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Abstract. We discuss a number of natural problems in arith-
metic, arising in completely unrelated settings, which turn out to
have a common formulation involving “thin” orbits. These in-
clude the local-global problem for integral Apollonian gaskets and
Zaremba’s Conjecture on finite continued fractions with absolutely
bounded partial quotients. Though these problems could have been
posed by the ancient Greeks, recent progress comes from a pleasant
synthesis of modern techniques from a variety of fields, including
harmonic analysis, algebra, geometry, combinatorics, and dynam-
ics. We describe the problems, partial progress, and some of the
tools alluded to above.
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1. Introduction

In this article we will discuss recent developments on several seem-
ingly unrelated arithmetic problems, which each boil down to the same
issue of proving a “local-global principle for thin orbits”. In each of
these problems, we study the orbit

O = Γ · v0,

of some given vector v0 ∈ Zd, under the action of some given group or
semigroup, Γ, (under multiplication) of d-by-d integer matrices. It will
turn out that the orbits arising naturally in our problems are “thin”;
roughly speaking, this means that each orbit is “degenerate” in its
algebro-geometric closure, containing relatively very few points.

Each of the problems then takes another vector w0 ∈ Zd, and for the
standard inner product 〈·, ·〉 on Rd, forms the set

S := 〈w0,O〉 ⊂ Z

of integers, asking what numbers are in S . For an integer q ≥ 1, the
projection map

Z→ Z/qZ

can give an obvious obstruction to membership. Let S (mod q) be the
image of this projection,

S (mod q) := {s(mod q) : s ∈ S } ⊂ Z/qZ.

For example, suppose that any number in S leaves a remainder of 1, 2
or 3 when divided by 4, that is, S (mod 4) = {1, 2, 3}. Then one can

conclude, without any further consideration, that 101010
/∈ S , since

101010 ≡ 0(mod 4). This is called a local obstruction. Call n admissible
if it avoids all local obstructions,

n ∈ S (mod q), for all q ≥ 1.

In many applications, the set S (mod q) is significantly easier to ana-
lyze than the set S itself. But a local to global phenomenon predicts
that, if n is admissible, then in fact n ∈ S , thereby reducing the seem-
ingly more difficult problem to the easier one.

It is the combination of these concepts, (i) thin orbits, and (ii) local-
global phenomena, which will turn out to be the “beef” of the problems
we intend to discuss.
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Figure 1. An integral Apollonian gasket.

1.1. Outline.
We begin in §2 with Zaremba’s Conjecture. We will explain how

this problem arose naturally in the study of “good lattice points” for
quasi-Monte Carlo methods in multi-dimensional numerical integra-
tion, and how it also has applications to the linear congruential method
for pseudo-random number generators. But the assertion of the con-
jecture is a statement about continued fraction expansions of rational
numbers, and as such is so elementary that Euclid himself could have
posed it. We will discuss recent progress by Bourgain and the author,
proving a density version of the conjecture.

We change our focus in §3 to the ancient geometer Apollonius of
Perga. As we will explain, his straight-edge and compass construction
of tangent circles, when iterated ad infinitum, gives rise to a beautiful
fractal circle packing in the plane, such as that shown in Figure 1.
Recall that the curvature of a circle is just one over its radius. For
special configurations, all the curvatures of circles in the given packing
turn out to be integers; these are the numbers shown in Figure 1. We
will present in §3 progress on the problem: which integers appear?
It was recently proved by Bourgain and the author that almost every
admissible number appears.

In §4, also stemming from Greek mathematics, we describe a local-
global problem for a thin orbit of Pythagorean triples, as will be defined
there. This problem is a variant of the so-called Affine Sieve, recently
introduced by Bourgain, Gamburd, and Sarnak. We will explain an
“almost” local-global theorem in this context due to Bourgain and the
author.
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Finally, these three problems are reformulated to the aforementioned
common umbrella in §5, where some of the ingredients of the proofs
are sketched. The problems do not naturally fit in an established area
of research, having no L-functions or Hecke theory (though they are
unquestionably problems about whole numbers), being not part of the
Langlands Program (though involving automorphic forms and repre-
sentations), nor falling under the purview of the classical circle method
or sieve, which attempt to solve equations or produce primes in polyno-
mials (here it is not polynomials that generate points, but the aforemen-
tioned matrix actions). Instead the proofs borrow bits and pieces from
these fields and others, the major tools including: analysis (the cir-
cle method, exponential sum bounds, infinite volume spectral theory),
algebra (strong approximation, Zariski density, spin and orthogonal
groups associated to quadratic forms, representation theory), geome-
try (hyperbolic manifolds, circle packings, diophantine approximation),
combinatorics (sum-product, expander graphs, spectral gaps), and dy-
namics (ergodic theory, mixing rates, the thermodynamic formalism).
We aim to highlight some of these ingredients throughout.

1.2. Notation.
We use the following standard notation. A quantity is defined via

the symbol “:=”, and a concept being defined is italicized. Write f ∼ g
for f/g → 1, f = o(g) for f/g → 0, and f = O(g) or f � g for f ≤
Cg. Here C > 0 is called an implied constant, and is absolute unless
otherwise specified. Moreover, f � g means f � g � f . We use e(x) =
e2πix. The cardinality of a finite set S is written as |S| or #S. The
transpose of a vector v is written vt. The meaning of algebraic symbols
can change from section to section; for example the (semi)group Γ and
quadratic form Q will vary depending on the context.
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Figure 2. Graphs of the map (2.2) with prime modulus
d = 10037, and multiplier b as shown.

2. Zaremba’s Conjecture

Countless applications require pseudo-random numbers: determinis-
tic algorithms which “behave randomly.” Probably the simplest, old-
est, and best known among these is the so-called linear congruential
method: For some starting seed x0, iterate the map

x 7→ bx+ c (mod d). (2.1)

Here b is called the multiplier, c the shift, and d the modulus. For
simplicity, we consider the homogeneous case c = 0. To have as long a
sequence as possible, take d to be prime, and b a primitive root mod
d, that is, a generator of the cyclic group (Z/dZ)×. In this case we
may as well start with the seed x0 = 1; then the iterates of (2.1) are
nothing more than the map

n 7→ bn (mod d). (2.2)

We show graphs of this map in Figure 2 for the prime d = 10037,
with two choices of roots b = 4217 and b = 4015. In both cases, the
graphs “look” random, in that, given b and n, it is hard to guess where
bn(mod d) will lie (without just computing). Similarly, given b and
bn(mod d), it is typically difficult to determine n; this is the classical
problem of computing a discrete logarithm.

A slightly more rigorous statistical test for randomness is the serial
correlation of pairs: how well can we guess where bn+1 is, knowing bn?
To this end, we plot in Figure 3 these pairs, or what is the same, the
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Figure 3. Plots of the points (2.3) for the same choices
of modulus d = 10037 and multipliers as in Figure 2.

pairs {(
bn

d
,
bn+1

d

)
(mod 1)

}d
n=1

⊂ R2/Z2 (2.3)

in the unit square, with the previous choices of modulus and multiplier.
Focus first on Figure 3a: it looks like a fantastically equidistributed
grid. Keep in mind that the mesh in each coordinate is of size 1/d ≈
1/10000, so we have (10000)2 points from which to choose, yet we are
only plotting 10000 points, square-root the total number of options.

On the other hand, look at Figure 3b: these parameters make a
terrible random number generator! Given the first few terms in this
sequence (x1, x2, x3, . . . , xk), with xn = bn/d(mod 1), we simply plot
the pairs (x1, x2), (x2, x3), . . . , (xk−1, xk), and then have a 1 : 5 guess
for where xk+1 will be.

A related phenomenon also appears in two-dimensional numerical
integration: Suppose that you wish to integrate a “nice” function f on
R2/Z2 ∼= [0, 1)× [0, 1), say of finite variation, V (f) <∞, where

V (f) :=

∫ 1

0

∫ 1

0

(
|f |+

∣∣∣∣ ∂∂xf
∣∣∣∣+

∣∣∣∣ ∂∂yf
∣∣∣∣+

∣∣∣∣ ∂2

∂x∂y
f

∣∣∣∣) dxdy.
The idea is to take a large sample of points Z in R2/Z2, and approx-
imate the integral by the average of f(z), z ∈ Z. For this to be a
good approximation one obviously needs that f does not vary much in
a small ball, and that the points of Z are well-distributed throughout
R2/Z2. In fact, the famous Koksma-Hlawka inequality (see [Nie78, p.
966]) states, rather beautifully, that this is all that one needs to take



FROM APOLLONIUS TO ZAREMBA 7

into account:∣∣∣∣∣
∫ 1

0

∫ 1

0

f(x, y)dx dy − 1

|Z|
∑
z∈Z

f(z)

∣∣∣∣∣ ≤ C · V (f) ·Disc(Z).

Here C > 0 is an absolute constant, and Disc is the discrepancy of the
set Z, defined as follows. Take a rectangle R = [a, b]× [c, d] ⊂ R2/Z2.
One would like the fraction of points in R to be close to its area, so set

Disc(Z) := sup
R⊂R2/Z2

∣∣∣∣#(Z ∩R)

#Z
− Area(R)

∣∣∣∣ .
It is elementary that for a growing family Z(k) ⊂ R2/Z2, |Z(k)| → ∞,

the discrepancy Disc(Z(k)) decays to 0 if and only if Z(k) becomes
equidistributed in R2/Z2. But more than just indicating equidistribu-
tion, the discrepancy measures the rate. For example, observe that for
any finite sample set Z, we have the lower bound Disc(Z) ≥ 1/|Z|.
Indeed, take a family of rectangles R zooming in on a single point in
Z; the proportion of points in R is always 1/|Z|, while the area of R
can be made arbitrarily small. It turns out there is a sharpest possible
lower bound, due to Schmidt [Sch72]:

For any finite Z ⊂ S, Disc(Z)� log |Z|
|Z|

. (2.4)

Standard Monte Carlo integration is the process of computing the
integral of f by just sampling z ∈ Z according to the uniform measure;
the Central Limit Theorem then predicts that

Disc(Z) ≈ 1

|Z|1/2
, (2.5)

ignoring log log factors. So comparing (2.5) to (2.4), it is clear that
uniformly sampled sequences are far from optimal in numerical inte-
gration. Alternatively, one could take Z to be an evenly spaced d-by-d
grid,

Z = {(i/d, j/d) : 0 ≤ i, j < d},
with |Z| = d2. But then the rectangle [ε, 1/d − ε] × [0, 1] contains no
grid points while its area is almost 1/d = 1/|Z|1/2, again giving (2.5).

In the quasi Monte Carlo method, rather than sampling uniformly,
one tries to find a special sample set Z to come as close as possible
to the optimal discrepancy (2.4). Ideally, such a set Z would also be
quickly and easily constructible by a computer algorithm. Not surpris-
ingly, the set Z illustrated in Figure 3a makes an excellent sample set.
It was this problem which led Zaremba to his theorem and conjecture,
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described below.

Returning to our initial discussion, observe that the sequence (2.3)
is essentially (since b is a generator) the same as

Zb,d :=

{(
n

d
,
bn

d

)}d
n=1

(mod 1). (2.6)

And this is nothing more than a graph of our first map (2.1). Now
it is clear that both Figures 3a and 3b are “lines”, but the first must
be “close to a line with irrational slope,” causing the equidistribution.
This Diophantine property is best described in terms of continued frac-
tions, as follows.

For x ∈ (0, 1), we use the notation

x = [a1, a2, . . . ]

for the continued fraction expansion

x =
1

a1 +
1

a2 +
.. .

The integers aj ≥ 1 are called partial quotients of x. Rational numbers
have finite continued fraction expansions.

One is then immediately prompted to study the continued fraction
expansions of the “slopes” b/d in Figure 3:

4217/10037 = [2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2],

4015/10037 = [2, 2, 2007].

Note the gigantic partial quotient 2007 in the second expression, while
the partial quotients in the first are all ones and twos. Observations of
this kind naturally led Zaremba to the following

Theorem 2.7 (Zaremba 1966 [Zar66, Corollary 5.2]). Fix (b, d) = 1
with b/d = [a1, a2, . . . , ak] and let A := max aj. Then for Zb,d given in
(2.6),

Disc(Zb,d) ≤
(

4A

log(A+ 1)
+

4A+ 1

log d

)
log d

d
. (2.8)

Since |Zb,d| = d, comparing the upper bound (2.8) to Schmidt’s lower
bound (2.4) shows that the sequences (2.6) are essentially best possible,
up to the “constant” A (and this optimal equidistribution is precisely
what we observe visually in Figure 3a). But the previous sentence is
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complete nonsense: A is not constant at all; it depends on d,1 and
Figure 3b perfectly illustrates what can go wrong.

With this motivation, Zaremba predicted that in fact A can be taken
constant:

Conjecture Z (Zaremba 1972 [Zar72, p. 76]). Every natural number
is the denominator of a reduced fraction whose partial quotients are
absolutely bounded.

That is, there exists some absolute A > 1 so that for each d ≥ 1,
there is some (b, d) = 1, so that b/d = [a1, . . . , ak] with max aj ≤ A.

Zaremba even suggested a sufficient value for A, namely A = 5. So
this is really a problem that could have been posed in Book VII of
the Elements (after Euclid’s algorithm): using the partial quotients
aj ∈ {1, . . . , 5}, does the set of (reduced) fractions with expansion
[a1, . . . , ak] contain every integer as a denominator? The reason for
Zaremba’s guess A = 5 is simply that it is false for A = 4, as we now
explain. First some more notation.

Let RA be the set of rationals with the desired property that all
partial quotients are at most A:

RA :=

{
b

d
= [a1, . . . , ak] : (b, d) = 1, and aj ≤ A, ∀j

}
,

and let DA be the set of denominators which arise:

DA :=

{
d : ∃(b, d) = 1 with

b

d
∈ RA

}
.

Then Zaremba’s conjecture is that D5 = N, and we claim that this is
false for D4. Indeed, 6 /∈ D4: the only numerators to try are 1 and 5,
but the continued fraction expansion of 1/6 is just [6], and 5/6 = [1, 5],
so the largest partial quotient in both is too big.

That said, there are only two other numbers, 54 and 150, known to
be missing from D4 (see [OEI]), leading one to ask what happens if a
finite number of exceptions is permitted. Indeed, Niederreiter [Nie78,
p. 990] conjectured in 1978 that for A = 3, D3 already contains every
sufficiently large number; we write this as

D3 ⊃ N�1.

With lots more computational capacity and evidence, Hensley almost
20 years later [Hen96] conjectured even more boldly that the same holds

1The value A also depends on b, but the important variable for applications is
|Zb,d| = d.
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2 , where C (k)

2 =

{[a1, . . . , aj, . . . , ak, . . . ] : aj ≤ A for all 1 ≤ j ≤ k} re-
stricts only the first k partial quotients.

already for A = 2:

D2 ⊃ N�1. (2.9)

Lest the reader be tempted to one-up them all, let us consider the case
A = 1. Here R1 contains only continued fractions of the form [1, . . . , 1],
and these are quotients of consecutive Fibonacci numbers Fn,

R1 = {Fn/Fn+1}.

So D1 = {Fn} is just the Fibonacci numbers, and this is an exponen-
tially thin sequence.

In fact, Hensley conjectured something much stronger than (2.9).
First some more notation. Let CA be the set of limit points of RA,

CA := {[a1, a2, . . . ] : aj ≤ A, ∀j}.

To get our bearings, consider again the case A = 1. Then C1 = {1/ϕ}
is just the singleton consisting of the reciprocal of the golden mean.

Now take A = 2. Consider the unit interval [0, 1]. The numbers
in the range (1/2, 1] have first partial quotient a1 = 1, and those in
(1/3, 1/2] have first partial quotient a1 = 2. The remaining interval
[0, 1/3] has numbers whose first partial quotient is already too big, and
thus is cut out. We repeat in this way, cutting out intervals for each
partial quotient, and arriving at C2; see Figure 4.

For any A ≥ 1, the Cantor-like set CA has some Hausdorff dimension

δA := dim(CA), (2.10)
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which recall is defined as the infimum of all s ≥ 0 for which

inf⋃
j Bj ⊃ CA

{∑
j

r(Bj)
s

}
(2.11)

vanishes. The infimum in (2.11) is over collections {Bj}j of open balls
(intervals) which cover CA, and r(Bj) is the radius of Bj (half the
length of the interval).

Clearly δ1 = 0, since C1 is a single point. There is a substantial
literature estimating the dimension δ2 which we will not survey, but
the current record is due to Jenkinson-Pollicott [JP01], whose super-
exponential algorithm estimates

δ2 = 0.5312805062772051416244686 . . . (2.12)

If we relax the bound A, the Cantor sets increase, as do their dimen-
sions. In fact, Hensley [Hen92] determined the asymptotic expansion,
which to first order is

δA = 1− 6

π2A
+ o

(
1

A

)
, (2.13)

as A→∞. In particular, the dimension can be made arbitrarily close
to 1 by taking A large.

We can now explain Hensley’s stronger conjecture. His observation
is that one need not only consider restricting the partial quotients aj
to the full interval [1, A]; one can allow more flexibility by fixing any
finite “alphabet” A ⊂ N, and restricting the partial quotients to the
“letters” in this alphabet. To this end, let CA be the Cantor set

CA := {[a1, a2, . . . ] : aj ∈ A, ∀j ≥ 1},

and similarly let RA be the partial convergents to CA, DA the denom-
inators of RA, and δA the Hausdorff dimension of CA. Then Hensley’s
elegant claim is the following

Conjecture 2.14 (Hensley 1996 [Hen96, Conjecture 3, p. 16]).

DA ⊃ N�1 ⇐⇒ δA > 1/2. (2.15)

Observe in particular that δ2 in (2.12) exceeds 1/2, and hence Hens-
ley’s full conjecture (2.15) implies the special case A = 2 in (2.9).

Here is some heuristic evidence in favor of (2.15). Let us visualize
the set RA of rationals, by grading each fraction according to the de-
nominator. That is, plot each fraction b/d at height d, showing the
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Figure 5. For each b/d ∈ RA(N), plot b/d versus d,
with A and truncation parameter N as shown.



FROM APOLLONIUS TO ZAREMBA 13

set {(
b

d
, d

)
:
b

d
∈ RA, (b, d) = 1

}
. (2.16)

We show this plot in Figure 5a for A = {1, 2} truncated at height
N = 10000, and in Figure 5b for A = {1, 2, 3, 4, 5} truncated at height
N = 1000. We give a name to this truncation, defining

RA(N) :=

{
b

d
∈ RA : (b, d) = 1, 1 ≤ b < d < N

}
.

Observe that the “vertical tentacles” in Figure 5 emanate from points
on the x-axis lying in the Cantor sets CA; compare Figures 5a and 4.
Moreover, note that if at least one point has been placed at height d,
then d ∈ DA. That is, the “beef” of this problem boils down to: what
are the projections of the plots in Figure 5 to the y-axis? In particular,
does every (sufficiently large) integer appear?

The first question to address is: how big is |RA(N)|, that is, how
many points are being plotted in Figures 5a and 5b? Hensley [Hen89]
showed that, as N →∞,

#RA(N) � N2δA , (2.17)

where the implied constant can depend on A. (Hensley proved this
for the alphabet A = {1, 2, . . . , A}, but the same proof works for an
arbitrary finite A.)

Now, the =⇒ direction of (2.15) is trivial. Indeed, let

DA(N) := DA ∩ [1, N ],

so that the left hand side of (2.15) is equivalent to

#DA(N) = N +O(1), as N →∞. (2.18)

Then it is clear that #RA(N) counts d’s with multiplicity, whereas
#DA(N) counts each appearing d only once; hence

#DA(N) ≤ #RA(N)
(2.17)
� N2δA . (2.19)

So if (2.18) holds, then (2.19) implies that 2δA must be at least 1.
A caveat: we do not know how to verify (2.18) for a single alphabet!

Nevertheless the content of Hensley’s Conjecture is clearly the opposite
⇐= direction. Here is some evidence in favor of this claim.

An old theorem of Marstrand’s [Mar54] states the following. Let
E ⊂ [0, 1] × [0, 1] be a Hausdorff measurable set having Hausdorff
dimension α > 1. Then the projection of E into a line of slope tan θ is
“large,” for Lebesgue-almost every θ ∈ R/2πZ. Here “large” means of
positive Lebesgue measure. One may thus heuristically think of (2.16)
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as E above, with (2.17) suggesting the “dimension” α = 2δA. Then
DA is the projection of this E to the y-axis, and it should be “large”
according to the analogy. Marstrand’s theorem says nothing about an
individual line, and does not apply to the countable set (2.16), so the
analogy cannot be furthered in any meaningful way. Nevertheless, we
see the condition α > 1 is converted into 2δA > 1, giving evidence for
the ⇐= direction of (2.15).

For another heuristic, if one uniformly samples N2δ pairs (b, d) out of
the integers up to N , a given d is expected to appear with multiplicity
roughly N2δ−1. For δ > 1/2 and N growing, this multiplicity will be
positive with probability tending to 1.

This heuristic does not rule out the possible conspiracy that only very
few (about N2δ−1) d’s actually appear, each with very high (about N)
multiplicity. But such an argument in reverse leads to another bit of
evidence towards (2.15): since the multiplicity of any d < N is at most
N , we have the elementary lower bound

#DA(N) ≥ 1

N
#RA(N)

(2.17)
� 1

N
N2δA = N2δA−1.

So if δA > 1/2, then the set DA already grows at least at a power
rate. Furthermore, for any fixed ε > 0, one can take some A = A(ε)
sufficiently large so that 2δA − 1 > 1 − ε. For example, using (2.13),
we can take A = {1, 2, . . . , A} where

A >
12

π2ε
(1 + o(1)).

Here o(1)→ 0 as ε→ 0. Hence one can produce N1−ε points in DA(N),
which is already substantial progress towards (2.18).

But unfortunately, Hensley’s conjecture (2.15), as stated, is false.

Lemma 2.20 (Bourgain-K. 2011 [BK11, Lemma 1.19]). The alphabet
A = {2, 4, 6, 8, 10} has dimension δA = 0.517 . . . , which exceeds 1/2,
but does not contain every sufficiently large number.

Proof. The dimension can be computed by the Jenkinson-Pollicott al-
gorithm used to establish (2.12). It is an elementary calculation from
the definitions to show for this alphabet that every fraction in RA is of
the form 2m/(4n+ 1) or (4n+ 1)/(2m), and so DA ≡ {0, 1, 2}(mod 4).
Hence DA does not contain every sufficiently large number. �

That is, there can be congruence obstructions, in addition to the
condition on dimension. This suggests instead a closer analogy with
Hilbert’s 11th problem, which asks: what numbers are represented by a
given integral (or rational) quadratic form? According to this analogy,
we make the following
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Definition 2.21. Call d represented by the given alphabetA if d ∈ DA.
Also, call d admissible for the alphabet A if it is everywhere locally
represented, meaning that d ∈ DA(mod q) for all q ≥ 1.

One can then modify Hensley’s conjecture to state that, if δA exceeds
1/2 (an archimedean condition), then every sufficiently large admissible
number is represented, akin to Hasse’s local-to-global principle.

Remark 2.22. We will explain in §2.2 that the alphabet A = {1, 2} has
no local obstructions, so Hensley’s first conjecture (2.9) is still plausible.

Here is some progress towards the conjecture.

Theorem Z (Bourgain-K. 2011 [BK11]). Almost every natural number
is the denominator of a reduced fraction whose partial quotients are
bounded by 50.

Here “almost every” is in the sense of density: for A = {1, 2, . . . , 50},
1

N
#(DA ∩ [1, N ])→ 1,

as N → ∞. The proof in fact shows that for any alphabet A having
sufficiently large dimension

δA > δ0, (2.23)

almost every admissible number is represented, where the value

δ0 = 1− 5/312 ≈ 0.98 (2.24)

is sufficient. Using refined versions of Hensley’s asymptotic expansion
(2.13), the value A = 50 seems to satisfy (2.23). The reason Theorem
Z needs no mention of admissibility is that any alphabet A with such
a large dimension (2.24) must already contain both 1 and 2; missing
even one of these letters will drop the dimension by too much. Hence
there are actually no local obstructions in the theorem, cf. Remark
2.22.

To explain the source of this progress, we reformulate Zaremba’s
problem in a way that highlights the role of the hitherto unmentioned
“thin orbit” lurking underneath.

2.1. Reformulation.
The key to the above progress is the old and elementary observation

that
b

d
= [a1, · · · , ak]
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is equivalent to (
∗ b
∗ d

)
=

(
0 1
1 a1

)
· · ·
(

0 1
1 ak

)
. (2.25)

With this observation, it is natural to introduce the semigroup gener-
ated by matrices of the above form with partial quotients restricted to
the given alphabet. Let

Γ = ΓA :=

〈(
0 1
1 a

)
: a ∈ A

〉+

, (2.26)

where the superscript “+” denotes generation as a semigroup (no in-
verse matrices). Then the orbit

O = OA := Γ · v0 (2.27)

with
v0 = (0, 1)t (2.28)

isolates the set of second columns in Γ, and from (2.25) is hence in
bijection with the set RA. The “thinness” of the orbit is explained by
Hensley’s counting statement (2.17), which implies that

#{v ∈ O : ‖v‖ < N} � N2δA ,

as N → ∞. If O consisted of all integer pairs (b, d)t, the above count
would be replaced by N2, ignoring constants. So this is the reason
we call O thin: it contains many fewer points than the ambient set in
which it naturally sits.

From (2.25) again, the set DA is nothing more than the set of bottom
right entries of matrices in ΓA. This can be isolated via:

〈v0,O〉 = 〈v0,Γ · v0〉 = DA, (2.29)

where the inner product is the standard one on R2. Thus d is repre-
sented if and only if there is a γ ∈ Γ so that

d = 〈v0, γ · v0〉 , (2.30)

with v0 given in (2.28).

2.2. Local Obstructions.
One can now easily understand Remark 2.22, and the source of any

potential local obstructions. The key observation, via (2.29), is that
to understand DA(mod q), one needs only to understand the reduc-
tion of Γ(mod q). And the latter can be analyzed by some algebra,
namely the so-called strong approximation property; see e.g. [Rap12]
for a comprehensive survey. As we will see below, this is a property
which determines when the reduction mod q map is onto. For general
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algebraic groups this is a deep theory, the first proof [MVW84] using
the classification of finite simple groups. But for SL2, the proofs are
elementary, see e.g. [DSV03].

First observe that Γ sits inside the integer points of the algebraic
group GL2, meaning that any solution in Z to the polynomial equation
(ad− bc)m = 1 gives an element

(
a b
c d

)
∈ GL2(Z), and vice-versa. Ac-

tually GL2 does not have strong approximation, (e.g. the determinant
in GL2(Z) can only be ±1, while in GL2(Z/5Z) it is 1, 2, 3 or 4; hence
the reduction map cannot be onto). So we first pass to SL2, as follows.
The generators in (2.26) all have determinant −1, so the product of
any two has determinant +1. We make these products the generators
for a subsemigroup Γ̃ of Γ, that is, set Γ̃ := Γ ∩ SL2. We recover the
original Γ-orbit O in (2.27) by a finite union of Γ̃-orbits. The limiting
Cantor set and its Hausdorff dimension are unaffected.

Then strong approximation says essentially that for p a sufficiently
large prime, and q = pe any p power, the reduction of Γ̃ mod q is all
of SL2(Z/qZ). (It does not matter that Γ̃ is only a semigroup; upon
reduction mod q, it becomes a group.) Moreover for ramified primes p
(those for which the reduction mod p is not onto), the reduction mod
sufficiently large powers of p stabilizes after some finite height. This
means that there is some power e0 = e0(p, Γ̃) so that the following
holds. For any higher power e > e0, if M ∈ SL2(Z/peZ) is such that
its reduction is in Γ̃(mod pe0), then M is also in Γ̃(mod pe). (These
statements are best made in the language of p-adic numbers, which we
avoid here.) A key ingredient is that, while Γ̃ is some strange subset
of SL2(Z), it is nevertheless Zariski dense in SL2. This means that if
P (a, b, c, d) is a polynomial which vanishes for every

(
a b
c d

)
∈ Γ̃, then P

also vanishes on all matrices in SL2 with entries in C.
In the above, “sufficiently large,” both for primes p to be unrami-

fied, and the stabilizing powers e0 of ramified primes, can be effectively
computed in terms of the generators. Then for an arbitrary modulus
q = pe11 · · · p

ek
k , the reduction mod q can be pieced together from those

mod p
ej
j using a type of Chinese Remainder Theorem for groups called

Goursat’s Lemma. This leaves some finite group theory to determine
completely the reduction of Γ̃ mod any q, and hence explains all local
obstructions via (2.29).

We now leave Zaremba’s problem, and return to sketch a proof of
Theorem Z in §5.
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(a) Three mutually
tangent circles

(b) Two more tangent
circles

(c) Six more tangent
circles

Figure 6. Tangent circles

3. Integral Apollonian Gaskets

Apollonius of Perga (ca 262-190 BC) wrote a two-volume book on
Tangencies, solving in every conceivable configuration the following
general problem: Given three circles in the plane, any of which may
have radius zero (a point) or infinity (a line), construct a circle tangent
to the given ones. The volumes were lost but the statements survived
via a survey of the work by Pappus. In the special case when the given
three circles are themselves mutually tangent with disjoint points of
tangency (Figure 6a), Apollonius proved that

there are exactly two solutions (3.1)

to his problem (Figure 6b). Adding these new circles to the configu-
ration, one has many other triples of tangent circles, and Apollonius’s
construction can be applied to them (Figure 6c). Iterating in this way
ad infinitum, as apparently was first done in Leibniz’s notebook, gives
rise to a circle packing, the closure of which has become known in the
last century as an Apollonian gasket. We restrict our discussion hence-
forth to bounded gaskets, such as that illustrated in Figure 1; there
the number shown inside a circle is its curvature, that is, one over
its radius. Such pictures have received considerable attention recently,
see e.g. [LMW02, GLM+03, GLM+05, GLM+06a, GLM+06b, EL07,
Sar07, Sar08, BGS10, KO11, Oh10, BF11, Sar11, Fuc11, FS11, OS12,
Vin12, LO12, BK12]. We will focus our discussion on the following two
problems:

(1) The Counting Problem: For a fixed gasket G , how quickly do
the circles shrink, or alternatively, how many circles are there
in G with curvature bounded by a growing parameter T?
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(2) The Local-Global Problem: Suppose G is furthermore integral,
meaning that its circles all have integer curvatures, such as the
gasket in Figure 1. How many distinct integers appear up to a
growing parameter N? That is, count curvatures up to N , but
without multiplicity.

Problem (2) does not yet look like a local-global question, but will
soon turn into one. We first address Problem (1) in more detail.

3.1. The Counting Problem.

3.1.1. Preliminaries.
Some notation: for a typical circle C in a fixed bounded gasket G ,

let r(C) be its radius and

κ(C) = 1/r(C)

its curvature. Let

NG (T ) := #{C ∈ G : κ(C) < T} (3.2)

be the desired counting function. To study this quantity, one might
introduce an “L-function”:

LG (s) :=
∑
C∈G

1

κ(C)s
=
∑
C∈G

r(C)s. (3.3)

Since the sum of the areas of inside circles in G yields the area of the
bounding circle, the series LG converges for Re(s) ≥ 2. It has some
abscissa of convergence δ, meaning LG converges for Re(s) > δ and
diverges for Re(s) < δ. Boyd [Boy73] proved that this abscissa δ is none
other than the Hausdorff dimension of the gasket G , as should not be
too surprising, comparing (3.3) with the definition (see (2.11)). In fact,
Apollonian gaskets are rigid, in the sense that one can be mapped to
any other by Möbius transformations. The latter are conformal (angle
preserving) motions of the complex plane, sending z 7→ (az+b)/(cz+d),
ad − bc = 1. Hence δ is a universal constant; McMullen [McM98]
estimates that

δ = 1.30568 . . . (3.4)

From such considerations, Boyd [Boy82] was able to conclude that

logNG (T )

log T
→ δ,

as T →∞.
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Figure 7. Generation from a root quadruple

To refine this crude estimate to an asymptotic formula for NG (T ),
the author and Oh [KO11] established a “spectral interpretation” for
LG , proving:

NG (T ) ∼ c · T δ, (3.5)

for some c = c(G ) > 0, as T → ∞. (This asymptotic was recently
refined further in Vinogradov’s thesis [Vin12] and independently by
Lee-Oh [LO12], giving lower order error terms.) The remainder of
this subsection is devoted to explaining this spectral interpretation and
highlighting some of the ideas going into the proof of (3.5).

3.1.2. Root quadruples and generation by reflection.
It is easy to see [GLM+03, p. 14] that each such gasket G contains a

root configuration C = C(G ) := (C1, C2, C3, C4) of four largest mutually
tangent circles in G . Let

v0 = v0(G ) = (κ1, κ2, κ3, κ4)t (3.6)

with κj = κ(Cj) be the root quadruple of corresponding curvatures.
The bounding circle, being internally tangent to the others, is given
opposite orientation to make all interiors disjoint; this is accounted
for by giving it negative curvature. For example in Figure 1, the root
quadruple is

v0 = (−10, 18, 23, 27)t, (3.7)

where the bounding circle has radius 1/10.
Three tangent circles, say C1, C2, C3 have three points of tangency,

and determine a dual circle C̃4 passing through these points, see Fig-
ure 7. Thus the root configuration C determines a dual configuration
C̃ = (C̃1, C̃2, C̃3, C̃4) of four mutually tangent circles, orthogonal to
those in C, see Figure 8. Reflection through C̃4 fixes C1, C2, and C3,
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Figure 8. Root and dual configurations

and sends C4 to C ′4, the other solution to Apollonius’s problem (3.1),
see Figure 7. Starting with the root configuration, repeated reflections
through the dual circles give the whole circle packing.

3.1.3. Hyperbolic space and the group A.
Following Poincaré, we extend these circle reflections to the hyper-

bolic upper half space,

H3 := {(x1, x2, y) : x1, x2 ∈ R, y > 0}, (3.8)

replacing the action of the dual circle C̃j by a reflection through a

(hemi)sphere sj whose equator is C̃j (with j = 1, . . . , 4). We abuse
notation, writing sj for both the hemisphere and the conformal map
reflecting through sj. The group

A := 〈s1, s2, s3, s4〉 < Isom(H3), (3.9)

generated by these reflections acts discretely on H3; it is a so-called
Schottky group, in that the four generating spheres have disjoint inte-
riors.

The A-orbit of any fixed base point p0 ∈ H3 has a limit set in the
boundary ∂H3, which is easily seen to be the original gasket, see Figure
9. A fundamental domain for an action is a region

Ω ⊂ H3 (3.10)

so that any point in H3 can be sent to Ω in an essentially unique way;
for the action of A, one can take Ω to be the exterior of the four
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Figure 9. Poincaré extension: an A-orbit in H3

hemispheres. To see this, observe that if a point p = (x1, x2, y) ∈ H3

is inside one of the spheres sj, then its reflection sj(p) is outside of sj
and has a strictly larger y-value. This does not guarantee that sj(p) is
outside all of the other spheres, but if it is inside some sk, then reflection
through sk will again have even higher y-value. This procedure must
halt after finitely many iterations, since the only limit points of A are
in the boundary ∂H3 where y = 0. And it halts only when the image is
outside of the four geodesic hemispheres. Uniqueness follows since any
reflection sj takes a point in Ω to a point inside sj, that is, not in Ω.

Two facts are evident from the above: first of all, A is geometri-
cally finite, meaning it has a fundamental domain bounded by a finite
number (here it is four) of geodesic2 hemispheres; on the other hand,
A has infinite co-volume, that is, any fundamental domain has infinite
volume with respect to the hyperbolic measure

y−3dx1dx2dy

in the coordinates (3.8). Note moreover that A has the structure of a
Coxeter group, being free save the relations s2

j = I for the generators.
It is also the symmetry group of all Möbius transformations fixing G .

3.1.4. Descartes’ Circle Theorem and integral gaskets.
Next we need an observation due to Descartes in the year 1643

[Des01, pp. 37-50] (though his proof had a gap [Cox68]), that a quadru-
ple v = (b1, b2, b3, b4)t of signed curvatures of four mutually tangent
circles lies on the cone

Q(v) = 0, (3.11)

2A geodesic in hyperbolic space is a straight vertical line or a semicircle orthog-
onal to the boundary ∂H3.
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where Q is the so-called “Descartes quadratic form”

Q(v) := 2
(
κ2

1 + κ2
2 + κ2

3 + κ2
4

)
− (κ1 + κ2 + κ3 + κ4)2 . (3.12)

By a real linear change of variables, Q can be diagonalized to the form

x2 + y2 + z2 − w2,

that is, it has signature (3, 1). Arguably the most beautiful formula-
tion of Descartes’ Theorem (rediscovered on many separate occasions)
is the following excerpt from Soddy’s 1936 Nature poem [Sod36]:

Four circles to the kissing come. / The smaller are the bender. /
The bend is just the inverse of / The distance from the center. /
Though their intrigue left Euclid dumb / There’s now no need for rule of thumb. /
Since zero bend’s a dead straight line / And concave bends have minus sign, /
The sum of the squares of all four bends / Is half the square of their sum.

If κ1, κ2 and κ3 are given, then (3.11) is a quadratic equation in
κ4 with two solutions, κ4 and κ′4, say; this is an algebraic proof of
Apollonius’s theorem (3.1). It is then an elementary exercise to see
that

κ4 + κ′4 = 2(κ1 + κ2 + κ3).

In other words, if the quadruple (κ1, κ2, κ3, κ4)t is given, then one ob-
tains the quadruple with κ4 replaced by κ′4 via a linear action:

1
1

1
2 2 2 −1

 ·

κ1

κ2

κ3

κ4

 =


κ1

κ2

κ3

κ′4

 .

Hence we have given an algebraic realization to the geometric action
of C̃4 (or s4) on the root quadruple, see again Figure 7. Call the above
4× 4 matrix S4. Of course one could also send other κj to κ′j keeping
the three complementary curvatures fixed, via the matrices

S1 =


−1 2 2 2

1
1

1

 , S2 =


1
2 −1 2 2

1
1

 , S3 =


1

1
2 2 −1 2

1

 .

(3.13)
Moreover one can iterate these actions, so we introduce the so-called
Apollonian group Γ, isomorphic to A, generated by the Sj:

Γ := 〈S1, S2, S3, S4〉 . (3.14)

Then the orbit
O := Γ · v0 (3.15)
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of the root quadruple v0 under the Apollonian group Γ consists of all
quadruples corresponding to curvatures of four mutually tangent circles
in the gasket G . We can now explain the integrality of all curvatures in
Figure 1: the group Γ has only integer matrices, so if the root quadruple
v0 (or for that matter any four curvatures of mutually tangent circles
in G ) is integral, then all curvatures in G are integers! This fact seems
to have been first observed by Soddy [Sod37].

3.1.5. Reformulating the counting statement, and the thin orbit.
Moreover, note that starting with v0, any new circle generated by

a reflection is the smallest in its configuration, and hence has largest
curvature. That is, for v = γ ·v0 ∈ O, writing γ ∈ Γ as a reduced word
in the generators γ = Sik · · ·Si1 , the last multiplication by Sik changes
one entry, which is the largest entry in v. Hence, setting ‖v‖∞ to be
the max-norm, and for T large, we can rewrite NG (T ) in (3.2) as

NG (T ) = 4 + # {v ∈ O : v 6= v0, ‖v‖∞ < T} . (3.16)

Here the first “4” accounts for the root quadruple v0.
We have thus converted the circle counting problem into something

seemingly more tractable: the counting problem for a Γ-orbit. That
said, we clearly need a better understanding of the group Γ. Returning
to the Descartes form Q in (3.12), we have by construction (and one
can check directly) that for each j = 1, . . . , 4,

Q(Sj · v) = Q(v),

for any v. That is, each generator Sj lies in the so-called orthogonal
group preserving the quadratic form Q,

OQ := {g ∈ GL4 : Q(g · v) = Q(v), ∀v} .
Hence Γ also sits inside OQ, and moreover inside OQ(Z), the group of
matrices in OQ with integer entries. The latter is a well understood
algebraic group, again meaning that any solution to a certain set of
polynomial equations gives an element in OQ, and vice-versa. But
Γ is quite a mysterious group, in particular having infinite index in
OQ(Z) (this fact is equivalent to A having infinite co-volume). It is also
worth noting here that the general membership problem in a group is
known to be undecidable [Nov55], so presenting a matrix group via its
generators leaves much to be desired.3

Just as in Zaremba’s problem, we can now again call this orbit O
thin; indeed, for the counting problem with Γ replaced by the full

3That said, for our particular group Γ, one can use a reduction algorithm to root
quadruples to determine membership.
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group OQ(Z) (which is an example of what’s called an “arithmetic
lattice”), standard arguments in automorphic forms or ergodic theory
[DRS93, EM93] show that

#{v ∈ OQ(Z) · v0 : ‖v‖∞ < T} ∼ c T 2, as T →∞, (3.17)

for some c > 0. So comparing (3.17) to (3.16), (3.5) and (3.4), where
the power drops from T 2 to T δ with δ < 2, we see that the Γ orbit is
quite degenerate, having many fewer points.

3.1.6. Sketch of the counting statement.
Finally, we explain the aforementioned spectral interpretation, by

first giving an analogous elementary example of a counting statement
in another discrete group: the integers. Let us spectrally count the
number of integers of size at most T :

NZ(T ) := #{n ∈ Z : |n| < T}.
Of course this is a trivial problem,

NZ(T ) = b2T + 1c = 2T +O(1), (3.18)

but it will be instructive to analyze it by harmonic analysis. To this
end, let

f(x) := 1{|x|<1},

where 1{·} is the indicator function. Scale f to

fT (x) := f(x/T ) = 1{|x|<T},

and periodize it with respect to the discrete group Z:

FT (x) :=
∑
n∈Z

fT (n+ x). (3.19)

Then we have
FT (0) =

∑
n∈Z

1{|n|<T} = NZ(T ). (3.20)

By construction, FT (x) = FT (x + 1), that is, it takes values on the
circle X := Z\R, and is square-integrable, FT ∈ L2(X). The Laplace
operator

∆ := − div ◦ grad = − ∂2

∂x2

on smooth functions can be extended to act on the whole Hilbert space
L2(X) and is self-adjoint and positive definite (by our choice of sign)
with respect to the standard inner product

〈F,G〉 =

∫
X

F (x)Ḡ(x)dx.
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(Proof: partial integration.) Its spectrum Spec(∆) is just the set of its
eigenvalues, with multiplicity. Elementary Fourier analysis shows that
eigenfunctions of ∆ invariant under Z-translations are scalar multiples
of

ϕm : x 7→ e2πimx

for m ∈ Z. This function has Laplace eigenvalue

λm = 4π2m2,

and hence these numbers λm completely exhaust the spectrum (they
have multiplicity two, except when m = 0). Expanding spectrally gives

FT (x) =
∑

λm∈Spec(∆)

〈FT , ϕm〉ϕm(x), (3.21)

where equality is in the L2-sense. (Note that the ϕm are already scaled
to have unit L2-norm.) The bottom of the spectrum λ0 = 0 corresponds
to the constant function ϕ0(x) = 1, and contributes the entire “main
term” in (3.18) to (3.21):

〈FT , ϕ0〉 · ϕ0 =

(∫
Z\R

∑
n∈Z

fT (n+ x) · 1 dx

)
· 1 = T

∫
R
f(x)dx = 2T,

after inserting (3.19), a change of variables, and “unfolding”
∫
Z\R
∑

Z to

just
∫
R. That said, the equality (3.21) is in the L2 sense, not pointwise

(we cannot evaluate (3.21) at the point x = 0, as needed in (3.20)).
Moreover, the rest of the spectrum in (3.21), if bounded in absolute
value, ∑

λm∈Spec(∆)
λm 6=λ0

∣∣∣∣ 〈FT , ϕm〉ϕm∣∣∣∣,
does not converge, the mth term being of size 1/m. (Exercise.) But
there are standard methods (smoothing and later unsmoothing) which
overcome these technical irritants.

A version of the above works with the Apollonian group Γ in place
of Z, once one overcomes a number of further technical obstructions.
The reader may wish to omit the following paragraph on the first pass;
it is not essential to the sequel.

We now need non-abelian harmonic analysis on the space L2(X) with

X := A\H3,
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the hyperbolic 3-fold in Figure 9. The (positive definite) hyperbolic
Laplacian is

∆ = −y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
+ y

∂

∂y

in the coordinates (3.8). The spectrum in this setting, as studied
by Lax-Phillips [LP82], has both continuous and discrete components
(though only a finite number of the latter). As X has infinite vol-
ume, the constant function is no longer square-integrable, and the bot-
tom eigenvalue λ0 is strictly positive. A beautiful result in Patterson-
Sullivan theory [Pat76, Sul84] relates this eigenvalue to the Hausdorff
dimension of the limiting gasket G , namely

λ0 = δ(2− δ).

The corresponding base eigenfunction ϕ0 replaces the role of the con-
stant function. Here we have used crucially that A is geometrically
finite, and that δ > 1, see (3.4). Even this is insufficient: because of
the non-Euclidean norm ‖ · ‖∞ in (3.16), one must work not on X but
its unit tangent bundle Y := T 1(X). And moreover we do not know
how to handle the continuous spectrum directly, applying instead gen-
eral results in the representation theory of semisimple groups about
ergodic properties of flows on Y . At this point, we will not say more
about the proof, inviting the interested reader to consult the original
references [KO11, Vin12, LO12].

3.2. The Local-Global Problem.
Assume now that G is not only bounded but also integral (recall

that this means it has only integer curvatures). If the curvatures are
all even, say, then we can stretch the gasket by a factor of two, doubling
the radii and halving the (still integral) curvatures. In this way, we can
rescale an integral gasket to make it primitive, meaning that there is
no number other than ±1 dividing all of the curvatures. In fact, all
of the salient features of the problem persist if we fix G to be the
packing shown in Figure 1, and we do so henceforth. Recall that the
problem we wish to now address is: How many curvatures are there up
to some parameter N , counting without multiplicity, that is, counting
only distinct curvatures?

First some more notation: let K = K (G ) be the set of all curvatures
of circles C in the gasket G ,

K := {n ∈ Z : ∃C ∈ G with κ(C) = n},
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and call n represented if n ∈ K . Staring at Figure 1 for a moment or
two, one might observe that every curvature in our G is

≡ 2, 3, 6, 11, 14, 15, 18, or 23 (mod 24). (3.22)

These are the local obstructions for G ; accordingly, we call n admissible
if it satisfies (3.22), and set A = A (G ) to be the set of admissible
numbers. In general, one calls n admissible if, as before, it is everywhere
locally represented,

n ∈ K (mod q), ∀q ≥ 1. (3.23)

It cannot be the case that A = K , since, for example, n = 15 is
admissible, but a circle of radius 1/15 does not appear in our gasket.
Nevertheless, as in Zaremba’s problem, we have the following

Conjecture A. Every sufficiently large admissible number is the cur-
vature of some circle in G .

This conjecture is stated by Graham-Lagarias-Mallows-Wilks-Yan
[GLM+03, p. 37], in the first of a lovely series of papers on Apollonian
gaskets and generalizations. They observe empirically that congruence
obstructions for any integral gasket seem to be to the modulus 24, and
this is completely clarified (as we explain below) by Fuchs [Fuc11] in her
thesis. Further convincing numerical evidence towards the conjecture
is given in Fuchs-Sanden [FS11]. Here is some recent progress.

Theorem A (Bourgain-K. 2012 [BK12]). Almost every admissible num-
ber is the curvature of some circle in G .

Again, “almost every” is in the sense of density, that

#(K ∩ [1, N ])

#(A ∩ [1, N ])
→ 1, (3.24)

as N →∞. It follows from the congruence restrictions (3.22) that for
N large, #(A ∩ [1, N ]) is about N/3 (there are 8 admissible residue
classes mod 24), so (3.24) is equivalent to

#(K ∩ [1, N ]) ∼ N

3
.

Some history on this problem: Graham et al [GLM+03] already made
the first progress, proving that

#(K ∩ [1, N ])� N1/2. (3.25)

Then Sarnak [Sar07] showed

#(K ∩ [1, N ])� N√
logN

, (3.26)
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before Bourgain-Fuchs [BF11] settled the so-called Positive Density
Conjecture, that

#(K ∩ [1, N ])� N. (3.27)

A key observation in the proof of Theorem A is that the problem is
nearly identical to Zaremba’s, in the following sense. Recall from (3.15)
that the orbit O = Γ ·v0 of the root quadruple v0 under the Apollonian
group Γ contains all quadruples of curvatures, and in particular its
entries consist of all curvatures in G . Hence the set K of all curvatures
is simply the finite union of sets of the form

〈w0,O〉 = 〈w0,Γ · v0〉 , (3.28)

as w0 ranges through the standard basis vectors e1 = (1, 0, 0, 0)t, . . . ,
e4 = (0, 0, 0, 1)t, each picking off one entry of O. A heuristic analogy
between Zaremba and the Apollonian problem is actually already given
in [GLM+03, p. 37], but it is crucial for us that both problems are
exactly of the form (3.28); compare to (2.29). That is, n is represented
if and only if there is a γ in the Apollonian group Γ and some w0 ∈
{e1, . . . , e4} so that

n = 〈w0, γ · v0〉 . (3.29)

Before saying more about the proof of Theorem A, we first discuss
admissibility in greater detail.

3.2.1. Local obstructions.
Through (3.28), the admissibility condition (3.23) is again reduced

to the study of the projection of Γ modulo q. An important feature
here is that, like in the Zaremba case, the group Γ is Zariski dense in
OQ. Recall that this means: if P (γ) is a polynomial in the entries of a
4× 4 matrix γ which vanishes for every γ ∈ Γ, then P also vanishes on
all complex matrices in OQ.

We would like again to exploit strong approximation, but neither
OQ nor its orientation preserving subgroup SOQ := OQ∩SL4 have this
property (being not even connected). But there is a standard method
of applying strong approximation anyway, by first passing to a certain
cover, as we now describe.

From the theory of rational quadratic forms [Cas78], special orthog-
onal groups are covered by so-called spin groups, and it is a pleasant
accident that, since Q has signature (3, 1), the spin group of SOQ(R) is
isomorphic to SL2(C); let us explain this covering map. The formulae
are nicer if we first change variables (over Q) from our quadratic form
Q to the equivalent form

Q̃(x, y, z, w) := xw + y2 + z2.
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Observe that the matrix

M :=

(
−x y + iz
y − iz w

)
has determinant equal to −Q̃ and is Hermitian, that is, fixed under
transpose-conjugation. The group SL2(C), consisting of 2× 2 complex
matrices of determinant one, acts on M by

SL2(C) 3 g : M 7→ g ·M · ḡt =: M ′ =

(
−x′ y′ + iz′

y′ − iz′ w′

)
,

with M ′ also Hermitian and of determinant −Q̃. Then it is easy to
see that (x′, y′, z′, w′)t is a linear change of variables from (x, y, z, w)t,
via left multiplication by a matrix whose entries are quadratic in the
entries of g. Explicitly, if

g =

(
a+ αi b+ βi
c+ γi d+ δi

)
, (3.30)

then the change of variables matrix is

1

| det(g)|2


a2 + α2 2(ac+ αγ) 2(cα− aγ) −c2 − γ2

ab+ αβ bc+ ad+ βγ + αδ dα + cβ − bγ − aδ −cd− γδ
aβ − bα −dα + cβ − bγ + aδ −bc+ ad− βγ + αδ dγ − cδ
−b2 − β2 −2(bd+ βδ) 2(bδ − dβ) d2 + δ2

 .

(3.31)
Let ρ̃ be the (rational) map from SL2(C) to GL4(R), sending (3.30) to
(3.31); then by construction (again one can verify directly) the image
is in SOQ̃(R). (Some minor technical points: Being quadratic in the
entries, ρ̃ is a double cover, with ±I having the same image. Moreover,
SL2(C) is connected while SOQ̃(R) has two connected components, so ρ̃
only maps onto the identity component SO◦

Q̃
.) Then changing variables

from Q̃ back to the Descartes form Q by a conjugation, one gets the
desired map

ρ : SL2(C)→ SOQ(R).

It is straightforward then to compute the pullback of Γ∩SOQ under
ρ (see [GLM+05, Fuc11]), the answer being the following

Lemma 3.32. There is4 a homomorphism ρ : SL2(C) → SOQ(R) so

that the group Γ̃ := ρ−1(Γ ∩ SOQ) sits in SL2(Z[i]) and is generated by

Γ̃ =

〈
±
(

1 2
0 1

)
, ±

(
1 0
2 1

)
, ±

(
1 + 2i −2
−2 1− 2i

)〉
. (3.33)

4And one can easily write it down explicitly: it is a conjugate of (3.31), but
much messier and not particularly enlightening. We spare the reader.
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Moreover, recalling the generators Sj for Γ in (3.13), one can arrange
ρ so that ρ :

(
1 2
0 1

)
7→ S2S3, and ρ :

(
1 0
2 1

)
7→ S4S3.

In fact, we have just realized a conjugate of the group A (or rather
its index-two orientation preserving subgroup) explicitly in terms of
matrices in PSL(2,C) ∼= Isom+(H3).

From here, one follows the strategy outlined in §2.2. Fuchs [Fuc11]
proved an explicit version of strong approximation for Γ̃ < SL2(Z[i])
(one considers reduction mod principal ideals (q)) via Goursat’s Lemma,
some finite group theory, and other ingredients, enabling her to deter-
mine completely the reduction of Γ modulo any q, and hence explaining
all local obstructions. The answer is that all primes other than 2 and
3 are unramified, meaning, as in §2.2, that for (q, 6) = 1,

Γ ∩ SOQ (mod q) = SOQ(Z/qZ).

Recall again that the right hand side above is a well-understood group.
And moreover, the prime 2 stabilizes (with the same meaning as §2.2)
at the power e0(2) = 3, that is at 8, and the prime 3 stabilizes imme-
diately at e0(3) = 1. Then reducing Γ modulo 23 · 3 = 24, one obtains
some explicit finite group, and looking at all the values of (3.28) for
the given root quadruple v0(G ), one immediately sees all admissible
residue classes.

3.2.2. Partial Progress.
Lemma 3.32 can already be quite useful; in particular, it easily im-

plies (3.25) and (3.26), as follows.
The Apollonian group Γ contains the matrix S4S3, which by Lemma

3.32 is the image under ρ of
(

1 0
2 1

)
. The latter (and hence the former)

is a unipotent matrix, meaning that all its eigenvalues are equal to 1.
These have the important property that they grow only polynomially

under exponentiation; in particular,
(

1 0
2 1

)k
=
(

1 0
2k 1

)
, and one can check

directly from the definitions (3.13) that

(S4S3)k =


1 0 0 0
0 1 0 0

4k2 − 2k 4k2 − 2k 1− 2k 2k
4k2 + 2k 4k2 + 2k −2k 2k + 1

 .

Put the above matrix into (3.29) with the root quadruple v0 for our
fixed gasket from (3.7), and take w0 = e4, say. Then for any k ∈ Z,
the number 〈

e4 , (S4S3)k · v0

〉
= 32k2 + 24k + 27 (3.34)
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is represented. That is, the set of represented numbers contains the
values of this quadratic polynomial. From this observation, made in
[GLM+03], it is immediate that (3.25) holds. Geometrically, these cur-
vatures correspond to circles in the packing tangent to C1 and C2,
since these are fixed by the corresponding reflections through C̃4 and
C̃3. For example, the values k = −2,−1, 0, 1, 2 in (3.34) give curvatures
107, 35, 27, 83, 203, respectively. These are visible in Figure 1; they are
all tangent to the circles of curvature −10 (the bounding circle) and 18,
skipping every other such circle. Using w0 = e3 instead of e4 in (3.34)
gives the polynomial 32k2− 8k+ 23, the values of which correspond to
the skipped circles.

To prove (3.26), we make the following observation, due to Sarnak
[Sar07]. It is well known that the matrices ±

(
1 0
2 1

)
and ±

(
1 2
0 1

)
(which

map under ρ to S4S3 and S2S3, respectively) generate the group

Λ(2) :=

{(
a b
c d

)
∈ SL2(Z) :

a ≡ d ≡ 1(mod 2)
b ≡ c ≡ 0(mod 2)

}
. (3.35)

This is the so-called level-2 principal congruence subgroup of SL2(Z).
Hence by Lemma 3.32, the group Γ contains

Ξ := 〈 S2S3 , S4S3 〉 = ρ (Λ(2)) . (3.36)

The point is that Λ(2) is arithmetic, being defined in (3.35) by congru-
ences. Then for any integer ` coprime to 2k, there is a matrix

( ∗ ∗
2k `

)
in Λ(2). One can work out, with the same v0 and w0 as above, that〈

e4 , ρ

(
∗ ∗
2k `

)
· v0

〉
= 32k2 + 24k`+ 17`2 + 10. (3.37)

For example, the choices (2k, `) = (4,−3), (2,−1), (4,−1), and (6,−1)
give curvatures 147, 35, 107, and 243, respectively, visible up the left
side of Figure 1, all tangent to the bounding circle (since Ξ in (3.36)
fixes C1). Observe also that setting ` = 1 in (3.37) recovers (3.34). In
this way, Sarnak [Sar07] proved that the set K of represented numbers
contains all primitive (meaning with 2k and ` coprime) values of the
shifted binary quadratic form in (3.37). Note that the quadratic form
has discriminant 242 − 4 · 32 · 17 = −1600, and so (3.37) is definite,
taking only positive values. The number of distinct primitive values of
(3.37) up to N was determined by Landau [Lan08]: it is asymptotic
to a constant times N/

√
logN , thereby proving (3.26). A much more

delicate and clever but still “elementary” (no automorphic forms are
harmed) argument goes into the proof of the Positive Density Conjec-
ture (3.27), using an ensemble of such shifted binary quadratic forms.
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(a) View from the side (b) View from below

Figure 10. The thin Pythagorean orbit O in (4.9).
Points are marked according to whether the hypotenuse
is prime ( ) or composite ( ).

For Theorem A, one needs the theory of automorphic representations
for the full Apollonian group, as hinted to at the end of §3.1.6.

We now leave the discussion of the Apollonian problem, returning to
it again in §5.

4. The Thin Pythagorean Problem

A Pythagorean triple x = (x, y, z)t is a point on the cone

Q(x) = 0, (4.1)

where Q is the “Pythagorean quadratic form”

Q(x) := x2 + y2 − z2.

Throughout we consider only integral triples, x ∈ Z3, and assume that
x, y, and z are coprime; such a triple is called primitive. Elementary
considerations then force the hypotenuse z to be odd, and x and y to
be of opposite parity; we assume henceforth that x is odd and y is even.
The cone has a singularity at the origin, so we only consider its top
half, assuming subsequently that the hypotenuse is positive, z > 0.

Diophantus (and likely the Babylonians [Pli], who preceded him by
about as much as he precedes us) knew how to parametrize Pythagorean
triples: Given x, there is a pair v = (u, v) of coprime integers of oppo-
site parity so that  x = u2 − v2

y = 2uv
z = u2 + v2.

(4.2)
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That the converse is true is elementary algebra: any such pair v in-
serted into (4.2) gives rise to a triple x satisfying (4.1). For example,
it is easy to see that the triple

x0 = (3, 4, 5)t (4.3)

corresponds to the pair
v0 = (2, 1)t. (4.4)

4.1. Orbits and the Spin Representation.
As in the Apollonian case, the Pythagorean form Q has a special

(determinant one) orthogonal group preserving it:

SOQ := {g ∈ SL3 : Q(g · x) = Q(x)}. (4.5)

And as before, this group is also better understood by passing to its
spin cover. Since the Pythagorean form Q has signature (2, 1), there is
an accidental isomorphism between its spin group and SL2(R), given
explicitly as follows.

Observe that SL2 acts on a pair v by left multiplication; via (4.2),
this action then extends to a linear action on x. In coordinates, it is
an elementary computation that the action of

(
a b
c d

)
on v corresponds

to left multiplication on x by

1

ad− bc

 1
2

(a2 − b2 − c2 + d2) ac− bd 1
2

(a2 − b2 + c2 − d2)
ab− cd bc+ ad ab+ cd

1
2

(a2 + b2 − c2 − d2) ac+ bd 1
2

(a2 + b2 + c2 + d2)

 .

(4.6)
One can check directly from the definition (4.5) that (4.6) is an element
of SOQ, in fact of the connected component SO◦Q of the identity, and
hence we have explicitly constructed the spin homomorphism

ρ : SL2(R)→ SOQ(R) :

(
a b
c d

)
7→ (4.6).

Given a Pythagorean triple x0, such as that in (4.3), the group Γ :=
SO◦Q(Z) of all integer matrices in SO◦Q acts by left multiplication, giving
the full orbit O = Γ ·x0 of all Pythagorean triples (with our convention
that z > 0, x is odd, and y is even).

Via (4.2) again, this SOQ action on x is equivalent to the SL2 action
on v. For a primitive v ∈ Z2, both the integrality and primitivity are
preserved by restricting the action to just the integral matrices SL2(Z).
Moreover, one should preserve the parity condition on v by restricting
further to only the principal 2-congruence subgroup

Λ(2) =

{
γ ∈ SL2(Z) : γ ≡ I(mod 2)

}
=

〈
±
(

1 2
0 1

)
,±
(

1 0
2 1

)〉
,
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which already appeared in §3.2.2. One can check directly that the im-
age (4.6) of any γ ∈ Λ(2) is an integral matrix, that is, in SOQ(Z).

For v0 corresponding to x0, the orbit Õ := Γ̃ · v0 under the full group
Γ̃ := Λ(2) consists of all coprime (u, v) with u even and v odd.

Prompted by the Affine Sieve5 [BGS06, BGS10, SGS11] one may
wish to study thin orbits O of Pythagorean triples. Here one replaces
the full group SOQ(Z) by some finitely generated subgroup Γ of infinite

index. Equivalently one can consider an orbit Õ of v0 under an infinite
index subgroup Γ̃ of Λ(2). We illustrate the general theory via the
following concrete example.

We first give a sample Õ orbit: in comparison with the generators
of Λ(2), let Γ̃ be the group generated by the following two matrices

Γ̃ :=

〈
±
(

1 2
0 1

)
, ±

(
1 0
4 1

)〉
. (4.7)

This group clearly sits inside Λ(2) but it is not immediately obvious
whether it is of finite or infinite index; as we will see later, the index is
infinite. Taking the base pair v0 in (4.4), we form the orbit

Õ := Γ̃ · v0. (4.8)

Correspondingly, we can take the base triple x0 in (4.3), and form the
orbit

O := Γ · x0 (4.9)

of x0 under the group

Γ := 〈M1,M2〉 , (4.10)

where M1 and M2 are the images under ρ of the matrices generating
Γ̃; one can elementarily compute from (4.7) and (4.6) that

M1 :=

 −1 −2 −2
2 1 2
2 2 3

 , M2 :=

 −7 4 8
−4 1 4
−8 4 9

 . (4.11)

Figure 10 illustrates this orbit O. We can visually verify that the orbit
looks thin, and in the next subsection we confirm this rigorously.

5We have insufficient room to survey this beautiful theory, for which the reader
is directed to any number of excellent surveys, e.g. [SG12].
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(a) Upper half plane model (b) Disk model

Figure 11. The orbit of i ∈ H under Γ̃.

4.2. The Orbit is Thin.
The group SL2(R) also acts on the hyperbolic upper half-plane

H := {z = x+ iy : x ∈ R, y > 0}
by fractional linear transformations,(

a b
c d

)
: z 7→ az + b

cz + d
. (4.12)

The action of our group Γ̃ in (4.7) on H has a fundamental domain
(the definition is similar to (3.10)) given by

{z ∈ H : |Re(z)| < 1, |z − 1/4| > 1/4, |z + 1/4| > 1/4},
where the distances above are Euclidean; see Figure 11a. The hyper-
bolic measure is y−2 dx dy, and hence this region again has infinite
hyperbolic area. Equivalently, the index of Γ̃ in Λ(2) is infinite (it is
well-known that Λ(2) has finite co-area), as claimed.

Any orbit of a fixed base point in H under Γ̃ has some limit set
C = C (Γ̃) in the boundary ∂H. A piece of this Cantor-like set can
already be seen in Figure 11a. But to see it fully, we show in Figure
11b the same Γ̃-orbit in the disk model

D = {z ∈ C : |z| < 1},

by composing the action of Γ̃ with the map

H→ D : z 7→ z − i
z + i

(which encodes the observation that points in the upper half plane are
closer to i than they are to −i). In the disk model, one more clearly
sees the limit set as the set of “directions” in which the orbit O can
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grow – juxtapose Figure 10b on Figure 11b. This limit set C has some
Hausdorff dimension δ = δ(Γ̃) ∈ [0, 1]; one can estimate

δ ≈ 0.59 . . . (4.13)

This dimension (also called the “critical exponent of Γ”) is again an
important geometric invariant, measuring the “thinness” of Γ, as illus-
trated in the following counting statement [Kon07, Kon09, KO12]. Let
‖x‖ be the Euclidean norm. There is some c > 0 so that

#{x ∈ O : ‖x‖ < N} ∼ cN δ, as N →∞. (4.14)

Once again, (4.14) should be compared with the orbit of x0 under
the full ambient group, SOQ(Z). Elementary methods show that

#{x ∈ SOQ(Z) · x0 : ‖x‖ < N} ∼ cN.

So in passing from the full orbit to O, the asymptotic drops from N to
N δ, with δ < 1. Thus the orbit O is thin.

The fact that ρ is a quadratic map in the entries (see (4.6)) implies
that the count (4.14) on triples x ∈ O is equivalent to the following
asymptotic for the pairs v ∈ Õ:

#{v ∈ Õ : ‖v‖ < N} ∼ c′ ·N2δ, (4.15)

as N →∞. Note that the power of N is now 2δ. This can also be seen
immediately from (4.1) and (4.2) that

‖x‖ =
√
x2 + y2 + z2 =

√
2z =

√
2(u2 + v2) =

√
2‖v‖2. (4.16)

(Geometrically, the cone (4.1) intersects the sphere of radius N at a
circle of radius N/

√
2.) Observe that (4.14) looks like the Apollonian

asymptotic (3.5), while (4.15) is more similar to Hensley’s estimate
(2.17) in Zaremba’s problem. This is just a consequence of choosing
between working in the orthogonal group or its spin cover.

4.3. Diophantine Problems.
One can now pose a variety of Diophantine questions about the val-

ues of various functions on such thin orbits. Given an orbit O = Γ · x0

and a function f : O → Z, call

P := f(O) ⊂ Z (4.17)

the set of represented numbers. That is, n is represented by the pair
(O, f) if there is some γ ∈ Γ so that n = f(γ · x0). And as before, we
say n is admissible if n ∈P(mod q) for all q. For example, if f is the
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“hypotenuse” function, f(x) = z, one can ask whether (O, f) repre-
sents infinitely many admissible primes. Evidence to the affirmative is
illustrated in Figure 10, where a triple is highlighted if its hypotenuse
is prime. Unfortunately this problem on thin orbits6 seems out of reach
of current technology.

But for a restricted class F of functions f , and orbits O which are
“not too thin,” recent progress has been made towards the local-global
problem in P. Let F be the set of functions f which are a linear,
not on the triples x, but on the corresponding pairs v. For example,
it is not particularly well-know that in a Pythagorean triple, the sum
of the hypotenuse z and the even side y is always a perfect square.
This follows immediately from the parametrization (4.2); in particular,
y + z = (u+ v)2. So the function

f(x) =
√
y + z = u+ v (4.18)

is integer-valued on O and linear7 in v.
Another way of saying this is to pass to the corresponding orbit

Õ = Γ̃ · v0. Any such linear function on v is of the form

f(v) = 〈w0,v〉 , (4.19)

for some fixed w0 ∈ Z2. In the example (4.18), take w0 = (1, 1)t. Then
F consists of all functions on O which, pulled back to Õ, are of the
form (4.19).

Theorem P (Bourgain-K. 2010 [BK10]). Fix any such linear f ∈ F
and Pythagorean triple x0. There is some δ0 < 1 (the value δ0 =
0.99995 suffices) so that if the orbit O = Γ ·x0 is not too thin, meaning
the exponent δ of Γ satisfies

δ > δ0, (4.20)

then almost every admissible number is represented in P = f(O).

We are finally in position to relate this Pythagorean problem to the
Apollonian and Zaremba’s. Indeed, passing to the corresponding orbit
Õ = Γ̃ · v0 and fixing the function f(v) = 〈w0,v〉, we have that n is
represented if there is a γ ∈ Γ̃ so that

n = 〈w0, γ · v0〉 . (4.21)

6For the full orbit of all Pythagorean triples, infinitely many hypotenuses are
prime. This follows from (4.2) that z = u2 + v2 and Fermat’s theorem that all
primes ≡ 1(mod 4) are sums of two squares.

7Really we want the values of |u + v|, which within the positive integers are the

union of the values of u+ v and −u− v. Alternatively, we can assume that −I ∈ Γ̃,
as is the case for (4.7).
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That is,

P =
〈
w0, Γ̃ · v0

〉
, (4.22)

which is of the same form as (2.29) and (3.28). The condition of ad-
missibility is analyzed again given the generators of Γ̃ by strong ap-
proximation, Goursat’s Lemma, and finite group theory, as in §2.2.

Note that in light of the asymptotic counting formula (4.15), the
minimal dimension δ0 in (4.20) cannot go below 1/2: the numbers in
P up to N (counted with multiplicity) have cardinality roughly N2δ,
so if δ is less than 1/2, then certainly a local-global principle fails
miserably. (Such a phenomenon appeared already in the context of
Hensley’s conjecture (2.15) in Zaremba’s problem.)
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5. The Circle Method: Tools and Proofs

We briefly review the previous three sections, unifying the (re)formulations
of the problems. The Apollonian, Pythagorean, and Zaremba Theo-
rems will henceforth be referred to as Theorem X, where

X = A,P , or Z,

respectively. Theorem X concerns the set S of numbers of the form

S = 〈w0,Γ · v0〉 . (5.1)

Here

S =


K = the set of curvatures (3.28) if X = A,

P = the set of square-roots of sums of

hypotenuses and even sides (4.22), (4.18)
if X = P ,

DA = the set of denominators (2.29) if X = Z,

Γ =


the Apollonian group Γ if X = A,

an infinite index subgroup Γ̃ < Λ(2) if X = P ,

the semigroup ΓA if X = Z,

v0 =


the root quadruple if X = A,

any coprime pair of opposite parity if X = P ,

(0, 1)t if X = Z,

and

w0 =


a standard basis vector ej if X = A,

any fixed pair if X = P ,

(0, 1)t if X = Z.

But now we can forget the individual problems and just focus on the
general setting (5.1); one need not keep the above taxonomy in one’s
head throughout.

To study the local-global problem for S , we introduce the represen-
tation function

RN(n) :=
∑
γ∈ΩN

1{n=〈w0,γ·v0〉}. (5.2)

Here N is a growing parameter, and ΩN is a certain subset of the radius
N ball in Γ,

ΩN ⊂ {γ ∈ Γ : ‖γ‖ < N},
which we will describe in more detail later. For now, one can just think
of ΩN as the whole radius N ball. To get our bearings, let us recall
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roughly8 the size of ΩN :

#{γ ∈ Γ : ‖γ‖ < N} �


N δ, if X = A, see (3.5)

N2δ, if X = P , see (4.15)

N2δA , if X = Z, see (2.17).

.

We can write this uniformly by introducing the parameter α, defined
by

α :=


δ, the dimension of an Apollonian packing if X = A, see (3.4)

2δ, where δ is the dimension of C (Γ̃) if X = P , see (4.13)

2δA, where δA is the dimension of CA if X = Z, see (2.10).

In each case α satisfies
1 < α < 2. (5.3)

Then the cardinality of such a ball ΩN is roughly

|ΩN | � Nα. (5.4)

Returning to (5.2), we see by construction that RN is nonnegative.
Moreover observe that

if RN(n) > 0, then certainly n is represented in S . (5.5)

Also record that

RN is supported on n of size |n| � N. (5.6)

Recalling the notation e(x) = e2πix, the Fourier transform

SN(θ) := R̂N(θ) =
∑
n∈Z

RN(n)e(nθ)

=
∑
γ∈ΩN

e(θ 〈w0, γ · v0〉) (5.7)

is a wildly oscillating exponential sum on the circle R/Z = [0, 1), whose
graph looks something like Figure 12. One recovers RN through ele-
mentary Fourier inversion,

RN(n) =

∫
R/Z
SN(θ)e(−nθ)dθ, (5.8)

but without further ingredients, one is going around in circles (no pun
intended).

Hardy and Littlewood had the idea that the bulk of the integral (5.8)
could be captured just by integrating over frequencies θ that are very
close to rational numbers a/q, (a, q) = 1, with very small denominators

8Technically the quoted results are about counting in the corresponding orbits
O and not in the groups Γ; but the order of magnitude is the same for both.
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Figure 12. The real part of an exponential sum of the
form (5.7)

q; some of these intervals are shaded in Figure 12. These are now called
the major arcs M; the name refers not to their total length (they
comprise a tiny fraction of the circle R/Z) but to the fact that they
are supposed to account for a preponderance of RN(n). Accordingly,
we decompose (5.8) as

RN(n) =MN(n) + EN(n),

where the major arc contribution

MN(n) :=

∫
M

SN(θ)e(−nθ)dθ (5.9)

is supposed to give the “main” term, and

EN(n) :=

∫
m

SN(θ)e(−nθ)dθ (5.10)

should be the “error”. Here m := [0, 1) \M are the complemenary
so-called minor arcs. If MN(n) is positive and bigger than |EN(n)|,
then certainly

RN(n) ≥MN(n)− |EN(n)| > 0, (5.11)

so again, n is represented. In practice, one typically tries to prove an
asymptotic formula (or at least a lower bound) forMN , and then give
an upper bound for |EN |.
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The reason for this decomposition is that exponential sums such as
SN should be mostly supported on M, having their biggest peaks and
valleys at (or very near) these frequencies (some of this phenomenon is
visible in Figure 12). Indeed, the value θ = 0 is as big as SN will ever
get,

|SN(θ)| ≤ SN(0) = |ΩN |, (5.12)

which follows trivially (and is thus called the trivial bound) from the
triangle inequality: every summand in (5.7) is a complex number of ab-
solute value 1. Also for other θ ∈ M, θ ≈ a/q, the summands should
all point in a limited number of directions, colluding to give a large
contribution to SN . As we will see later, at these frequencies, one is
in a sense measuring the distribution of S (or equivalently ΩN) along
certain arithmetic progressions. This strategy of coaxing out the (con-
jectural) main term for RN works in surprisingly great generality, but
can also give false predictions (even for the Prime Number Theorem,
see e.g. [Gra95]).

Having made this decomposition, we should determine what we ex-
pect for the main term. From (5.7), we have that∑

n

RN(n) = SN(0) = |ΩN |,

so recalling the support (5.2) of RN , one might expect that an ad-
missible number of size about n � N is represented roughly |ΩN |/N
times. In particular, since every admissible number is expected to be
represented, one would like to show, say, for N/2 ≤ n < N , that

MN(n)� S(n)
|ΩN |
N

. (5.13)

Here S(n) ≥ 0 is a certain product of local densities called the singular
series; it alone is responsible for the notion of admissibility, vanishing
on non-admissible n. For admissible n, it typically does not fluctuate
too much; crudely one can show in many contexts the lower bound
� N−ε for any ε > 0. For ease of exposition, let us just pretend for
now that every n is admissible and remove the role of the singular
series, allowing ourselves to assume that

S(n) = 1. (5.14)

Observe also that, in light of the cardinality (5.4) of |ΩN | and with
exponent α ranging in (5.3), the lower bound in (5.13) is of the order
Nα−1, with α > 1. That is, there should be quite a lot of representa-
tions of an admissible n � N large, giving further indication that every
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sufficiently large admissible number may be represented.

One is then left with the problem of estimating away the remainder
term EN , and this is why (as Peter Sarnak likes to say) the circle method
is a “method” and not a “theorem”: establishing such estimates is
much more of an art than a science. The Hardy-Littlewood procedure
suggests somehow exploiting the fact that on the minor arc frequencies,
θ ∈ m, the exponential sum SN in (5.7) should itself already be quite
small, being a sum of canceling phases. If one could indeed prove at
the level of individual n an upper bound for the error term EN which is
asymptotically smaller than the lower bound (5.13) for MN , then one
would immediately conclude the full local-global conjecture that every
sufficiently large admissible n is represented. Unfortunately, at present
we do not know how to give such strong upper bounds on the minor
arcs.

Instead, we settle for an “almost” local-global statement, by proving
a sharp bound not for individual n, but for n in an average sense, as
follows. Parseval’s theorem states that the L2 norm of a function is
equal to that of its Fourier transform, that is, the Fourier transform is
a unitary operator on these Hilbert spaces. Using the definition (5.10),
Parseval’s theorem then gives∑

n

|EN(n)|2 =

∫
m

|SN(θ)|2dθ. (5.15)

Inserting our trivial bound (5.12) for SN into the above yields a trivial
bound for (5.15) of ∫

m

|SN(θ)|2dθ ≤ |ΩN |2. (5.16)

We claim that it suffices for our applications to establish a bound of
the form ∫

m

|SN(θ)|2dθ = o

(
|ΩN |2

N

)
. (5.17)

That is, the above saves a little more than
√
N on average over m off

of each term SN relative to the trivial bound (5.16). We first explain
why this suffices.

5.1. Proof of Theorem X, Assuming (5.13) and (5.17).
Let E(N) be the set of exceptional n (those that are admissible but

not represented) in the range N/2 ≤ n < N . Recalling the suffi-
cient condition (5.11) for representation, the number of exceptions is
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bounded by

#E(N) ≤
∑

N/2<|n|<N
n is admissible

1{|EN (n)|≥MN (n)}.

For admissible n, we have the supposed major arc lower bound (5.13)
and recall our simplifying assumption (5.14) to ignore the singular se-
ries; thus

#E(N) ≤
∑
n

1{|EN (n)|�|ΩN |/N}. (5.18)

Here is a pleasant (standard) trick: for those n contributing a 1 rather
than 0 to (5.18), we have

1� |EN(n)|
|ΩN |/N

,

both sides of which may be squared. Hence (5.18) implies that

#E(N)� N2

|ΩN |2
·
∑
n

|EN(n)|2.

Now we apply Parseval (5.15) and the supposed minor arcs bound
(5.17). This gives

#E(N) = o

(
N2

|ΩN |2
· |ΩN |2

N

)
= o(N),

and thus 100% of the admissible numbers in the range [N/2, N) are
represented. Combining such dyadic intervals, we conclude that al-
most every admissible number is represented.

Now “all” that is left is to establish the major arcs bound (5.13) and
the error bound (5.17). In the next two subsections, we focus individ-
ually on the tools needed to prove these claims.

5.2. The Major Arcs.
Recall that MN in (5.9) is an integral over the major arcs θ ∈ M;

here θ is very close to a fraction a/q, with q “small” (the meaning of
which is explained below). Also let us pretend for now that ΩN is just
the whole Γ-ball,

ΩN = {γ ∈ Γ : ‖γ‖ < N}. (5.19)

We begin by trying to evaluate (5.7) at θ = a/q:

SN
(
a

q

)
=
∑
γ∈Γ

‖γ‖<N

e

(
a

q
〈w0, γ · v0〉

)
.
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(
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0 1

)
:x 7→ x± 2(

1 0
±4 1

)
:x 7→ x(±4x+ 1)−1

Figure 13. An expander; shown with q = 101

An important observation in the above is that the summation may be
grouped according to the residue class mod q of the integer 〈w0, γ · v0〉 .
Or what is essentially the same, we can decompose the sum according
to the the residue class of γ(mod q). To this end, let Γq = Γ(mod q) be
the set of such residue classes (which we have already studied in the
context of admissibility and strong approximation). Then we split the
sum as

SN
(
a

q

)
= |ΩN |

∑
γ0∈Γq

e

(
a

q
〈v0 · γ0,w0〉

)
·

 1

|ΩN |
∑
γ∈Γ

‖γ‖<N

1{γ≡γ0(mod q)}

 ,
(5.20)

where we have artificially multiplied and divided by the cardinality
of ΩN . Now for γ0 fixed, the bracketed term is then measuring the
“probability” that γ ≡ γ0(mod q). As one may suspect, our groups do
not have particular preferences for certain residue classes over others;
that is, this probability becomes equidistributed asN grows, with q also
allowed to grow, but at a much slower rate. (In fact, this is exactly
what we mean by the denominator q being “small” – relative to N –
in the major arcs M.) To explain how this happens, we briefly discuss
the crucial notion of an expander.

Rather than going into the general theory (for which we refer the
reader to the beautiful survey [Lub12]; see also [Sar04]), we content
ourselves with but one illustrative example of expansion. Figure 13
shows the following graph. For q = 101, say, take the vertices to be the
elements of Z/qZ, organized around the unit circle by placing x ∈ Z/qZ
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at e(x/q). For the edges, connect each

x to x± 2, and also to x(±4x+ 1)−1, (5.21)

when inversion (mod q) is possible. This is nothing more than the
fractional linear action (see (4.12)) of the generating matrices in (4.7)
(and their inverses) on Z/qZ. We first claim that our graph on q vertices
is “sparse”. Indeed, the complete graph (connecting any vertex to any
other) has on the order of q2 edges, whereas our graph has only on the
order of q edges (since (5.21) implies that any vertex is connected to at
most four others). So we have square-root the total number of possible
edges, and our graph is indeed quite sparse.

Despite having few edges, it is a fact that this graph is nevertheless
highly connected, in the sense that a random walk on it is rapidly mix-
ing. Moreover, this rate of mixing, properly normalized, is independent
of the choice of q above. That is, by varying q, we in fact have a whole
family of such sparse but highly connected graphs, and with a uniform
mixing rate; this is exactly what characterizes an expander.

Proofs of expansion use, among other things, tools from additive
combinatorics, in particular, the so-called sum-product [BKT04, Bou08]
and triple-product [Hel08, BGT11, PS10] estimates, and quite a lot of
other work which we will not survey; see e.g. [SX91, Gam02, BG08,
BGS10, Var10, BV11, SGV11]. Once one proves uniform expansion for
such finite graphs, the statements must be converted into the archimedean
form needed for the bracketed term in (5.20). To handle such counting
statements, one uses

infinite volume spectral and representation theory

à la §3.1.6, specifically Vinogradov’s thesis [Vin12], if X = A,

similar techniques developed by

Bourgain-K.-Sarnak [BKS10],
if X = P ,

the thermodynamic formalism, analytically continuing

certain Ruelle transfer operators [Lal89, Dol98, Nau05]

and their “congruence” extensions; see [BGS11],

if X = Z.

Without going into details, the upshot is that, up to acceptable er-
rors, the bracketed term in (5.20) is just 1/|Γq|, confirming the desired
equidistribution. Inserting this estimation into MN in (5.9), one uses
these techniques and some more standard circle method analysis to
eventually conclude (5.13).
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5.3. The Minor Arcs.
We use different strategies to prove the minor arcs bound (5.17)

for the Pythagorean and Zaremba settings X = P or Z, versus the
Apollonian setting X = A, so we present them individually. As the
details quickly become quite technical, we will only scratch the surface,
inviting the interested reader to study the original manuscripts [BK10,
BK11, BK12]. Hopefully the short sketches below give some indication
for the flavor of the arguments involved.

5.3.1. Pythagorean and Zaremba settings.
To handle the minor arcs here, we make the observation that the

ensemble ΩN in the definition of SN from (5.7) need not be an exact
Γ-ball as in (5.19), but can be replaced by, say, a product of two such.
That is, the definition of SN can be changed to

SN(θ) :=
∑
γ1∈Γ

‖γ1‖<
√
N

∑
γ2∈Γ

‖γ2‖<
√
N

e(θ 〈v0γ1γ2,w0〉), (5.22)

without irreparably damaging the major arcs analysis. This new sum
encodes much more of the (semi)group structure of Γ, while preserv-
ing the “non-vanishing implies represented” property (5.5), where RN

is redefined by Fourier inversion (5.8). (In reality, we use even more
complicated exponential sums.) The advantage of (5.22) is that we can
now exploit this structure à la Vinogradov’s method [Vin37] for esti-
mating bilinear forms: one can think of (5.22) as the sum of all entries
in the matrix indexed by γ1 and γ2 with entries e(θ 〈v0γ1γ2, ω0〉). Just
one standard maneuver in estimating bilinear forms is the following.

Apply the Cauchy-Schwarz inequality to (5.22) in the γ1 variable:

|SN(θ)| ≤

 ∑
γ1∈Γ

‖γ1‖<
√
N

1


1/2 ∑

γ1∈SL2(Z)

‖γ1‖<
√
N

∣∣∣∣∣∣∣
∑
γ2∈Γ

‖γ2‖<
√
N

e(θ 〈v0γ1γ2,w0〉)

∣∣∣∣∣∣∣
2

1/2

.

Notice in the second appearance of a γ1 sum, we have replaced the thin
and mysterious group Γ (or semigroup ΓA) by the full ambient group
SL2(Z). On one hand, this allows us to now use more classical tools to
get the requisite cancellation (5.17) in the minor arcs integral. On the
other hand, this type of perturbation argument only succeeds when δ
is near 1, explaining the dimension restrictions (2.23) and (4.20).
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5.3.2. The Apollonian case.
The above strategy fails for the Apollonian problem, because the

Hausdorff dimension (3.4) is a fixed invariant which refuses to be ad-
justed to suit our needs. Instead, we recall that the Apollonian group
Γ contains the special (arithmetic) subgroup Ξ from (3.36). Then, like
(5.22), we change the definition of the exponential sum to something
of the (again, bilinear) form

SN(θ) :=
∑
ξ∈Ξ

‖ξ‖<X

∑
γ∈Γ

‖γ‖<T

e(θ 〈v0 · ξ γ,w0〉), (5.23)

for certain parameters X and T chosen optimally in relation to N . One
uses the full sum over the group Γ to capture the major arcs and ad-
missibility conditions. For the minor arcs bound, one keeps γ fixed and
uses the classical arithmetic group Ξ to get sufficient cancellation to
prove the desired bound (5.17). Again, we spare the reader all details.

5.4. Conclusion.
Putting together the above-sketched minor arcs upper bound (5.17)

with the major arcs lower bound (5.13) discussed in §5.2, we prove the
main Theorem X, as explained in §5.1. We end by emphasizing again
that, though the problems have nearly identical reformulations, the
circle method is only a method and not an applicable theorem: while
the idea of breaking the integral (5.8) into major and minor arcs is
ubiquitous, the actual execution of this idea is handled by very differ-
ent tools in each case; see the table below. Besides the circle method,
the only other pervasive and critical ingredients are expanders for the
major arcs, and bilinear forms for the minor arcs.

Theorem Tools for Major Arcs Ingredients for Minor Arcs

A

infinite volume
hyperbolic 3-folds,
automorphic forms,

representations, expanders

that Γ contains the arithmetic
subgroup Ξ ∼= Λ(2),

bilinear forms

P

infinite volume
hyperbolic 2-folds,
automorphic forms,

representations, expanders

replacing Γ by SL2(Z)
for δ near 1,

bilinear forms

Z
thermodynamic formalism,

congruence transfer operators,
expanders

replacing ΓA by SL2(Z)
for δA near 1,
bilinear forms
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