History of Math, Princeton University, Fall 2024, Prof. Kontorovich

 $-95 + 12$

Finished Euclid's number theory (VII-IX), Perfect numbers given "Mersenne" primes

lek

Book X: incommensurability (irraitional ratios)

Wrative

Books XI - XIII : solid geometry

 $X1.21$ a solid angle (total plane angles around a corner "vertex") is less than four right angles.

 B_{7} B_{9} $X1.39$. Prises have some $\frac{1}{2}$ ook $x\mathbb{Z}$, 2:

 $A=C.d^{2}.$ A = C d^2

By h_{655} $\frac{\sqrt{n}}{10}$, \sqrt{n}
 \sqrt{n} \sqrt{n}

Book $\frac{\sqrt{n}}{2}$, $\frac{3}{2}$

Book $\frac{\sqrt{n}}{2}$, $\frac{3}{2}$
 $\frac{13}{2}$
 $\frac{13}{2}$ $\frac{13}{2}$
 $\frac{13}{2}$ $\frac{13}{2}$
 $\frac{13}{2}$
 $\frac{13}{2}$
 $\frac{13}{2}$
 $\frac{13}{$ **- 1990** Book XIII, 17 Dode ca hedron. By Boss Remark: Has Gonstructed
ALL "platonic" solids. $A = C \cdot d^2$
 $\sqrt{\frac{1}{2}C \cdot d^3}$
 $\sqrt{\frac{1}{2}C' \cdot d^3}$

Recall Def: a polygon (in 2D) is "regular" if all sides are the same, and all angles are the same. (Started Book I.1 with regular 3-gon, i.e. equilateral triangle)

Def: "regular" solid (aka Platonic solid) is a solid having all sides the same, all angles the same, all corners the same, and all faces the same.

Try to construct some of these.

 $fay = 8$

Faces must be regular n-gons. Must have at least three n-gons meeting at each corner. gons
 ξ + 3 :
 ξ 3 :

Try 3 triangles : makes a pyramid called a "Tetrahedron" Tetra $=$ 4

Try 4 triangles around every corner: forms an "OCTAhedron"

corners : 6

1 $\sum_{\mu} p l_{\mu} (x^2 - 4^2 - 6^2 - 240)$ 2360 Try 5 tompes around each corner $5-60 = 300$, 500 20 siles. Z_{plane} $X_{5} = 4.1$
 S_{b0} cant corner
 S_{b0} cant corner icosahedron. Try 5 trimps around each corner
5-60 = 300, < 360, 0
70 siles. Trains at each corner 6 . ⁶⁰ = 3604360 $Conv13$ not 50^{1})
,
)

continuing to place 6 triangles at each vertex, would tile the plane by equilateral triangles = hexagons

6 triangle will make flat space (plane), has zero "curvature" If we put 7 triangles around every corner, this will approximate negative curvature hyperbolic plane.

How about 3 squares? N about 3 squares?
Cube $(2)^{11}$ hexabed con

makes a 12 sided shape

Dodecahedron $= 12$ sides

no options with hexagons, already 3 together are too much. So nothing else is possible. ONLY Options:

3 triangles -- tetrahedron $\frac{1}{2}$ 3 triangles -- octahedron 5 triangles -- icosahedron \geq 3 squares -- cube

3 pentagons -- dodecahedron

(3 pentagons / Lomer 2 pentrying fotol 20 Corners

5. trangles ment at corners 20 Inanyles total,

2 Grues.

Endral" polyhedra. replace corners as faces.

Theorem: these 5 solids are the ONLY regular solids (called "Platonic")

Archimedes: Give me a level long enough and I'll lift the world

Realizes to determine the density of a crown of "gold", weigh it again under water -- screams Eureka running through town naked