Fun with Modular Forms:

q-series: \[q + q^4 + q^9 + \cdots \]
have "mock modular" symmetries.

Prehistory: Euler solves Basel Problem: \[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6} \pi^2 \]

\[\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \]

Bernoulli's \[\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{9} \cdot \frac{1}{3} \cdot \frac{1}{3} + \cdots \]

\[\frac{1}{6} \pi^2 \]

Compare term \[\frac{1}{n^2} \]

Kronecker symbol: \(\left(\frac{p}{q} \right) \) primitive poly of degree \(d \), roots \(\zeta_1, \ldots, \zeta_d \) in \(\mathbb{C} \),

\[a \cdot \left(\frac{0}{1} \right) \Rightarrow p(x) = \left(1 - \frac{x}{a_1} \right) \cdots \left(1 - \frac{x}{a_d} \right) \]

Infinite product vs. infinite series vs. stuff.

\[\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s} \right) = \prod_p \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \]

\[\sum_{p} \frac{1}{p} = \infty \]

\[\frac{1}{1 - \lambda} = 1 + \lambda + \lambda^2 + \lambda^3 + \cdots \]

Partition function: \(p(5) = 7 \), \(5 = 4 + 1 = 3 + 2 = 2 + 2 + 1 \), etc.,
Euler: \[1 + p(1)q + p(2)q^2 + p(3)q^3 + \ldots = \sum p(n)q^n. \]

\[
\frac{1}{(1-q)(1-q^2)(1-q^3)(1-q^4)\ldots} = \left(\frac{1}{1-q}\right) \left(\frac{1}{1-q^2}\right) \left(\frac{1}{1-q^3}\right) \left(\frac{1}{1-q^4}\right) \ldots \]

\[\text{Coef of } q^5 = \sum p(n)q^5. \]

1. **Kepler (1611): Spherical packings, densest possible configuration?**

 Both pack 74\% of space. Can one do better?

1998 Hales proof Kepler (Fejes Tóth 40/50s)

2003 proves \(\frac{\pi}{\sqrt{18}} \)

2014 Complete found proof. Lots of collaborators.

3-D, 2-D Thue-1890s: Optimal Fejes Tóth 40.

4-D ???, 5-D ???, . . .

8-D, \(E_8 \) lattice \((n_1, \ldots, n_8) \in \mathbb{R}^8 \) \(\sum n_i = 2 \) \(\sum n_i \text{ even} \).
\[E: y^2 + y = x^3 - x \]

\[y \equiv x^3 - x \pmod{p} \]

\[y = p + a(p) \]

\[a(3) = 1 \]

\[f(z) = \sum_{n=0}^{\infty} a(n) q^n \] is a modular form!

SO: Taniyama-Shimura-Weil "Modularity" (Langlands).

Says: Every elliptic curve is modular.

80s Frey: If \(a^p + b^p = c^p \), \(p \geq 3 \), \((a,b,c) \neq 0\),

ie if Fermat's last theorem false, then:

\[y^2 = x(x-a^p)(x+b^p) \] might not be modular?

Serre & Rubin

A. Wiles proved enough modularity \(\Rightarrow \) FLT. (Wiles-Taylor)
\[X^2 + y^2 = 1 \quad \text{parametrization?} \quad x = \cos \theta, \quad y = \sin \theta, \quad \theta \in \mathbb{R}/2\mathbb{Z}. \]

\[y^2 = x + Ax + B \quad \text{parametrization?} \]

Weierstrass \(X = P(w), \quad y = P'(w) \cdot \Lambda \quad \Lambda \text{ finite} \quad \mathbb{C} / \Delta. \)

\[P'(w) = P(w)^2 + E_4(w) \cdot P(w) + E_6(w) \]

"\(j \)-invariant" \(j(z) = \frac{E(2)}{\Delta(2)} \)

\[\Delta(2) = q \prod_{n=1}^{\infty} (1 - q^n)^2 \]

\[q = e^{2\pi i z} \]

\[j \left(\frac{1 + \sqrt{-163}}{2} \right) = -744 \]

\[\Delta(2) = q \prod_{n=1}^{\infty} (1 - q^n)^2 \]

Aside: 70\(\frac{3}{2} \) finite simple groups \(\text{PSL}(2|17) \)

A finite list of infinite family.

Sporadic groups finite (26).
Largest: Monster $8 	imes 10^{53}$ elements.

- In tangent space to manifold (linearization)
 dim (indecomposable) reps of Group 3.

Ned rep of M; 1, 196883, 21296876, ---

Moonshine --- vertex operator algebras...Jim Lepowsky.

Richard Borcherds proved, 1998 FM.

\[\text{Ramanujan:} \quad j \left(\frac{1 + \sqrt{163}i}{2} \right) = -640320 \in \mathbb{Z}. \]

\[q = \exp \left(\frac{1 + i \sqrt{163}}{e} \right) = -e^{\pi \sqrt{163}} \]

\[-e + 744 + \ldots \]

\[\Rightarrow e = 640320^3 + 744 + O(10^{-12}). \]