History of Math, Princeton University, Fall 2024, Prof. Kontorovich -ast the Resolution of Construction Problems From Antiquity: I Trisecting an angle 59 squaring civile I Darding abe. rational; (quotients) JZ negers -13,76218- $\frac{2}{5} = 0.4$, $\frac{1}{2} = 0.3$ 4eN natural #5. B E "Con structible numbers". Comple A c'algebraz mubers", \propto is a coot of f(x) if $f(\alpha) = 0$. Vef: 2 A number is "algebraic" if it is the root of a polynomial with integer coefficients $\partial x + \int 14x^2 - 3x + 2x - 1$ (zero)

Q₁ JS $4 \in A$? f(x) = x - 4. f(4) = 0. $x - \frac{1}{5}$, 5x - 2, 5x - 2 = 0. d_{1} Is $z \in A^{2}$. $f(x) = x - \frac{2}{5}$. f(z) = 0, $R^{2}Z$. f(x) = 5x - 2, $f(\frac{2}{5}) = 0$, Q: IS $JZ \in A?$ $f(x) = x^2 - 2$. $f(J_{2}) = (J_{2})^{2} - 2 = 2 - 2 = 0$ $\chi^{2} - 2 = 0, \qquad \chi^{2} = 2, \qquad \chi^{-} = \sqrt{2}, -\sqrt{2}.$ Q: IS iEA? $f(x) = |x^2 + 1|$. $x^{2} + 1 = 0, \quad x^{2} = -1, \quad x = \tilde{c}, -\tilde{c},$ Q: IS J24 13 GA? V $\chi^{8}-19,$ (2 + 3'')'' = x

 $2+3^{11}=x^{2}, 3^{2}=x^{2}-2.$ $(x^2 - 2)^4 = 3$, $(f(x) = (x^2 - 2)^4 - 3$, $f(x) = \chi^8 - 8 \chi^6 + 24\chi^4 - 32\chi^2 + 16 - 3$. Def: A real number XEB (il is Constructable) il it un be expressed using lonly square-roots. Q: t> JZEB? Yes. +,-, x,-: & [-]-JZ;+JY Q' ± 5 $52 + 53 \in \mathbb{B}^{2}$ Yes. $\sqrt{2+\sqrt{53}}$ (5'')'' = 3'' = 3'' = 3'' \underline{Q} Is $\sqrt[3]{Z} \in \mathbb{B}$? Ans: NO.

mi (Gauss 1797): IF a number 13 Constructible, Ken there is a geometric (straight edge and compass) process that creates it. Call given beng the OA = unit. Conyou gern Construct JZG. The (Pierre Wantsel 1837): And

That is, the *only* lengths that can be created by straightedge and compass are constructible.

How are new points created? By intersection of lines + lines OR lines + circles OR circles + circles

Algebraically what's happening when you solve for these new points ONLY ever involves at most taking a square root of other lengths already constructed. This already resolves the question (I) of doubling a cube: it can't be done, because

JZ & 15. about (II) Trisecting an angle! The act of creating angle theta is the same E as creating the length OC. = adj = Coso δC⁼ Cos A Cos = XSo trisecting theta is the same as creating OD =Col (243)= Cos & Cos B - Sin & Sin B. $(o_{3}(2\alpha) = (o_{3}\alpha - s)n^{2}\alpha - 2(o_{3}^{2}\alpha - 1))$ GS(32) = 4 Gos 2 - 3 Gos 2. K= $= 4 \cdot \cos\left(\frac{\theta}{s}\right) - 3 \cos\left(\frac{\theta}{s}\right)$ 503 O $\frac{3}{x} - 3x = \overline{oc}$

his equation is Cubic flue al above equas. need m Salition.

The equation for cos(theta/3) (in terms of known cos (theta)) is a cubic equation. Its solution requires cube roots, which cannot be obtained by square roots. So cos (theta /3) is (almost always) not constructible.

Therefore we've solved (II) - in the negative, that is, an arbitrary angle CANNOT be trisected with straightedge and compass.

So what about (III) Squaring the Circle?

Area = TT.r = TT Vant ; length JT. TΤ What kind of polynomial has JT. sqrt pi as its root? ST Answer: NONE!!!! Pi is "transcendental". I.e. For any polynomial f(x) with integer coefficients, $f(pi) \neq 0$. There is no polynomial with the as a

The fact that pi is transcendental was proved by Lindemann in 1882

(Following important work of Hermite.)

Process that proves the quadrature of rectangles, if run "in reverse", would construct a 1 x ? rectangle with the same area as sqrt pi x sqrt pi square. So ? = pi.

ι

Can't square a circle!!!