
ON TRACE SETS OF RESTRICTED CONTINUED
FRACTION SEMIGROUPS

ALEX KONTOROVICH

Abstract. We record an argument due to Jean Bourgain which
gives lower bounds on the size of the trace sets of certain semi-
groups related to continued fractions on finite alphabets. These
bounds are motivated by the “Classical Arithmetic Chaos” Con-
jecture of McMullen [McM12]. Specifically, a power is gained in
the asymptotic size of the trace set over a “trivial” exponent. The
proof involves a new application of the Balog-Szemerédi-Gowers
Lemma from additive combinatorics.
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1. Introduction

We begin with some personal remarks and reminiscences on the oc-
casion of this Dedicated Volume; we allow ourselves to be descriptive,
returning to precision and science in §1.1. My collaboration with Jean
Bourgain began in the fall of 2008, when I applied for the 2009-10 IAS
Special Year in Analytic Number Theory. To explain properly what
we were trying to accomplish, I have to back up to my 2007 thesis.
There I was interested in a kind of mixture between the theorems of
Friedlander-Iwaniec [FI98] and Piatetskii-Shapiro [Pu53], the former
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being that the polynomial

FI(x, y) := x2 + (y2)2 (1.1)

represents infinitely many primes, and the latter that the sequence

PS(n) := bnαc
does too, for sufficiently small values of the fixed constant α > 1. Both
sequences are “thin”: the number of integers up toX represented by FI
is about X3/4, whereas for PS it is about X1/α, so it is rather difficult to
produce primes in such sparse sequences1 (the latter being still much
easier than the former!2). The nice thing about PS is that there is
a parameter, α, to play with, and thus a potential range of thinness
where one can succeed. The main idea of my thesis (suggested to me
by Peter Sarnak, motivated by his work with Jean and Alex Gamburd
on the Affine Sieve [BGS10]), was to see whether an amalgam of the
two was possible in the group setting; by this we mean the following.

Let Γ < SL2(Z) be some Zariski-dense subgroup of the modular
group; if it is of infinite index (or even just non-congruence!), then we
have no idea exactly which pairs (c, d) arise as bottom rows, say, of

elements in the group
( ∗ ∗
c d

) ?
∈ Γ. We would, in principle, first need

to try to write any such matrices as words in the generators of Γ.
Regardless, consider the sequence

S := {c2 + d2 :
( ∗ ∗
c d

)
∈ Γ}. (1.2)

The total number of such values c2+d2 < X can be counted effectively,
that is, with power savings, as was done in my thesis [Kon09] (under
a technical assumption that was removed in [KO12]). The answer is
roughly: Xδ, where δ, assumed to exceed one-half, is the critical expo-
nent of Γ (equivalently [Pat75], the Hausdorff dimension of the limit set
of Γ; the condition δ > 1/2 is needed to relate δ to the base eigenvalue
λ0 = δ(1 − δ) of the hyperbolic Laplacian acting on square-integrable
functions on the upper half plane H invariant under Γ). Since one can
exhibit Γ with δ arbitrarily close to 1, one can play with this “thin-
ness” parameter, similarly to Piatetskii-Shapiro, where 1/α < 1 plays
the role of δ. If instead we returned to all integer pairs (c, d) but forced
d = y2 to be a perfect square, then we would exactly be in the situation
of Friedlander-Iwaniec (1.1). So this set S has both features, studying
c2 + d2 for restricted (by the group) values of (c, d), with the flexibility
of a parameter δ. Since this phenomenon of δ being thin but not “too”

1Heath-Brown [HB01] was later able to do the same for the even thinner poly-
nomial x3 + 2y3, which takes about X2/3 values up to X.

2See also [Kon12] for a simpler instance of this “parity breaking.”
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thin will appear again and again, let me refer to it as being slightly
thin, that is, allowing δ < 1 but also requiring that δ > 1−ε0 for some
(usually small) ε0 > 0.

The problem of producing primes in S for any value of δ < 1 is still
wide open. The tools in my thesis managed to produce R-almost primes
(that is, numbers with at most R prime factors) for R = 13 in slightly
thin groups,3 and in my application to IAS, I had proposed to use not
just the linear sieve, but to introduce bilinear forms techniques into the
affine sieve to attack this problem, with the hope of producing actual
primes. Admittedly, this is perhaps a rather niche question, but one
I enjoyed thinking about for its mixture of geometric, combinatorial,
spectral, dynamical, algebraic, and number theoretic techniques.

Jean must have read my application, because the next time I visited
Peter at IAS, Jean requested to speak with me. At our meeting, he
outlined how to execute such bilinear forms ideas to produce primes,
not in S, but in certain algebraic traces of entries of slightly thin sub-
groups of the Picard group SL2(Z[i]), the added dimension allowing
for more variables.4 Together, we whittled away at the problem until
we could produce, for slightly thin subgroups of the modular group
SL2(Z), primes in the values of the linear map f :

(
a b
c d

)
7→ d, say

(note that, for S in (1.2), we would instead apply a quadratic map
f :
(
a b
c d

)
7→ c2 + d2). At some point during a conversation with Jean

and Peter, we realized that in fact we already had almost all the tools
needed to prove something much stronger: the reason we were able
to produce primes values of f is because we were actually producing
almost all numbers! (This is in contradistinction to f = c2 + d2 which
is genuinely a thin subset of Z.5)

Thus producing an almost-all statement in the f = d values of
slightly thin subgroups of SL2(Z) became our first joint paper [BK10].
It required an additional stubborn technical ingredient (of indepen-
dent interest) to count effectively in bisectors in thin groups, which
we proved in a companion paper jointly also with Peter [BKS10]; such
ideas have since been generalized many times by many authors. We had
also noticed some similarities between this problem and the local-global
problem for Apollonian packings (see [BK10, Remark 1.12]), but there
didn’t seem to be an obvious way to transfer our technology, given that

3It turns out that I should have been able to product R-almost primes with
R = 7, see [HK15].

4Much later, I would exploit a similar feature in [Kon19].
5For a formal definition of thinness in a general context, see [Kon14, p. 954].
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the Apollonian group was not slightly thin, but had a fixed dimension,
δ ≈ 1.30; there was no parameter to adjust!

At this point, I thought our collaboration was basically done and
I could return to civilian life. But as luck would have it, Curt Mc-
Mullen pointed out to us the similarity between the problem we had
just attacked and Zaremba’s conjecture [Zar72] on bounded continued
fractions of rationals. (See, e.g., [Kon13] for a detailed discussion of this
problem.) We should have already been aware of the connection, since
years before, Jeff Lagarias had pointed out to me the similarity between
Zaremba and Apollonius (see [GLM+03, p. 37]), but somehow it took
Curt’s urging for us to begin working on it. The Zaremba problem was
nearly identical, except that we were missing a number of technical in-
gredients, including the main consequences of [BKS10]. The reason is
that, in Zaremba, one must deal with a sub-semi-group of SL2(Z), not
a subgroup, thus rendering our spectral and representation theoretic
counting developments useless. Nevertheless, one could substitute the
thermodynamic formalism to count [Hen89, BGS11], and we were able
to show density-one for Zaremba [BK14a]. Here the analog of being
“slightly thin” is having a sufficiently large allowed alphabet for the
restricted partial quotients.

Again I thought that would basically be the end of things, but about
a year later, we realized that using some rather different techniques
(relying not on “slight thinness,” but instead exploiting the existence of
values of shifted binary quadratic forms inside the bend set, as observed
by Sarnak [Sar07a], and taking inspiration from Jean’s paper [Bou12]
on prime values in Apollonian packings), we could actually extend the
local-global technology to prove density-one in the Apollonian problem,
see [BK14b].

It quickly became clear that the bilinear forms technology developed
on our “Orbital Circle Method” phase could be applied much more
widely, and we turned our attention back to the original sequence (1.2)
from my thesis. There we were able to implement these ideas, along
with some others (e.g., the “dispersion method” in the group context),
to push past the sieve level of distribution (see [Kon14]) which follows
“for free” from counting arguments and “expansion” (that is, certain
families of Cayley graphs being expanders), to a level “Beyond Ex-
pansion.” In the end, we could produce, for any slightly thin group,
R-almost primes in S, with R = 4 [BK15]. This became Part I in our
Beyond Expansion program.

For Part II [BK17], we turned our attention to a problem of Einsiedler-
Lindenstrauss-Michel-Venkatesh, which itself actually served as the
original motivation for the Affine Sieve (see [Sar07b]). This problem,
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involving the same semigroup as in our Zaremba work, required “only”
a square-free sieve, but as it turned out, expansion alone was just barely
insufficient to solve the problem. An added difficulty was that, unlike
Zaremba where the linear function on the semigroup was f :

(
a b
c d

)
7→ d,

here one needed to deal with the trace, f :
(
a b
c d

)
7→ a + d. The nice

thing about f = d is that it is already itself bilinear, being expressible
as f(γ) = 〈e2, γe2〉 (with e2 = (0, 1)t), but trace is not. Nevertheless
with some new ideas, we were able to solve the problem, producing
an infinitude of “low-lying” but “fundamental” closed geodesics on the
modular surface. In Part III of the series [BK19], we added the adjec-
tive “reciprocal” to the closed geodesics, inching such a tad closer to
the Markoff geodesics they are meant to imitate.

And the final Part IV of the series, which is related to the theo-
rem we wish to explain in this note, was motivated by the “Classical
Arithmetic Chaos Conjecture” posed by Curt McMullen, see §1.1. This
problem was basically too difficult for us to say very much about at
all, except that we could improve the “expansion” exponent of distri-
bution in the trace set all the way to what it would have been, had
some analog of the Ramanujan conjecture (on average) existed in this
setting, see [BK18].

Thus ended my collaboration with Jean Bourgain. Echoing what
others have said, with his passing, the mathematical world has lost
an Archimedes, an Euler, a Gauss. It was an incredible privilege and
honor to work with Jean, and I am forever grateful.

The last few of our papers were being finalized as Jean was under-
going various surgeries and chemotherapies, and one only appeared
posthumously (one of ours, that is; I’m sure Jean will continue co-
authoring posthumously for a few more years). In our conversations
over the last few years, he never once showed any signs of fear or despair
at his condition, treating “mundane” things very matter-of-factly, and
wanting to steer discussions back to theorems and (scientific) battles
still to be waged.

Of Jean’s many hand-written and scanned notes to me (as in the ex-
ample below), all have been converted to publications save one, which
is the one we aim to record now. To be perfectly honest, Jean thought
it should be possible to do more here and wanted to return to the
problem later, not publish things as they stand. But now there is no
“later,” so I would like to record his theorem as is. At some point,
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Michael Magee and I worked on this note as an appendix to our pa-
per with Jean (which itself later became an appendix); I would like to
thank Michael for his work on it, and his permission to re-use some of
it here. On to the science.
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1.1. McMullen’s Arithmetic Chaos Conjecture.
For x ∈ R, we write its continued fraction expansion as

x = [a0; a1, . . . , a`, . . .] = a0 +
1

a1 +
1

a2 +
.. .

1

a` +
.. .

,

which may be either finite or infinite; here a0 ∈ Z and for j ≥ 1, the
“partial quotients” aj are positive integers. The bar in

[a0, a1, . . . , a`]

denotes periodically repeating partial quotients; it is very well-known
that such numbers are quadratic surds. For a finite “alphabet” A ⊂ N,
let CA denote the Cantor-like set of numbers in the unit interval whose
partial quotients lie in A,

CA := {[0; a1, . . . , a`, . . . ] : a1, a2, · · · ∈ A},

and let δA be its Hausdorff dimension,

δA := H.dim(CA) ∈ [0, 1).

Motivated by conjectures on the rigidity of higher-rank diagonal flows,
McMullen [McM09, McM12] formulated the following rank-one prob-
lem.

Conjecture 1.3 (McMullen’s Classical Arithmetic Chaos Conjecture).
Let A be any alphabet with dimension δA exceeding 1/2. Then for any
real quadratic field K, the set

{[a0, a1, . . . , a`] ∈ K : all aj ∈ A} (1.4)

grows exponentially as the length `→∞.

Exponential growth is not known for a single choice of A and K.
Worse yet, it is unknown unconditionally whether there is an alphabet
A such that every K has at least one surd with all partial quotients in
A, that is, whether the union over all ` of (1.4) is non-empty! On the
other hand, Mercat [Mer12] has proven this last statement assuming
the validity of Zaremba’s Conjecture [Zar72, BK14a]. Unconditionally,
Wilson [Wil80] has shown that for any K, there is some A = A(K) so
that (1.4) is non-empty infinitely often; see also [Woo78].
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1.2. Thin Semi-Groups.
To connect this problem to “thin semigroups,” let GA ⊂ GL2(Z)

denote the semi-group generated by matrices of the form
(
0 1
1 a

)
with

a ∈ A,

GA :=

〈(
0 1
1 a

)
: a ∈ A

〉+

,

where the superscript “+” indicates generation without inverses. (See
[Kon16, Lecture 3] for why GA is “thin”.) This matrix semi-group was
introduced in [BK14a] to study Zaremba’s Conjecture, but is equally
germane to McMullen’s problem, due to the following elementary ob-
servation: if

γ =

(
0 1
1 a0

)
· · ·
(

0 1
1 a`

)
∈ GA,

then

Q([a0, . . . , a`]) = K,

where

K = Q(
√

tr2 γ − 4 det γ).

(Recall that det γ = ±1.) That is, one can read off the discriminant of
the real quadratic field corresponding to adjoining [a0, . . . , a`] in terms
of the trace of γ.

1.3. The Local-Global and Positive Density Conjectures.
The above simple observation motivates one to study the set TA of

traces of GA,

TA := {tr γ : γ ∈ GA}.
Indeed, Bourgain and the author have formulated a certain “Local-
Global Conjecture” for linear forms on GA (see [Kon16, Conjecture
6.3.1]) which implies both Zaremba’s Conjecture and McMullen’s Con-
jecture 1.3, in particular predicting which traces should arise and with
what multiplicity. A weaker problem, formulated already by McMullen
[McM12], is the following.

Conjecture 1.5 (McMullen’s Positive Density Conjecture for Traces).
Let A be an alphabet with δA > 1/2. Then the trace set TA comprises
a positive proportion of integers, that is,

#TA ∩ [1, N ] � N, (1.6)

as N →∞.

The restriction to alphabets having δA exceed 1/2 is necessary, in
light of the following result of Hensley [Hen89].
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Theorem 1.7 (Hensley). As N →∞,

|GA ∩BN | � N2δA . (1.8)

Indeed, if δA < 1/2, then TA is automatically a thin subset of the
integers.

This positive density Conjecture 1.5, despite being much weaker than
a full local-global statement, is also wide open, even for any choice of
(finite) alphabet A. If instead of traces, one considers the set DA of
“bottom-right” entries,

DA := {d ∈ N : ∃
(
∗ ∗
∗ d

)
∈ GA},

then one can show not just positive density but density one for “slightly
thin” alphabets (ones with δA > 1 − ε0), see [BK14a]. Zaremba’s
conjecture is equivalent to a local-global statement for DA. The proof
technique there shows the following.

Theorem 1.9 ([BK14a]). Let A be an alphabet with δ = δA sufficiently
near 1, δ > 1 − ε0. Then there exist subsets SN ⊂ GA ∩ BN of nearly
full cardinality,

#SN � N2δ

such that, for every d � N , the multiplicity of the map
(
a b
c d

)
7→ d is

bounded by:

#{γ ∈ SN , γ =
( ∗ ∗
∗ d
)
} � N2δ−1. (1.10)

This estimate will be the only “black box” used; besides this, the
paper is self-contained.

1.4. Statements of the Main Theorems.
Returning to the trace set TA, the “trivial” bound towards (1.6) is

#TA ∩ [1, N ]� N2δA−1−o(1). (1.11)

Indeed, a simple argument shows that each trace t < N occurs with
multiplicity � N1+o(1), whence (1.11) follows from (1.8).

Our goal here is to give Jean Bourgain’s proofs of the following two
results, which improve over this.

Theorem 1.12. When δA > 1/2,

#TA ∩ [1, N ]� N δ−o(1). (1.13)

Theorem 1.14. Suppose {1, 2, 3} ⊂ A and δ > 1 − ε0 so that (1.10)
holds. Then as N →∞,

#TA ∩ [1, N ]� N δ+ 1−δ
29
−o(1). (1.15)
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Remark 1.16. The proof of Theorem 1.12 is elementary, and yet it al-
ready improves upon (1.11), sometimes dramatically so. Indeed, when
A = {1, 2}, we have δ{1,2} ≈ 0.531 [Goo41]; the trivial bound (1.11)
gives only

#T{1,2} ∩ [1, N ]� N0.062,

while (1.13) gives
#T{1,2} ∩ [1, N ]� N0.531.

Remark 1.17. The original work [BK14a] showed (1.10) as long as
δ > 0.984, and this bound was relaxed in [FK14] and [Kan17] to
δ > 0.781; the latter holds already for A = {1, 2, 3, 4} which has di-
mension δ{1,2,3,4} ≈ 0.789, see [Jen04]. Thus for this alphabet Theorem
1.14 improves from (1.13) that

#T{1,2,3,4} ∩ [1, N ]� N0.789,

to
#T{1,2,3,4} ∩ [1, N ]� N0.796.

The proof of Theorem 1.14 applies more generally to give an improve-
ment in the exponent whenever δ > 1/2 and A contains a 3-term
progression; but for ease of exposition, we state this simpler version.

The core of Theorem 1.14 is the following version of the Balog-
Szemerédi-Gowers Lemma with polynomial dependencies of constants
on one another. The original version of the Balog-Szemerédi-Gowers
Lemma with polynomial dependencies of constants appeared in Gow-
ers’ work on arithmetic progressions [Gow98].

For subsets A,B of an ambient additive group and G ⊂ A × B an
arbitrary subset, we use the notation

A
G
+ B := {a+ b : (a, b) ∈ G}.

Lemma 1.18. Let A ⊂ Z be a finite set and G ⊂ A× A satisfy

|G| > 1

K
|A|2

and

|A
G
+ A| ≤ |A|. (1.19)

Then there is a subset A′ ⊂ A such that

|(A′ × A′) ∩G| � K−2|A|2

and
|A′ − A′| � K13|A|,

where the implied constants are absolute.
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This version is a refinement of Bourgain’s work [Bou99, Lemma 2.1]
on the dimension of Kakeya sets. To make the argument almost self-
contained (modulo Theorem 1.9), we give a quick proof of Lemma 1.18
in §5.

1.5. Notation.
Whenever we write BN we mean the ball in the space of 2×2 matri-

ces with respect to the `1 norm on their entries, and when we write ‖g‖
we mean the `1 norm. We write sqf for the squarefree part of a number
and ω for the number of distinct prime factors of a number. We use
Vinogradov notation �,�,O,o in the standard way and indicate de-
pendence of implied constants on other parameters by subscripts, e.g.
�ε. We use f � g to mean f � g and g � f . Normally we view A
as fixed so any implied constant may depend on A. For a subset A of
an ambient additive group we write A+A and A−A for setwise sums
and differences, e.g. A− A = {a1 − a2 : a1, a2 ∈ A}, etc.

2. Preliminary remarks

Write

γa :=
(
0 1
1 a

)
,

for a generator of the semigroup GA. A ping-pong argument using the
action of γa on [0, 1] by Möbius transformations shows that GA is freely
generated by the γa, for a ∈ A. Let

ΓA := GA ∩ SL2

be the sub-semigroup of orientation-preserving elements; equivalently
these are even words in the generators (each of the latter has determi-
nant det γa = −1).

The key (trivial) observation used throughout is the following:(
a b
c d

)(
0 1
1 α

)
=

(
b a+ αb
d c+ αd

)
, (2.1)

whence b + c + αd is a trace in GA. Taking α = 1, 2, 3, (if we assume
that {1, 2, 3} ⊂ A), we see that all three of

b+ c+ d, b+ c+ 2d, b+ c+ 3d ∈ TA, (2.2)

whenever
(
∗ b
c d

)
∈ GA.
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3. Proof of Theorem 1.12

For simplicity, assume that {1, 2} ⊂ A; in general, we know by
δ > 1/2 that |A| ≥ 2, and trivial modifications are needed in what
follows. In light of (2.2), we would like to know the multiplicity of the
map

ϕ : ΓA → N2 :
(
a b
c d

)
7→ (b+ c, d).

Lemma 3.1. Let (n,m) ∈ N2 with n,m � N . Then the preimage of
(n,m) has cardinality at most

|ϕ−1(n,m)| ≤ gcd(n2 + 4,m)1/2N o(1).

Proof. Suppose that (b + c, d) = (n,m). Clearly d = m is determined.
Since ad− bc = 1 and c = n− b, we have

1 + b(n− b) ≡ 0(mod d).

The discriminant of this quadratic in b is ∆ := n2 +4, and it is elemen-
tary that the number of solutions to b(mod d) is�ε (∆, d)1/2N ε. Since
b ≤ d, it is determined once it is known mod d; then so is c = n − b,
and then a = (1 + bc)/d. �

The issue becomes to discard
(
a b
c d

)
∈ ΓA having large gcd(∆, d).

Lemma 3.2. For any ε > 0 there is a subset B′N ⊂ ΓA∩BN satisfying

|B′N | >
1

2
|ΓA ∩B(N)| (3.3)

and if
(
a b
c d

)
∈ B′N then gcd((b+ c)2 + 4, d)�ε N

ε.

Lemma 3.2 follows immediately from the following Lemma that we
will also use later.

Lemma 3.4. Suppose that δ > 1
2
. For all ε > 0, there is η = η(ε) > 0

such that∣∣∣ {( a b
c d

)
∈ ΓA ∩BN : gcd((b+ c)2 + 4, d) > N ε

} ∣∣∣�ε N
2δ−η.

In particular, in comparison to Theorem 1.7, these elements form a
negligible subset.

Proof. Given
(
a b
c d

)
∈ ΓA ∩ BN , suppose that there is ‘large’ q > N ε

dividing both (b+ c)2 + 4 and d. Then bc+ 1 ≡ 0 mod d implies

(b− c)2 ≡ b2 + c2 + 2 ≡ (b+ c)2 + 4 ≡ 0 mod q.

Therefore b ≡ c mod q1 for some q1|q with q1 > N ε/2. Then

d ≡ b2 + 1 ≡ c2 + 1 ≡ 0 mod q1. (3.5)
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We write each g ∈ ΓA with ‖g‖ � N in the form

g = g1g2

with
‖g2‖ � N ′ := N

ε
10 .

(Note that for
(
a b
c d

)
∈ GA, the entries a, b, c, d are all commensu-

rate, and that wordlength in the generators is log-commensurate to
the archimedean norm.) Accordingly, we write

g1 =

(
α β
γ ζ

)
, g2 =

(
x y
z w

)
so that (

a b
c d

)
=

(
αx+ βz αy + βw
γx+ ζz γy + ζw

)
. (3.6)

For each choice of g1 and y we will show there are few possibilities
for w if (3.5) is to hold for some q1 > N

ε
2 . On the other hand, y and

w determine g2 and hence g1, y, w determine g. Combining (3.5) and
(3.6) we get

γy + ζw ≡ 0 mod q1 (3.7)

and
(γx+ ζz)2 ≡ −1 mod q1.

Thus using det g2 = 1 gives

−y2 ≡ y2(γx+ ζz)2 ≡ (γyx+ ζyz)2 ≡ (γyx+ ζ(xw− 1))2 ≡ ζ2 mod q1

where the last equality uses (3.7). In other words

y2 + ζ2 ≡ 0 mod q1.

For fixed g1, y the number of w so that (3.5) holds for some q1 is
bounded by ∑

q1|y2+ζ2
|{w : γy + ζw = 0 mod q1}|. (3.8)

For each q1 in the sum let q2 = gcd(q1, ζ
2). We have y2 ≡ 0 mod q2

and since 0 < y < N ′ this implies q2 < N ′. This means gcd(q1, ζ) < N ′

and then γy+ ζw = 0 mod q1 specifies w mod q3 := q1/ gcd(q1, ζ), with
q3 > N

ε
2N−

ε
10 . But since 0 < w � N

ε
10 this specifies w.

Then each term in (3.8) is bounded by 1 and we can bound (3.8) by
the number of divisors of y2 + ζ2 ≤ N2, which is N o(1). It remains to
sum over g1 and y, and this gives that the number of g ∈ ΓA∩BN such
that (3.5) holds for some q1 > N

ε
2 is

≤ |{g1 : ‖g1‖ � N1− ε
10}| · |{y � N

ε
10}| ·N o(1)

� N2δ(1− ε
10

)N
ε
10N o(1) � N2δ−η
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for some η = η(ε) > 0. �

Proof of Theorem 1.12. For small ε > 0, let B′N be the family of subsets
from Lemma 3.2. Combining Lemmas 3.1 and 3.2, the map

B′N → TA(3N)× TA(4N) :

(
a b
c d

)
7→ (b+ c+ d, b+ c+ 2d)

has multiplicity at most N o(1) and so

|TA(N)|2 > 1

2
|ΓA ∩BN |N−o(1) � N2δ−o(1).

Taking square roots completes the proof. �

4. Proof of Theorem 1.14

Assume now that {1, 2, 3} ⊂ A, so we can exploit the full force of
(2.2). By Theorem 1.9 there is a family of subsets

S(N) ⊂ ΓA ∩BN

with |S(N)| � N2δ and such that the map
(
a b
c d

)
7→ d has multiplic-

ity M � N2δ−1. Then using Lemma 3.4 and echoing the previous
argument, we can find a subset S ′(N) ⊂ S(N) such that the map

ψ : S ′(N)→ TA(3N)× TA(5N),

(
a b
c d

)
7→ (b+ c+ d, b+ c+ 3d)

has multiplicity < N o(1). Let

T0 = {b+ c+ jd :
(
a b
c d

)
∈ S ′(N), 1 ≤ j ≤ 3} ⊂ TA(5N).

We apply Lemma 1.18 with A = T0 and

G = {(b+ c+ d, b+ c+ 3d) :
(
a b
c d

)
∈ S ′(N)} = ψ(S ′(N)).

By our previous bound on the multiplicity of ψ,

|G| > N2δ−o(1).

Also,

T0
G
+ T0 = {2(b+ c+ d) :

(
a b
c d

)
∈ S ′(N)}

so

|T0
G
+ T0| ≤ |T0|.

We can thus apply Lemma 1.18 with

K = |T0|2N−2δ+o(1)

Let A′ be the subset obtained from Lemma 1.18.
The key point is that for each element of (t1, t2) ∈ (A′×A′)∩G one

has t2 − t1 ∈ 2DA. Moreover if (t1, t2) = ψ
(
a b
c d

)
, then t2 − t1 = 2d.
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Since the multiplicity of the denominator mapping on S ′(N) is at most
M, the multiplicity of (t1, t2) 7→ t2− t1 is at most M on (A′×A′)∩G.
Therefore

K13|A| � |A′ − A′| ≥ |(A′ × A′) ∩G|M−1 � K−2|A|2M−1

where the outer two inequalities are the output of Lemma 1.18. This
gives

|A| � K15M

or recalling the value of K,

|T0| < |T0|30N−30δ+o(1)M.

Substituting the value of M = N2δ−1 gives the result as claimed.

5. Proof of Lemma 1.18

The following argument is a modification of [Bou10, Section 2]. By
Cauchy-Schwarz and (1.19)

|G| =
∑

z∈A
G
+A

|{(x, y) ∈ G : x+ y = z}|

≤ |A|
1
2 |{(x1, y1;x2, y2) ∈ G×G : x1 + y1 = x2 + y2}|

1
2 ,

implying that

|{(x1, y1;x2, y2) ∈ G×G : x1 + y1 = x2 + y2}| >
1

K2
|A|3. (5.1)

Denote w(x) = |{(x1, x2) ∈ A : x1 − x2 = x}| and set

D = {x : w(x) >
1

10K2
|A|}, R = {(x, x′) ∈ A2 : x1 − x2 ∈ D},

and also write

Rx1 = {x2 ∈ A : x1 − x2 ∈ D}.

The set D is the ‘popular differences’. Then

|{(x1, y1;x2, y2) ∈ A4 : x1 + y1 = x2 + y2, either x1 − x2 /∈ D or y1 − x2 /∈ D}|

≤ 2|A|2 1

10K2
|A| = 1

5K2
|A|3,

since for example x1−x2 = y1−y2 so each of at most |A|2 pairs (x1, x2)
with x1 − x2 /∈ D contribute at most 1

10K2 |A| possibilities for (y1, y2).
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The other contributions are estimated similarly. This estimate together
with (5.1) gives

1

2K2
|A|3 < |{(x1, y1;x2, y2) ∈ G×G : x1 + y1 = x2 + y2, x1 − x2 ∈ D, y1 − x2 ∈ D}|

≤
∑

(x1,y1)∈G

|Rx1 ∩Ry1 |

=
∑
y

|(Ry ×Ry) ∩G|. (5.2)

Let
Y = {(x, x′) ∈ A2 : |Rx ∩Rx′| < θ|A|}

where θ is a parameter to be specified. Obviously from the definition
of Y , we have∑

y

|(Ry ×Ry) ∩ Y | =
∑

(x,x′)∈Y

|Rx ∩Rx′ | < θ|A|3.

Therefore from (5.2), we see that∑
y

|(Ry ×Ry) ∩G| >
1

4K2
|A|3 +

1

4K2θ

∑
y

|(Ry ×Ry) ∩ Y |.

Thus there is y0 ∈ A such that

|(Ry0 ×Ry0) ∩G| >
1

4K2
|A|2 +

1

4K2θ
|(Ry0 ×Ry0) ∩ Y |. (5.3)

In particular

|Ry0| >
1

2K
|A|. (5.4)

Let

A′ = {x ∈ Ry0 : |({x} ×Ry0) ∩ Y | <
1

3
|Ry0 |}. (5.5)

Then clearly
1

3
|Ry0||Ry0\A′| < |(Ry0 ×Ry0) ∩ Y |

and by (5.3), (5), we have

|(A′ × A′) ∩G| ≥ |(Ry0 ×Ry0) ∩G| − 2|Ry0\A′|.|Ry0|

≥ 1

4K2
|A|2 +

(
1

4K2θ
− 6

)
|(Ry0 ×Ry0) ∩ Y |

≥ 1

4K2
|A|2 (5.6)

if we take

θ =
1

24K2
.
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Take now (x1, x2) ∈ (A′ ×A′)∩G. By (5.5) there are at least 1
3
|Ry0 |

values of x ∈ Ry0 such that (x1, x) /∈ Y and (x2, x) /∈ Y. For each of
these x we have by the definition of Y ,

|Rx1 ∩Rx| ≥
1

24K2
|A|, |Rx2 ∩Rx| ≥

1

24K2
|A|

and then

x1 − x2 = (x1 − x)− (x2 − x)

= (x1 − y1)− (x− y1)− (x2 − y2) + (x− y2) (5.7)

for at least |A|2
576K4 pairs (y1, y2) (depending on x, x1, x2) with

(x1, y1), (x, y1), (x2, y2), (x, y2) ∈ R.
By definition of R and D each of the parenthetical terms in (5.7) admits

a representation in at least |A|
10K2 ways as a difference of elements of A

and therefore the number of representations

x1 − x2 = (τ1 − τ2)− (τ3 − τ4)− (τ5 − τ6) + (τ7 − τ8), τi ∈ A (5.8)

is at least
1

3
|Ry0|.

|A|2

576K4
.

(
|A|

10K2

)4
(5.4)
� 1

K13
|A|7.

Considering the map on (τi)
8
i=1 given by (5.8), we get

|A′ − A′| � |A|8

K−13|A|7
= K13|A|.

This together with the previously established (5.6) proves Lemma 1.18.
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