Dec 2017

Letter to Arthur Baragar on a “Crystallographic Sphere Packing”

from Alex Kontorovich

Dear Arthur,

As mentioned when we discussed, the “Structure Theorem for Crystallographic Packings” (see Theorem 31 in the paper [KN17] with Kei Nakamura) allows one to just “look” at a Coxeter diagram and immediately see the corresponding sphere packing. Let me carry out the calculation explicitly (and post the corresponding Mathematica file) for the case of the integer orthogonal group $O_F(\mathbb{Z})$ preserving the quadratic form F, where

$$F(x_1, \ldots, x_5) := x_1^2 + \cdots + x_4^2 - 3x_5^2.$$

This orthogonal group $O_F(\mathbb{Z})$ is reflective, meaning that the group generated by all reflections in $O_F(\mathbb{Z})$ is itself a lattice (i.e. is of finite index in $O_F(\mathbb{Z})$). One proves this by running Vinberg’s algorithm [Vin72], as carried out in Mcleod [Mcl11] (see the case $n = 4$ in Mcleod’s Figure 1). The resulting reflection group has Coxeter diagram given by:

```
1 2 3 4 5 6
```

The meaning of this diagram is that “walls” (spheres/planes) labelled (1) and (2) meet at infinity (tangentially), (2) and (3) meet at dihedral angle $\pi/4$, (3) and (4) meet at dihedral angle $\pi/3$, as do (4) and (5), and lastly, (5) and (6) meet at dihedral angle $\pi/6$, with all other dihedral angles being $\pi/2$ (that is, orthogonal). To build a packing based on this diagram, we will need to realize the walls of a configuration explicitly. Instead of running Vinberg’s algorithm (the knowledge of which is not necessary for what follows), since we are already given the diagram, we will reverse-engineer the configuration, as follows.

We will use inversive coordinates (see [Kon17]), attaching to a sphere S of radius r and center (x, y, z) (oriented internally) the vector

$$v_S := \left(\frac{1}{r}, \frac{1}{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right),$$

where the “co-radius” \hat{r} is the radius of the sphere after inversion through the unit sphere; one calculates that

$$\hat{r} = \frac{r}{x^2 + y^2 + z^2 - r^2}.$$

For a sphere with external orientation, r is negative. If S is a plane, the inversive coordinates are obtained by taking limits of appropriate spheres as $r \to \infty$, so the second entry in v_S becomes 0, and it turns out the last three coordinates become the unit normal vector to the plane in the direction of its interior.
From (♠), it is immediate that \(Q(v_S) = -1 \), where \(Q \) is the quadratic form with half-Hessian

\[
Q = \begin{pmatrix}
\frac{1}{2} & 1 & 0 & 0 & 0 \\
1 & -1 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -1 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} & -1 & \frac{\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -1
\end{pmatrix}.
\]

(Here \(I_3 \) is the \(3 \times 3 \) identity matrix.) The dihedral angle \(\theta \) between spheres given by inversive coordinates \(v_1, v_2 \) is computed by the “inversive product”

\[v_1 \ast v_2 = \cos \theta, \quad \text{where} \quad v_1 \ast v_2 := v_1 \cdot Q \cdot v_2^\dagger, \]

and “\(\dagger \)” denotes transpose. If the spheres do not meet but instead are separated by a hyperbolic distance \(d \), then \(v_1 \ast v_2 = \cosh d \). Hence to realize the above Coxeter diagram explicitly as walls, we will need to find inversive coordinates \(v_1, \ldots, v_6 \) of the six walls in the diagram, so that the “Gram matrix” \(G = [v_1 \ast v_j] \) of all inversive products becomes:

\[
G = \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -1 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} & -1 & \frac{\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -1
\end{pmatrix}.
\]

To do this, may take (1) and (2) to be horizontal planes (tangent at infinity), and since (4), (5), and (6) are orthogonal to (1) and (2), they must then be vertical planes; moreover these three form a 30-60-90 triangle. So we may already assign (1) to have inversive coordinates, say,

\[v_1 = (0, 0, 0, 0, -1), \]

which means that (1) is the \(xy \)-plane with normal vector pointing down (i.e., its interior is the lower half-space). The wall (2) will similarly have coordinates

\[v_2 = (?, 0, 0, 0, 1), \]

that is, a plane with upwards pointing normal vector, but we’re not sure yet where in space it will be positioned. Let us choose (4) to be the \(xz \)-plane with normal pointing in the positive-\(y \) direction:

\[v_4 = (0, 0, 0, 1, 0). \]

Then (5) can also be a vertical plane through the origin, and in order to meet (4) at angle \(\pi/3 \), we set

\[v_5 = (0, 0, \frac{\sqrt{3}}{2}, -\frac{1}{2}, 0). \]

This determines that wall (6) has coordinates

\[v_6 = (?, 0, -1, 0, 0), \]

and “\(? \)” here can be chosen arbitrarily, say, 2, so that (6) becomes the plane \(x = 1 \). Having determined \(v_1, v_4, v_5, \) and \(v_6 \), we may compute the coordinates, \(v_3 \), of (3) by using knowledge of its inversive products with \(v_1, v_4, v_5, \) and \(v_6 \). We find (see the Mathematica file) that

\[
v_3 = \left(-\frac{4}{\sqrt{3}} + \frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, -\frac{1}{2}, 0 \right).
\]
Now the “?” in v_2 may be determined by solving $v_2 \star v_3 = \cos \pi/4 = \sqrt{2}/2$; we compute that

$$v_2 = \left(2\sqrt{6}, 0, 0, 1\right).$$

Collecting these vectors into a matrix $V = \{v_i\}$ whose rows are the coordinates,

$$V = \begin{pmatrix}
0 & 0 & 0 & 0 & -1 \\
2\sqrt{6} & 0 & 0 & 0 & 1 \\
-\frac{4}{\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
2 & 0 & -1 & 0 & 0
\end{pmatrix},$$

we may check that indeed

$$V \cdot Q \cdot V^\dagger = G.$$

Thus we have the desired Gramian (what you would call “intersection pairing”). Here’s the configuration in space:

Now our Structure Theorem says that one obtains a packing by taking the “cluster” to be just the wall (1), and letting reflections through to rest (the “cocluster”) act on (1). The reflection R_v through a sphere S given by inversive coordinates v is a Mobius transformation, that is, $R_v \in O_Q(\mathbb{R})$, and is given by the standard formula

$$R_v: x \mapsto x - 2\frac{x \star v}{v \star v}v,$$

that is,

$$R_v = I + 2Q \cdot v^\dagger \cdot v.$$

(This is because v is actually the normal vector in “Lorentz space” to the plane corresponding to S — see again [Kon17].) Thus our “thin” group $\Gamma < O_Q(\mathbb{R})$ acts on the right on v_1 and is
generated by the reflections:

\[R_2 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
24 & 1 & 0 & 0 & 2\sqrt{6} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-4\sqrt{6} & 0 & 0 & 0 & -1
\end{pmatrix}, \quad R_3 = \begin{pmatrix}
\frac{1}{3} & \frac{12}{3} & -\frac{1}{12} & -\frac{1}{4\sqrt{3}} & 0 \\
\frac{16}{3} & \frac{1}{3} & \frac{2}{3} & -\sqrt{\frac{2}{3}} & 0 \\
-\frac{4}{3} & \frac{6}{3} & \frac{5}{6} & -\frac{1}{2\sqrt{3}} & 0 \\
-\frac{4}{\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{3}} & \frac{5}{3} & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad R_4 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad R_5 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{243}} & \frac{1}{\sqrt{243}} & 0 \\
0 & 0 & \frac{1}{\sqrt{243}} & \frac{1}{\sqrt{243}} & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad R_6 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & -2 & 0 & 0 \\
4 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.

Now we can look at the orbit \(O = v_1 \cdot \Gamma: \)

And that’s all there is to it! Now, this is all just to construct the packing; issues of (super)integrality, etc, are discussed in [KN17]. Note that, though we started with a nice integral form \(F \), the vectors \(v_j \) and reflection matrices \(R_j \) can have arbitrary (not even algebraic, should we choose to apply some random Mobius transformation to the whole picture) entries. But because the “supergroup” (see [KN17]) of \(\Gamma \) is arithmetic (in particular, it is commensurate to \(O_F(\mathbb{Z}) \)), we know that there exist configurations of this packing in which all bends (reciprocals of radii) are integers.

Best wishes,

Alex
REFERENCES

