

) ∞∑

m=1

sin(2mπβ0)

m1−ks

}

× (2π)(k+1)s−1 cos(πs/2)ζ(−s)�(−s)�(1 − ks). (3.18)

Using the functional equation and reflection formula for the gamma function,

�(1 − ks) = −ks �(−ks), −s sin(πs)�(−s)�(s) = π,

we can write (3.18) in the form

ζ(s + 1)ζ(ks, β0)�(s) = 2k(2π)(k+1)sζ(−s)�(−ks)
cos(πs/2)

sin(πs)

×
∞∑

m=1

{
sin

(
πks

2

)
cos(2mπβ0)

m1−ks
+ cos

(
πks

2

)
sin(2mπβ0)

m1−ks

}
.

(3.19)

Also note that

cos(πs/2)

sin(πs)
sin(πks/2) = sin(πks/2)

2 sin(πs/2)
� e(k−1)|t |π/2,
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and

cos(πs/2)

sin(πs)
cos(πks/2) = cos(πks/2)

2 sin(πs/2)
� e(k−1)|t |π/2.

Using these bounds along with (3.15), (3.16), and (3.19), for the integrand Js in (3.17), we
find that

Js � (2π)(k+1)σ k−kσ |s|−1/2−kσ (X�)σ e−�|t |

=
(

kk

(2π)k+1X�

)R

|R + i t |−1/2+kRe−�|t |, (3.20)

since σ = −R here. For the middle integral on the far right side of (3.17), we have |t | ≤ R.
Therefore, using the foregoing estimates for the integrand Js , we arrive at

∫ −R+i R

−R−i R
Js ds �

(
kk

2πk+1X�

)R

R−1/2+kR
∫ R

0
e−�t dt

�
(

(2k2)k

2πk+1X�

)R

R−1/2+kR

� exp

(
− (2(π�)k+1X)1/k

2k

)
, (3.21)

where in the penultimate step above, we have used the definition of R. For the first and the last
integrals in (3.17), we have the inequality |t | > R. Therefore, invoking (3.20), and making
a change of variable y = �t , we deduce that

(∫ −R−i R

−R−i∞
+
∫ −R+i∞

−R+i R

)
Js ds �

(
kk

2πk+1X�

)R ∫ ∞

R
t−1/2+kRe−�t dt

�
(

kk

2(π�)k+1X

)R ∫ ∞

�R
y−1/2+kRe−y dy

�
(

kk

2(π�)k+1X

)R

�(kR + 1/2)

�
(

(2k2)k

2(π�)k+1X

)R

e−kR RkR

� exp

(
− (2(π�)k+1X)1/k

2k

)
, (3.22)

where in the penultimate step above, Stirling’s formula is invoked, and in the last step, we
have used the definition of R. Using the fact that � ≥ 4/5 when 
 lies in the interval
[−3/(8πX), 3/(8πX)], and the estimates in (3.21) and (3.22) in (3.17), we obtain

	(ρe(
); A) =
∑

poles in Rm

ResJs + O

(
exp

(
− (2(4π/5)k+1X)1/k

2k

))
. (3.23)

Now, we compute the residues in the above sum. From [22, page 267], we know that for
any non-negative integer m,

ζ(−m, β0) = − Bm+1(β0)

m + 1
, (3.24)
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where Bm(x) denotes the Bernoulli polynomial of degree m, and in particular, Bm(0) is the
mth Bernoulli number. In particular,

ζ(0, β0) = 1

2
− β0. (3.25)

Nörlund [14, p. 22] showed that B2m+1(x) has only two real zeros, 1/2 and 1, in the interval
(0, 1]. Therefore, for any positive integer m, (3.24) implies that ζ(−2m, β0) is zero if and
only if β0 equals 1/2 or 1.

Therefore, forβ0 = 1/2, 1, and any positive integerm, because�(s) has a simple pole, and
ζ(s, β0) has a simple zero at s = −2m, the product �(s)ζ(s, β0) has a removable singularity
at s = −2m. Moreover, from (3.25), we know that ζ(0, β0) = 0 if and only if β0 = 1/2.

Also, for any positive integer m, the product �(s)ζ(s + 1) has a removable singularity at
s = −2m + 1 because of the trivial zeros of the Riemann zeta function at the negative even
integers.

Thus for β0 = 1/2, and the integrand Js , defined in (3.8), the only poles are at s =
1/k, 0,−1, and all are simple. For β0 = 1, there is a double pole at s = 0, and there are
simple poles at s = 1/k and −1. And for β0 �= 1/2, 1, there is a double pole at s = 0, and
there are simple poles at s = 1/k,−1, and −2l ≤ R, where l is any positive integer.

The residue of Js for the pole at s = 1/k is given by

ResJs |s=1/k = ζ(1 + 1/k)

b0k
�(1/k)

(
X

1 − 2π i X


)1/k

. (3.26)

The function ζ(s + 1)�(s) has a Laurent expansion of the form, (see [19, p. 16] and [15,
p. 139]),

⎛

⎝1

s
− γ +

∞∑

j=1

a j s
j

⎞

⎠

⎛

⎝1

s
+ γ +

∞∑

j=1

b j s
j

⎞

⎠ = 1

s2
+

∞∑

j=0

c j s
j ,

where a j , b j and c j are constants, and γ is Euler’s constant. Thus, the residue of Js for the
pole at s = 0 can be written as

ResJs |s=0 = ζ(0, β0) log

(
X

1 − 2π i X


)
− kζ(0, β0) log b0 + kζ ′(0, β0). (3.27)

Also, the residue at s = −1 is given by

ResJs |s=−1 = −bk0ζ(0)ζ(−k, β0)

(
1 − 2π i X


X

)
. (3.28)

Lastly, for each positive integer l ≤ M , where M is defined in the statement of this lemma,
the residue at the pole at s = −2l lying inside the rectangle Rm is given by

ResJs |s=−2l = b2lk0

(2l)!ζ(−2l + 1)ζ(−2kl, β0)

(
1 − 2π i X


X

)2l

. (3.29)

Recall from the discussion above that ζ(−2kl, β0) equals zero for β0 = 1/2, 1. Therefore,
for these values of β0, the expression on the right side of (3.29) has the value zero. With this
in mind, and using (3.26)–(3.29) in (3.23), we obtain the desired result. �
Lemma 3.2 For any two natural numbers q and l with (q, l) = 1, define

S(k; q, l) :=
q∑

m=1

e(lkm/q).
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Suppose that X,
 ∈ R, X > 1, u ∈ Z, q ∈ N, (u, q) = 1 and θ = 
 − u/q. Then, for any
ε > 0, and 	(z; A) defined in (3.4), as X → ∞,

	(ρe(
); A) = 1

b0
�(1 + 1/k)

(
X

1 − 2π i Xθ

)1/k ∞∑

j=1

S(k; q j , u j )

j1+1/kq j

+ Oε

(
q1/2+ε(1 + |θ |1/2X1/2) log X

)
,

where q j = q/(q, j), u j = u j/(q, j).

Proof Recall the definition of 	(z; A) given in (3.4),

	(ρe(
); A) =
∞∑

j=1

1

j

∞∑

n=1
n≡a0 (mod b0)

e− jnk/X e( jnk
).

Employing

e− jnk/X =
∫ ∞

n
kxk−1 j X−1e− j xk/X dx (3.30)

in the above sum, we obtain

	(ρe(
); A) =
∞∑

j=1

1

j

∫ ∞

0
kxk−1 j X−1e− j xk/X

∑

n�x
n≡a0 (mod b0)

e( jnk
) dx . (3.31)

Using trivial bounds, integrating by parts, and lastly, making the substitution y = j xk/X ,
we obtain

∫ ∞

0
kxk−1 j X−1e− j xk/X

∑

n�x
n≡a0 (mod b0)

e( jnk
) dx

�
∫ ∞

0
x(kxk−1 j X−1e− j xk/X ) dx

=
∫ ∞

0
e− j xk/X dx =

(
X

j

)1/k ∫ ∞

0
e−yk dx �

(
X

j

)1/k

.

Therefore, invoking the estimates above in (3.31), for a fixed positive integer N , we find that

∞∑

j=N+1

1

j

∫ ∞

0
kxk−1 j X−1e− j xk/X

∑

n�x
n≡a0 (mod b0)

e( jnk
) dx

�
∞∑

j=N+1

1

j

(
X

j

)1/k

�
(
X

N

)1/k

.

Using this in (3.31), we have

	(ρe(
); A) = �N + O

((
X

N

)1/k
)

, (3.32)
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where

�N :=
N∑

j=1

1

j

∫ ∞

0
kxk−1 j X−1e− j xk/X

∑

n�x
n≡a0 (mod b0)

e( jnk
) dx . (3.33)

By a variation of Theorem 4.1 [20, p. 43], (which can be justified using the Euler-Maclaurin
summation formula and standard techniques), we can write, for any real number ε > 0,

∑

n�x
n≡a0 (mod b0)

e( jnk
) = S(k; q j , u j )

b0q j

∫ x

0
e( jγ kθ) dγ + Oε

(
q1/2+ε
j (1 + xk j |θ |)1/2

)
.

Employing the above estimate in (3.33), and applying (3.30) after interchanging the order of
integration below, we obtain

�N = 1

b0

N∑

j=1

S(k; q j , u j )

jq j

∫ ∞

0
kxk−1 j X−1e− j xk/X

∫ x

0
e( jγ kθ) dγ dx + Oε (EN (X))

= 1

b0

N∑

j=1

S(k; q j , u j )

jq j

∫ ∞

0
e− jγ k/Xe( jγ kθ) dγ + Oε (EN (X)) , (3.34)

with

EN (X): =
N∑

j=1

q1/2+ε
j

j

∫ ∞

0
kxk−1 j X−1e− j xk/X (1 + xk j |θ |)1/2 dx

�
N∑

j=1

q1/2+ε
j

j

(

1 +
∫ ∞

0

j |θ |kxk−1

2
√
xk j |θ |

e−xk j/X

√
1 + 1/(xk j |θ |) dx

)

�
N∑

j=1

q1/2+ε
j

j

(
1 + k

2

√
j |θ |

∫ ∞

0
xk/2−1e−xk j/X dx

)
, (3.35)

where in the second step, we have integrated by parts. Using the substitution y = j xk/X in
the integral above, we deduce that

∫ ∞

0
xk/2−1e−xk j/X dx = (X/j)1/kk−1

∫ ∞

0
(yX/j)1/2−1/ke−y y1/k−1 dy

= 1

k

(
X

j

)1/2 ∫ ∞

0
y−1/2e−y dy = 1

k

√
πX

j
.

Using this in (3.35), we see that

EN (X) �
N∑

j=1

q1/2+ε
j

j
(1 +√

πX |θ |/4)

� q1/2+ε(1 +√|θ |X) log N . (3.36)

We now turn our attention to the main term of the expression on the far right side of (3.34).
First, we rewrite the integrand there as

e− jγ k/Xe( jγ kθ) = exp(− jγ k X−1(1 − 2π i Xθ)), (3.37)
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and set

z = ( jγ k X−1|1 − 2π i Xθ |eiφ)1/k,

where φ is the argument of 1 − 2π i Xθ , and |φ| ≤ π/2. This gives
∫ ∞

0
e− jγ k/Xe( jγ kθ)) dγ =

∫ ∞

0
exp(− jγ k X−1e( jγ k Xθ)) dγ

=
(

X

j (1 − 2π i Xθ)

)1/k ∫

L
e−zk dz, (3.38)

where L is the ray {z = ueiφ/k : 0 ≤ u < ∞}. By Cauchy’s theorem, the integral along L is
given by

∫

L
e−zk dz =

∫ ∞

0
e−uk du

= 1

k

∫ ∞

0
t
1
k −1e−t dt = 1

k
�

(
1

k

)
.

Combining this evaluation along with (3.38), (3.34), and (3.36), we obtain

�N = 1

b0k
�

(
1

k

)(
X

1 − 2π i Xθ

)1/k N∑

j=1

S(k; q j , u j )

j1+1/kq j

+ Oε

(

q1/2+ε(1 +√|θ |X) log N +
(
X

N

)1/k
)

. (3.39)

Since |S(k; q j , u j )| � q j , for each j , we have

1

b0k
�

(
1

k

)(
X

1 − 2π i Xθ

)1/k ∞∑

j=N

S(k; q j , u j )

j1+1/kq j
�

(
X

N

)1/k

.

Using this in (3.39), we conclude that

�N = 1

b0k
�

(
1

k

)(
X

1 − 2π i Xθ

)1/k ∞∑

j=1

S(k; q j , u j )

j1+1/kq j

+ Oε

(

q1/2+ε(1 +√|θ |X) log N +
(
X

N

)1/k
)

.

Setting N = �X� in the above expression and invoking (3.32), we obtain the desired result.
�

4 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. The proof relies on the Hardy–Littlewood
circle method. First, we write the function pA(n) as an integral, i.e., by (3.2), (3.3), and
Cauchy’s theorem,
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pA(n) =
∫ 1

0
ρ−n exp(	(ρe(
); A) − 2π in
) d


=
∫

U
ρ−n exp(	(ρe(
); A) − 2π in
) d
, (4.1)

where in the last step, using the periodicity of the integrand, we have replaced the unit interval
(0, 1] by the unit interval U = (−X−1+1/k, 1−X−1+1/k], with X as in (1.4). Now, we define
the major and the minor arcs. For u, q ∈ N with (u, q) = 1, define the major arcs by

M(q, u) = {
 ∈ U : |
 − u/q| ≤ q−1X1/k−1},
and let

M = ∪1≤u≤q≤X1/kM(q, u).

The minor arcs m are defined to be the complement of the major arcs in the interval U , i.e.,

m = U\M. (4.2)

First, we compute the integral in (4.1) over the sub-interval [−3/(8πX), 3/(8πX)], a
portion of the major arcM(1, 0), i.e., we consider

∫ 3/(8πX)

−3/(8πX)

ρ−n exp(	(ρe(
); A) − 2π in
) d
. (4.3)

By Lemma 3.1,

ρ−n exp(	(ρe(
); A))

= ρ−n exp(�̃(ρe(
); A))

(
1 + Ok,a0,b0

(
exp

(
− (2(4π/5)k+1X)1/k

2k

)))
, (4.4)

where

�̃(ρe(
); A) = 1

b0k
ζ(1 + 1/k)�(1/k)

(
X

1 − 2π i X


)1/k

+ ζ(0, β0) log

(
b−k
0 X

1 − 2π i X


)

+ kζ ′(0, β0) + bk0
2

ζ(−k, β0)

(
1 − 2π i X


X

)
+

�R/2�∑

m=1

b2mk
0

(2m)!ζ(−2m + 1)

× ζ(−2km, β0)

(
1 − 2π i X


X

)2m

= 1

b0k
ζ(1 + 1/k)�(1/k)

(
X

1 − 2π i X


)1/k

+ ζ(0, β0) log

(
b−k
0 X

1 − 2π i X


)

+ kζ ′(0, β0) + bk0
2

ζ(−k, β0)

(
1 − 2π i X


X

)
+

M−1∑

m=1

b2mk
0

(2m)!ζ(−2m + 1)

× ζ(−2km, β0)

(
1 − 2π i X


X

)2m

+ Ok,a0,b0

(
1

X2M−1

)

=: �(ρe(
); A) + Ok,a0,b0

(
1

X2M−1

)
, (4.5)
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Partitions into kth powers of terms in an arithmetic progression 1295

with

R = (2(π�)k+1X)1/k

2k2
, � = (1 + 4π3
2X2)−1/2,

and a fixed positive integer M satisfying M ≤ R/2. This can be seen by combining the fact
that � ≥ 4/5 for 
 ∈ [−3/(8πX), 3/(8πX)], and that M ≤ (2(4π/5)k+1X)1/k/(4k2) as
per the remark following the statement of Theorem 1.2. Also, from Lemma 3.1, note that the
terms (including the error term) in (4.5) involving M disappear when β0 equals 1/2 or 1.

Thus, using (4.5), we can rewrite exp(	(ρe(
); A)) in (4.4) as

ρ−n exp(	(ρe(
); A)) = ρ−n exp(�(ρe(
); A))

(
1 + O

(
exp

(
− (2(4π/5)k+1X)1/k

2k

))

+ Ok,a0,b0

(
1/X2M−1

))
, (4.6)

Also,

X

1 − 2π i X

= X�eiφ,

where φ = arg(1 + 2π i X
). Note that 0 < |φ| ≤ π/2, so 0 < cos(φ/k) < 1. Hence,
∣∣∣∣∣

(
X

1 − 2π i X


)1/k
∣∣∣∣∣
= (X�)1/k . (4.7)

Therefore, for the first error term in (4.6), we note that, by (4.5) and (4.7),

ρ−n exp(�(ρe(
); A)) exp

(
− (2(4π/5)k+1X)1/k

2k

)

= X ζ(0,β0) exp

(
n

X
+ 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
(X�)1/k + bk0

2
ζ(−k, β0)(X�)−1

+
M∑

m=1

b2mk
0

(2m)!ζ(−2m + 1)ζ(−2km, β0)(X�)−2m − 1

2k
(2(4π/5)k+1X)1/k

)

� X ζ(0,β0) exp

(
n

X
+ 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k − δX1/k

)
, (4.8)

where δ := 1
2k (2(4π/5)k+1)1/k > 0. Similarly, for the second error term in (4.6), we have

ρ−n exp(�(ρe(
); A))X−2M+1

�k,a0,b0 X−2M+1 exp

(
n

X
+ 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k

)
. (4.9)

Therefore, by (4.8), (4.9), (4.3), and (4.6), we deduce that

∫ 3/(8πX)

−3/(8πX)

ρ−n exp(	(ρe(
); A)) − 2π in
) d


= ρ−n
∫ 3/(8πX)

−3/(8πX)

exp(�(ρe(
))) − 2π in
) d
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1296 B. C. Berndt et al.

+ Ok,a0,b0

(
X ζ(0,β0) exp

(
n

X
+ 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k − δX1/k

))

+ Ok,a0,b0

(
X−2M+1 exp

(
n

X
+ 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k

))
.

(4.10)

We now turn our attention to the main term in (4.10). Since |
| < 1/(2πX), we can
rewrite the expression

�(ρe(
); A) − 2π in


in the integrand as a power series in 
 by expanding the terms in (4.5) using the binomial
formula and the Taylor series expansion for the logarithm. Using the definition of X in (1.4),
we note that the coefficient of 
 in this power series is equal to zero. Hence, with Y defined
in (1.5), the main term in (4.10) is given by

ρ−n
∫ 3/(8πX)

−3/(8πX)

exp(�(ρe(
); A)) − 2π in
) d


= ρ−neC
∫ 3/(8πX)

−3/(8πX)

exp(−Y (2πX
)2 + G(
)) d


=: I, (4.11)

where

C := 1

b0k
ζ

(
k + 1

k

)
�

(
1

k

)
X1/k + ζ(0, β0) log(b

−k
0 X) + kζ ′(0, β0) + bk0

2
ζ(−k, β0)X

−1

+
M∑

m=1

b2km0

(2m)!ζ(−2m + 1)ζ(−2km, β0)X
−2m, (4.12)

and

G(
) :=
∞∑

j=3

(a jY + b j )(2π i X
) j ,

with

a j :=
(
j − 1 + 1/k

j

)(
1 + 1/k

2

)−1

,

b j := ζ(0, β0)

(
1

j
− a j

2

)
+

M∑

m=1

b2mk
0 ζ(−2m + 1)ζ(−2mk, β0)

(2m)!X2m

((
2m

j

)
− a j

(
2m

2

))
.

Note that since X is large, and M is a fixed positive integer,

b j = ζ(0, β0)

(
1

j
− a j

2

)
+ Ok,a0,b0

(
1

X

)
.

Thus,

b j

a j
= ζ(0, β0)

(
1

ja j
− 1

2

)
+ Ok,a0,b0

(
1

X

)
.
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Partitions into kth powers of terms in an arithmetic progression 1297

Also, ja j ≥ 1 for any j ≥ 3, and since ζ(0, β0) = 1/2 − β0 [2, p. 264], we deduce that
|ζ(0, β0)| ≤ 1/2, since 0 < β0 ≤ 1. Hence,

∣∣∣∣ζ(0, β0)

(
1

ja j
− 1

2

)∣∣∣∣ ≤ 3

4
.

Therefore, for X large, we conclude that
∣∣b j/a j

∣∣ ≤ 1, i.e., |b j | ≤ |a j | for all j ≥ 3.
We rewrite the integral on the right side in (4.11) as

ρne−CI =
∫ 3/(8πX)

−3/(8πX)

exp(−Y (2πX
)2 + G(
)) d


=
∫ 3/(8πX)

0
(exp(G(
)) + exp(G(−
))) exp(−Y (2πX
)2) d


= 2
∫ 3/(8πX)

0
R exp(G(
) − Y (2πX
)2) d


= 1

2πX
√
Y

∫ 9Y/16

0
t−1/2e−t R exp(H(t)) dt, (4.13)

where in the last step, we made the substitution t = Y (2πX
)2, and where

H(t) :=
∞∑

j=3

i j (a j + b jY
−1)t j/2Y 1− j/2

=
2J+2∑

j=3

i j (a j + b jY
−1)t j/2Y 1− j/2 +

∞∑

j=2J+3

i j (a j + b jY
−1)t j/2Y 1− j/2

=: HJ (t) +
∞∑

j=2J+3

i j (a j + b jY
−1)t j/2Y 1− j/2, (4.14)

for any fixed positive integer J . Note that for j ≥ 2,

|b2 j | ≤ a2 j ≤ a4 = 6k2 + 5k + 1

12k2
.

Therefore, for 0 ≤ t ≤ 9Y/16, where Y is sufficiently large, and k ≥ 2,

RHJ (t) = R

2J+2∑

j=3

i j (a j + b jY
−1)t j/2Y 1− j/2 =

J+1∑

j=2

(−1) j (a2 j Y + b2 j )t
j Y− j

≤ a4(Y + 1)
2J+2∑

j=2

(
t

Y

) j

≤ a4(Y + 1)
∞∑

j=2

(
t

Y

) j

= 6k2 + 5k + 1

12k2
(Y + 1)

(t/Y )2

1 − t/Y

≤ 9n

7
× 6k2 + 5k + 1

12k2
(1 + Y−1)t = 18k2 + 15k + 3

28k2
(1 + Y−1)t

=
(
18

28
+ 15

28k
+ 3

28k2

)
(1 + Y−1)t <

(
18

28
+ 15

56
+ 3

112

)
(1 + Y−1)t

= 105

112
(1 + Y−1)t <

105

112

(
1 + 1

105

)
t <

(
1 − 1

2016

)
t, (4.15)
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1298 B. C. Berndt et al.

where now we assume, at least, that Y > 105. Note that by the definition of HJ (t) in
(4.14), as we let J → ∞, HJ (t) approaches H(t). Thus, for a fixed positive real number
Z < 9Y/16, by (4.15),

∫ 9Y/16

Z
t−1/2e−tR exp(H(t)) dt ≤

∫ 9Y/16

Z
t−1/2e−t eRH(t) dt

≤
∫ 9Y/16

Z
t−1/2e−t exp

(
t − t

2016

)
dt

� Z−1/2
∫ 9Y/16

Z
e−t/(2016) dt � Z−1/2e−Z/(2016).

We let Z = 2016J log Y in the above estimates to obtain

∫ 9Y/16

Z
t−1/2e−t R exp(H(t)) dt � Y−J .

This, combined with (4.13) and (4.14), gives

2πX
√
Yρne−CI =

∫ Z

0
t−1/2e−t R exp(H(t)) dt + O

(
Y−J

)

=
∫ Z

0
t−1/2e−t R exp

⎛

⎝HJ (t) +
∞∑

j=2J+3

i j (a j + b jY
−1)t j/2Y 1− j/2

⎞

⎠ dt

+ O
(
Y−J

)
. (4.16)

For 0 ≤ t ≤ Z ,

∞∑

j=2J+3

i j (a j + b jY
−1)t j/2Y 1− j/2 � t J+3/2Y−1/2−J

1 − (t/Y )1/2
� t J+3/2Y−1/2−J .

Therefore,

exp

⎛

⎝
∞∑

j=2J+3

i j (a j + b jY
−1)t j/2Y 1− j/2

⎞

⎠ = 1 + O
(
t J+3/2Y−1/2−J

)
. (4.17)

Employing this in (4.16), we deduce that

2πX
√
Yρne−CI =

∫ Z

0
t−1/2e−tR exp(HJ (t))

(
1 + O

(
t J+3/2Y−1/2−J

) )
dt. (4.18)

From (4.15), we see that

RHJ (t) <

(
1 − 1

2016k2

)
t.

So, for the error term in (4.18), we find that
∫ Z

0
t J+1e−t R exp(HJ (t))Y

−1/2−J dt � Y−1/2−J
∫ ∞

0
e−t/(2016k2)t J+1 dt � Y−J .

(4.19)
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Partitions into kth powers of terms in an arithmetic progression 1299

Using this in (4.18), we find that

2πX
√
Yρne−CI =

∫ Z

0
t−1/2e−t R exp(HJ (t)) dt + O

(
Y−J

)

=
∫ Z

0
t−1/2e−t R

∞∑

j=0

HJ (t) j

j ! dt + O
(
Y−J

)
. (4.20)

Next, for 0 ≤ t ≤ Z = 2016J log Y,

HJ (t) =
2J+2∑

j=3

i j (a j + b jY
−1)t j/2Y 1− j/2 �

∞∑

j=3

Y (t/Y ) j/2 � Y−1/2t3/2 ≤ Y−1/4.

Therefore,

∣∣∣∣

∫ Z

0
t−1/2e−t R(HJ (t)

j ) dt

∣∣∣∣ ≤ Y− j/4.

This yields

∞∑

j=4J+4

1

j !
∫ Z

0
t−1/2e−tR(HJ (t)

j ) dt � Y−J .

Using this in (4.20), we obtain

2πX
√
Yρne−CI =

∫ Z

0
t−1/2e−t R

4J+3∑

j=0

1

j !HJ (t)
j dt + O

(
Y−J

)
. (4.21)

Recall from (4.14) that

HJ (t) =
2J+2∑

l=3

(al + blY
−1)Y 1−l/2(i t1/2)l =

2J+2∑

l=3

(
al(Y

−1/2)l−2 + bl(Y
−1/2)l

)
(i t1/2)l .

(4.22)

So, for a fixed Y , HJ (t) can be viewed as a polynomial in i t1/2 of degree 2J + 2 with real
coefficients. Therefore,

4J+3∑

j=0

1

j ! (HJ (t))
j =

(2J+2)(4J+3)∑

r=0

fr (Y
−1/2)(i t1/2)r , (4.23)

where fr (x) is a real polynomial in x of degree not larger than r . Also, from (4.22) it is not
hard to verify that

f0(x) = 1, f1(x) = f2(x) = 0, and fr (0) = 0,

for r ≥ 3, and the polynomial fr (x) is even (odd) when r is even (odd). So, fr (x) is indeed
a polynomial in Y−1 when r is even. Using these facts and (4.23) in (4.21), and replacing r
by 2r below, we conclude that
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1300 B. C. Berndt et al.

2πX
√
Yρne−CI =

∫ Z

0
t−1/2e−t R

(2J+2)(4J+3)∑

r=0

fr (Y
−1/2)(i t1/2)r dt + O

(
Y−J

)

=
∫ Z

0
t−1/2e−t

(J+1)(4J+3)∑

r=0

(−1)r f2r (Y
−1/2)tr dt + O

(
Y−J

)

=
(J+1)(4J+3)∑

r=0

(−1)r f2r (Y
−1/2)

∫ Z

0
tr−1/2e−t dt + O

(
Y−J

)

=
(J+1)(4J+3)∑

r=0

αr Y
−r
∫ Z

0
tr−1/2e−t dt + O

(
Y−J

)
, (4.24)

for certain real numbers αr , with α0 = 1. Note that, since Z = 2016k2 J log Y ,
∫ Z

0
tr−1/2e−t dt =

∫ ∞

0
tr−1/2e−t dt −

∫ ∞

Z
tr−1/2e−t dt

= �

(
r + 1

2

)
+ O

(
e−Z/2

∫ ∞

Z
tr−1/2e−t/2 dt

)

= �

(
r + 1

2

)
+ O

(
e−Z/2�

(
r + 1

2

))

= �

(
r + 1

2

)
+ O

(
Y−J

)
,

since J is fixed. Using this in (4.24), we conclude that

2πX
√
Yρne−CI =

(J+1)(4J+3)∑

r=0

(
αr Y

−r
(
�(r + 1/2) + O

(
Y−J

))
+ O

(
Y−J

))

=
J−1∑

r=0

αr Y
−r�

(
r + 1

2

)
+ Ok,a0,b0

(
Y−J

)

= √
π +

J−1∑

r=1

αr Y
−r�

(
r + 1

2

)
+ Ok,a0,b0

(
Y−J

)
, (4.25)

as α0 = 1. Since ρ = e−1/X , we deduce from (4.25) that

I = 1

2πX
√
Y
exp

( n

X
+ C

)(√
π +

J−1∑

r=1

αr Y
−r�

(
r + 1

2

)
+ Ok,a0,b0

(
Y−J

))

.

Therefore, by (4.10) and (4.11),
∫ 3/(8πX)

−3/(8πX)

ρ−n exp(	(ρe(
); A) − 2π in
) d


= 1

2πX
√
Y
exp

( n

X
+ C

)(√
π +

J−1∑

r=1

αr Y
−r�

(
r + 1

2

)
+ Ok,a0,b0

(
1

Y J

)

+ Ok,a0,b0

(
1

X2M−1

))
. (4.26)
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The remainder of the proof consists of showing that the contributions from the remaining
major arcs and the minor arcs are negligible. In other words, it suffices to show that

∫

U\[−3/(8πX),3/(8πX)]
ρ−n exp(	(ρe(
); A) − 2π in
) d


�k,a0,b0 exp
( n

X
+ C

) 1

XY J+1/2 .

Suppose that 
 ∈ M(1, 0)\[−3/(8πX), 3/(8πX)], so that 
 > 3/(8πX). Thus,

� = (1 + 4π2
2X2)−1/2 ≤ 4/5.

Invoking Lemma 3.2 with q = 1 and u = 0, we see that, for 
 ∈ M(1, 0),

θ = 
, |
| ≤ X1/k−1, q j = 1, u j = 0, S(k; q j , u j ) = 1,

and

	(ρe(
); A) = 1

b0k
�

(
1

k

)(
X

1 − 2π i X


)1/k

ζ

(
1 + 1

k

)
+ Oε

(
(1 + X1/2|θ |1/2) log X)

)

= 1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
(X�)1/k + Oε

(
X1/(2k)+ε

)
,

where ε > 0. Therefore, for ρ = e−1/X ,

exp(	(ρe(
); A)) = exp

(
1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
(X�)1/k

)(
1 + Oε

(
X

1
2k +ε

))

� exp

(
1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
(X�)1/k

)

� exp

((
4

5

)1/k 1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
X1/k

)

. (4.27)

In other words,

exp(	(ρe(
); A)) � exp

(
1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
X1/k − γk X

1/k
)

=: exp(D),

where

γk :=
(
1 − (4/5)1/k

) 1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
> 0.

Now we rewrite D in terms of C defined in (4.12) as follows:

D = C − γk X
1/k − ζ(0, β0) log(b

−k
0 X) − kζ ′(0, β0) − bk0

2
ζ(−k, β0)X

−1

−
M∑

m=1

b2km0

(2m)!ζ(−2m + 1)ζ(−2km, β0)X
−2m

= C − γk X
1/k − ζ(0, β0) log(b

−k
0 X) − kζ ′(0, β0) + Ok,a0,b0

(
1

X

)
.
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Therefore,

exp(D) = exp
(
C − γk X

1/k − ζ(0, β0) log(b
−k
0 X) − kζ ′(0, β0)

)(
1 + Ok,a0,b0

(
1

X

))

� X ζ(0,β0) exp
(
C − γk X

1/k
)

� X−A exp(C),

for any A > 0, since X is large. Using this in (4.27), we have

exp(	(ρe(
); A)) � X−A exp(C). (4.28)

Choose A large enough so that X−A � X−1Y−J−1/2, which is possible since X can be
written as a monomial in Y . Therefore, for ρ = e−1/X , we can conclude that
∫

M(1,0)\[−3/(8πX),3/(8πX)]
ρ−n exp(	(ρe(
); A) − 2π in
) d
 � exp

( n
X + C

)

XY J+1/2 . (4.29)

We now investigate the integral on the remaining major arcs. Let 
 ∈ M(q, u) with
q > 1. So, q ≤ X1/k , and θ := 
 − u/q satisfies |θ | ≤ q−1X1/k−1. This gives

q1/2+ε(1 + X1/2|θ |1/2) log X � q1/2+εX1/2+ε |θ |1/2
� q1/2+εX1/2+εq−1/2X1/(2k)−1/2

� qεX1/(2k)+3ε � X1/(2k)+3ε .

Once again, by an application of Lemma 3.2, we have

exp (	(ρe(
); A)) = exp

⎛

⎝ 1

b0k
�

(
1

k

)(
X

1 − 2π i X


)1/k ∞∑

j=1

S(k; q j , u j )

j1+1/kq j

⎞

⎠

×
(
1 + Oε

(
X1/(2k)+ε

))
. (4.30)

Recall, from Lemma 3.2 the notation

S(k; q j , u j ) =
q j∑

l=1

e(ukj l/q j ), q j = q/(q, j), u j = u j/(q, j).

If q| j , then we have q = (q, j), i.e., q j = 1 and S(k; q j , u j ) = 1. On the other hand, if
q � j , then q j > 1 and it is not difficult to see ([6, Lemma 1]) that there is a constant δk > 0
such that |S(k; q j , u j )| ≤ (1 − δk)q j . Thus,

∞∑

j=1

|S(k; q j , u j )|
j1+1/kq j

=
∞∑

j=1
q| j

|S(k; q j , u j )|
j1+1/kq j

+
∞∑

j=1
q� j

|S(k; q j , u j )|
j1+1/kq j

≤
∞∑

j=1
q| j

1 − δk

j1+1/k +
∞∑

j=1
q� j

1

j1+1/k

= (1 − δk)(1 − q−(k+1)/k)ζ(1 + 1/k) + q−(k+1)/kζ(1 + 1/k)

= (1 − δk + δkq
−(k+1)/k)ζ(1 + 1/k)

< (1 − δk/2)ζ(1 + 1/k),
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where in the third step, we have used the fact that
∑

q| j j−α = q−αζ(α), α > 1. Employing
this in (4.30), we have

exp (	(ρe(
); A)) � exp

(
1

b0k
(1 − δk/2)ζ(1 + 1/k)�(1/k)X1/k

)

� exp (C) X−1Y−J−1/2,

which can be justified using the arguments as in (4.27) leading up to (4.28). Let M̃ =
M\M(1, 0). Then, the bounds above imply that for ρ = e−1/X ,

∫

M̃
ρ−n exp(	(ρe(
); A) − 2π in
)d
 � exp

( n
X + C

)

XY J+1/2 . (4.31)

To obtain an upper bound for the contribution from the minor arcs, we first prove the
following lemma.

Lemma 4.1 For X defined in (1.4), andm in (4.2), let ρ = e−1/X ,
 ∈ m. Then for	(z; A),
defined in (3.4),

	(ρe(
); A) �ε X1/k−21−k/k+ε .

Proof Let K be a positive integer. As in the proof of Lemma 3.2, we have

	(ρe(
)) =
K∑

j=1

1

j

∫ ∞

0
kxk−1 j X−1e−xk j/X

∑

n≤x
n≡a0 (mod b0)

e( jnk
) dx + O
(
(X/K )1/k

)

=
K∑

j=1

1

j

∫ ∞

0
kxk−1 j X−1e−xk j/X

m=�(x−a0)/b0�∑

m=0

e( j
(a0 + b0m)k) dx

+ O
(
(X/K )1/k

)
. (4.32)

For each j , we use Dirichlet’s approximation theorem to choose u j ∈ Z≥0, q j ∈ N, so that

∣∣∣∣ jb
k
0m

k
 − u j

q j

∣∣∣∣ ≤ q−1
j X1/k−1, and q j ≤ X1−1/k .

By Weyl’s inequality [20, Lemma 2.5],

m=�(x−a0)/b0�∑

m=0

e( j
(a0 + b0m)k) �ε x1+ε−2−(k+1) + x1+εq−2−(k−1)

j + x1+ε(q j/x
k)2

−(k−1)
.

Note that for any λ > 0, an integration by parts gives

∫ ∞

0
xλ( jkxk−1X−1e−xk j/X ) dx �

(
X

j

)λ/k

. (4.33)

Also, since 
 /∈ M, we have jbk0m
kq j > X1/k . Furthermore, recall that q j ≤ X1−1/k .

Invoking (4.33), and using these bounds for q j in (4.32), we conclude that
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K∑

j=1

1

j

∫ ∞

1
kxk−1 j X−1e−xk j/X

m=�(x−a0)/b0�∑

m=0

e( j
(a0 + b0m)k) dx

�e

K∑

j=1

1

j

⎛

⎝
(
X

j

) 1+ε
k − 1

k2k−1

+
(
X

j

) 1+ε
k

q−2−(k−1)

j +
(
X

j

) 1+ε
k − 1

2k−1

q2
−(k−1)

j

⎞

⎠

�e X
1+ε
k − 1

k2k−1

K∑

j=1

(
j
−1− 1+ε

k + 1
k2k−1 + j

−1− 1+ε
k + 1

k2k−1

)
+
(
X

K

)1/k

�e X
1
k +ε− 1

k2k−1 +
(
X

K

)1/k

.

Letting K approach infinity, we obtain the desired bounds. �

For 
 ∈ m, by Lemma 4.1,

	(ρe(
); A) � X
1
k − 1

22015k k .

Therefore, for some positive constant ν < 1,

	(ρe(
); A) ≤ ν
1

b0k
�

(
1

k

)
ζ

(
k + 1

k

)
X1/k .

Using the argument in (4.27) leading to (4.28), we conclude that
∫

m
ρ−n exp(	(ρe(
); A) − 2π in
) d
 � exp

( n

X
+ C

)
X−1Y−J−1/2. (4.34)

Combining (4.1), (4.26), (4.29), (4.31), and (4.34), we deduce that

pA(n) = 1

2πX
√
Y
exp

( n

X
+ C

)

×
(

√
π +

J−1∑

r=1

�(r + 1/2)
αr

Y r
+ O

(
1

Y J

)
+ O

(
1

X2M−1

))

.

Substituting the values of C and n/X from (4.12) and (1.4), respectively, in the foregoing
expression, we obtain the desired bounds for pA(n). The remark about the disappearance
of the terms involving M follows from our earlier discussion after (4.5). This completes the
proof of Theorem 1.2.

5 Future directions

In this paper, we are concerned with partitions into parts of the form (a0 + mb0)k , for some
fixed positive integers k, a0, and b0 with (a0, b0) = 1. It would be interesting to knowwhether
there are versions of Theorems 1.1 and 1.2 for a more general partition function, say, where
parts are of the form of a general polynomial,

∑k
j=1 a jm j for some fixed positive integers

a j . Since the focus of this paper is about parity and asymptotics of partitions into powers of
a fixed residue, we do not pursue this here, but it would be interesting to find analogues of
Theorems 1.1 and 1.2.
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Table 1 Counting the number of even and odd values of selected partition functions

k a0 b0 Even Odd k a0 b0 Even Odd k a0 b0 Even Odd

1 1 1 49800 50200 1 5 6 49850 50150 1 1 9 50133 49867

1 1 2 99484 516 1 1 7 50103 49897 1 2 9 50040 49960

1 1 3 49991 50009 1 2 7 49845 50155 1 4 9 50356 49644

1 2 3 50082 49918 1 3 7 49861 50139 1 5 9 50306 49694

1 1 4 49815 50185 1 4 7 50048 49952 1 7 9 49899 50101

1 3 4 49945 50055 1 5 7 50050 49950 1 8 9 50129 49871

1 1 5 49715 50285 1 6 7 50009 49991 1 1 10 49801 50199

1 2 5 50044 49956 1 1 8 49867 50133 1 3 10 50231 49769

1 3 5 50066 49934 1 3 8 50007 49993 1 7 10 50246 49754

1 4 5 49668 50332 1 5 8 50130 49870 1 9 10 49852 50148

1 1 6 50021 49980 1 7 8 50104 49896 1 1 11 49929 50071

Yang [24] considered the partition function p�(n) given by

∞∑

n=1

p�(n)xn =
∞∏

m=1

(1 − xm)−�(m),

where �(m) denotes the von Mangoldt function. Improving an asymptotic formula of Rich-
mond [18] for p�(n), Yang proved that the Riemann Hypothesis holds if and only if the error
term in Richmond’s theorem can be improved to a certain order. One may ask if Theorem 1.2
can be used to provide further insight into representations of integers as sums of kth powers,
in analogy with Yang’s theorem.

Several lower bounds have been obtained for the number of times the ordinary partition
function p(n) is even (odd) for n ≤ N , as N approaches infinity (for example, see Ono [17],
and Nicolas [10]). With regard to Theorem 1.1, it would be nice to obtain similar results for
the function pAk (a,b0)(n) studied in this paper. In fact, numerical experiments suggest that
like p(n), this function also assumes even values about half the time in almost all the cases,
as explained below.

For positive integers n up to 100000, and for certain values of a0, b0, and k, we provide
two tables, Table 1 and Table 2 with the number of times pAk (a,b0)(n) is even, and odd,
respectively.

We pose the following two conjectures.

Conjecture 5.1 For positive integers a0 ≤ b0 with (a0, b0) = 1, let pA1(a0,b0)(n) be as in
(1.2)with A1(a0, b0) defined in (1.1). Then, for b0 �= 2, pA1(a0,b0) is even (odd) approximately
half the time, i.e. for N ∈ N,

lim
N→∞

1

N
#{1 ≤ n ≤ N : pA1(a0,b0)(n) is even} = 1

2
. (5.1)

It is clear from Table 1 that for b0 = 2 (hence a0 = 1) and k = 1, (5.1) is nowhere close
to being true. In fact, in this case by first applying Euler’s theorem (number of partitions
into distinct parts equals number of partitions into odd parts), and then Euler’s pentagonal
number theorem (modulo 2), we obtain that for some positive constant ν,

#{1 ≤ n ≤ N : pA1(1,2) is odd} ∼ ν
√
N ,

as N tends to infinity.
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Table 2 Counting the numbers of even and odd values of selected partition functions

k a0 b0 Even Odd k a0 b0 Even Odd k a0 b0 Even Odd

2 1 1 50299 49701 2 1 7 50362 49638 3 1 5 49606 50394

2 1 2 49696 50304 2 2 7 49971 50029 3 2 5 50475 49525

2 1 3 49581 50419 2 3 7 50110 49890 3 3 5 51020 48980

2 2 3 50013 49987 2 4 7 50333 49667 3 4 5 54063 45937

2 1 4 50059 49941 2 5 7 50201 49879 4 1 1 50084 49916

2 3 4 50001 49999 2 6 7 50695 49305 4 1 2 50235 49765

2 1 5 50333 49667 3 1 1 50286 49714 4 1 3 49385 50614

2 2 5 49809 50191 3 1 2 50066 49934 4 2 3 54628 45372

2 3 5 50043 49957 3 1 3 49931 50069 5 1 1 50202 49798

2 4 5 50540 49460 3 2 3 50459 49541 5 1 2 48596 51404

2 1 6 50134 49866 3 1 4 50283 49717 6 1 1 49869 50131

2 5 6 50174 49826 3 3 4 52350 47650 7 1 1 50456 49544

Conjecture 5.2 For positive integers a0, b0 and k with (a0, b0) = 1, a0 ≤ b0, and k ≥ 2,
let pAk (a0,b0)(n) be as in (1.2) with Ak(a0, b0) defined in (1.1). Then, pAk (a0,b0) is even
approximately half the time.

Notice that pAk (a0,b0)(n) equals zero for all n with 1 < n < ak0 . Thus for “large” a0k, one
needs to compute this function for n up to a “large” number N before one can start to witness
this phenomena, as is clear from the two tables above.

Note that after Conjecture 5.1 we discussed a case for which (5.1) is invalid. However,
Theorem 1.1 has no such exceptions, and our proof is uniform for all k and for all arithmetic
progressions.
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