
Math 640:348 Prof. Kontorovich
Spring 2015, 3/31 lecture

We will use the index calculus method to solve 
a Discrete Log Problem

First lets get a “safe” prime

In[1]:= p = Prime[11113]

Out[1]= 117779

In[2]:= FactorInteger[(p -− 1) /∕ 2]

Out[2]= {{58889, 1}}

In[3]:= q = (p -− 1) /∕ 2

Out[3]= 58889

Good, so q and p are a “Sophie Germain prime pair” - in the literature q is often 
called a Sophie Germain prime. This means the Discrete Log Problem (DLP) mod 
p is not susceptible to Pohlig-Hellman attacks. 

Next we need a way of testing whether a number is smooth, say 5-smooth 
(meaning all its prime factors are 2, 3, or 5). Here is a number called “smooth” 
with the property that: any n<117000 which is 5-smooth has gcd(n,smooth)=n. 
That is, all prime power factors (r^e for prime r) of any 5-smooth number less 
than p are also factors of “smooth”:

In[4]:= smooth = 2^Floor[Log[2, p]] 3^Floor[Log[3, p]] 5^Floor[Log[5, p]]

Out[4]= 302330880000000

Then “is5smooth” returns “True” if n is 5-smooth, and “False” otherwise. (There 
are surely better ways to implement this...)

In[5]:= is5smooth[n_] := (GCD[n, smooth] ⩵ n);



Now let’s get a random primitive root, say,

In[6]:= g = 7;
MultiplicativeOrder[g, p] ⩵ p -− 1

Out[7]= True

In class, we chose a random value of a, say

In[8]:= a = 1919

Out[8]= 1919

Ok, now we’re ready to solve the DLP. We need to find x (remember that x is 
only determined mod p-1, which is the same as mod 2q) so that g^x = a (mod p).

◼ Step 1: solve the DLP for small primes.

Let’s randomly test some values of j, hoping to find a smooth value for g^j(mod 
p):

In[9]:= For[j = 5000, j < 6000, j++,
If[

is5smooth[PowerMod[g, j, p]]
,
Print["g^" <> ToString[j] <> " mod p is smooth"]

];
]

g^5189 mod p is smooth

g^5664 mod p is smooth

g^5838 mod p is smooth

We found three values,

In[10]:= j1 = 5189;
j2 = 5664;
j3 = 5838;

How do the values of g^j(mod p) factor?

In[13]:= FactorInteger[PowerMod[g, j1, p]]

Out[13]= {{2, 3}, {3, 1}, {5, 2}}

In[14]:= FactorInteger[PowerMod[g, j2, p]]

Out[14]= {{2, 2}, {3, 4}, {5, 1}}

2     Lecture17.nb



In[15]:= FactorInteger[PowerMod[g, j3, p]]

Out[15]= {{2, 8}, {3, 2}, {5, 2}}

Writing ell2 for the exponent of g which gives 2, and similarly ell3, ell5, we have 
the system of equations (mod 2q):

3 ell2 + ell3 + 2 ell5 = j1
2 ell2 + 4 ell3 + ell5 = j2
8 ell2 + 2 ell3 + 2 ell5 = j3,

or in “augmented” matrix form: 
(in Mathematica, use “MatrixForm” to make it look like a matrix, instead of a 
sequence)

In[16]:= mat = {
{3, 1, 2, j1},
{2, 4, 1, j2},
{8, 2, 2, j3}

};
MatrixForm[mat]

Out[17]//MatrixForm=
3 1 2 5189
2 4 1 5664
8 2 2 5838

Now we just need to Gaussian Eliminate this matrix to solve for ell2, ell3, and 
ell5. But there’s a catch! The coefficients will in general not be invertible mod 2q! 

So you should first solve the equations mod 2, then mod q, and then “Chinese 
Remainder Theorem” them back together.

First let’s look mod 2:

In[18]:= MatrixForm[Mod[mat, 2]]
Out[18]//MatrixForm=

1 1 0 1
0 0 1 0
0 0 0 0

So our equations are: 

ell2+ell3 = 1 (mod 2)
ell5 = 0 (mod 2)

We do not have a full-rank matrix, so can’t solve exactly; that’s ok, in the end 
we’ll have to guess whether ell2=0 or 1(mod 2), from which everything else will 
be determined...

Now let’s look mod q, and Gaussian Eliminate:
Again, the matrix is:
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So our equations are: 

ell2+ell3 = 1 (mod 2)
ell5 = 0 (mod 2)

We do not have a full-rank matrix, so can’t solve exactly; that’s ok, in the end 
we’ll have to guess whether ell2=0 or 1(mod 2), from which everything else will 
be determined...

Now let’s look mod q, and Gaussian Eliminate:
Again, the matrix is:

In[19]:= MatrixForm[mat]
Out[19]//MatrixForm=

3 1 2 5189
2 4 1 5664
8 2 2 5838

So if we want to use the first row to eliminate coefficients below the “3”, we first 
need to invert the top row. First we need to know the inverse of 3 mod q:

In[20]:= inverse3modq = PowerMod[3, -−1, q]

Out[20]= 19630

And now we multiply the top row by 3^(-1), that is, multiply the matrix “mat” on 
the left by a 3x3 diagonal matrix with diagonal entries 3^(-1), 1, and 1. And of 
course reduce everything mod q:

In[21]:= mat1 = Mod[
DiagonalMatrix[{inverse3modq, 1, 1}].mat
, q];

MatrixForm[mat1]
Out[22]//MatrixForm=

1 19630 39260 40989
2 4 1 5664
8 2 2 5838

Next subtract off 2x(top row) from the second row, and 8x(top row) from the 
third row, as always, reducing mod q:

In[23]:= mat2 = Mod[{{1, 0, 0}, {-−2, 1, 0}, {-−8, 0, 1}}.mat1, q];
MatrixForm[mat2]

Out[24]//MatrixForm=
1 19630 39260 40989
0 19633 39259 41464
0 19629 39256 31260

We continue Gaussian Elimination; now we need to turn that “19633” in the 
middle into a “1”, so we need its inverse mod q

In[25]:= inverse19633 = PowerMod[19633, -−1, q]

Out[25]= 17667
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Multiply the second row by this number, and reduce mod q

In[26]:= mat3 = Mod[DiagonalMatrix[{1, inverse19633, 1}].mat2, q];
MatrixForm[mat3]

Out[27]//MatrixForm=
1 19630 39260 40989
0 1 53000 24217
0 19629 39256 31260

Now subtract 19630x(second row) from the first row, and 19629x(second row) 
from the third row:

In[28]:= mat4 = Mod[{{1, -−19630, 0}, {0, 1, 0}, {0, -−19629, 1}}.mat3, q];
MatrixForm[mat4]

Out[29]//MatrixForm=
1 0 41223 13287
0 1 53000 24217
0 0 35330 27775

Again invert the last diagonal “35330”:
In[30]:= inverse35330 = PowerMod[35330, -−1, q]

Out[30]= 17320

Multiply through

In[31]:= mat5 = Mod[DiagonalMatrix[{1, 1, inverse35330}].mat4, q];
MatrixForm[mat5]

Out[32]//MatrixForm=
1 0 41223 13287
0 1 53000 24217
0 0 1 57648

And subtract

In[33]:= mat6 = Mod[{{1, 0, -−41223}, {0, 1, -−53000}, {0, 0, 1}}.mat5, q];
MatrixForm[mat6]

Out[34]//MatrixForm=
1 0 0 55378
0 1 0 18204
0 0 1 57648

Yay! Now we know that 

In[35]:= ell2q = 55378;
ell3q = 18204;
ell5q = 57648;

I called these ell2“q”, etc., with q’s at the end are because these are the values 
mod q, not mod 2q=p-1. Here comes the Chinese Remainder Theorem step:

We already know that ell5=0(mod 2), so also knowing its value mod q 
determines its value mod 2q:
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I called these ell2“q”, etc., with q’s at the end are because these are the values 
mod q, not mod 2q=p-1. Here comes the Chinese Remainder Theorem step:

We already know that ell5=0(mod 2), so also knowing its value mod q 
determines its value mod 2q:

In[38]:= ell5 = ell5q

Out[38]= 57648

(I trust you can figure out why I did that.) 

Let’s check to make sure we didn’t make any mistakes - does raising g to this 
power mod p give us 5?

In[39]:= PowerMod[g, ell5, p]

Out[39]= 5

Great!

For ell2 and ell3, we do not know their values mod 2, but we do know that 
ell2+ell3=1(mod 2), which means they’re different (one odd, one even). 
Let’s guess that ell2 is even. If that really was the case, then ell2 would be the 
same as ell2q (which is already even). So we test:

In[40]:= PowerMod[g, ell2q, p]

Out[40]= 117777

Aha! This is *not* 2, so ell2q is not ell2! That means that ell2 is in fact odd. So:

In[41]:= ell2 = ell2q + q

Out[41]= 114267

(Again I trust you can figure out why I did that!...)

Let’s test if we got it right:

In[42]:= PowerMod[g, ell2, p]

Out[42]= 2

Two down, one to go! Since ell2 is odd, we know that ell3 is even, so

In[43]:= ell3 = ell3q

Out[43]= 18204
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As always, check your work:

In[44]:= PowerMod[g, ell3, p]

Out[44]= 3

Now Step 1 is done - we have solved the DLP for the small primes 2, 3, and 5.

Extra credit question: what would happen if we just row 
reduced the original matrix, and interpreted fractions as 
inverses mod 2q? Would we find the values of ell2, ell3, 
and ell5 directly? Why or why not?...

◼ Step 2: Find smooth values of a g^-j

The next step is to find some random j so that a g^(-j) (mod p) is also smooth; 
then using the DLP solution above, we should be able to solve DLP for “a”. 
Again, we loop over possible j values:

In[45]:= For[j = 5000, j < 6000, j++,
If[

is5smooth[Mod[ a PowerMod[g, -−j, p], p]]
,
Print["a g^-−" <> ToString[j] <> " mod p is smooth"]

];
]

a g^-−5057 mod p is smooth

a g^-−5453 mod p is smooth

a g^-−5532 mod p is smooth

Great! We found three, but should only need one j. Let’s play with the value

In[46]:= j0 = 5057

Out[46]= 5057

Then a g^(-j0) (mod p) is 

In[47]:= Mod[ a PowerMod[g, -−j0, p], p]

Out[47]= 59049
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which factors as

In[48]:= FactorInteger[59049]

Out[48]= {{3, 10}}

Solving for “a” in the equation

a g^(-j0) = 3^10 = (g^ell3)^10 = g^(10 ell3)

gives

a = g^(j0 + 10 ell3),

so

In[49]:= x = Mod[ j0 + 10 ell3, p -− 1]

Out[49]= 69319

should be our desired exponent! (Note that we reduced mod p-1.) Did it work?

In[50]:= PowerMod[g, x, p]

Out[50]= 1919

In[51]:= a

Out[51]= 1919

The index calculus wins again...
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