Math 640:348 Prof. Kontorovich Spring 2015, 3/27 lecture

We will try to find a prime of size about a million by the Miller-Rabin test

First try numbers of the form


```
Out[1]= 23+30030j
```

because these are guaranteed to be coprime to $2,3,5,7$, II , and I 3 , so we have slightly better odds of finding a prime. (This is sometimes called "pre-sieving".)
Let's start, say, with
$\ln [2]:=\mathbf{j}=\mathbf{2 0 0 ;}$
so that n is
$\ln [3]:=\mathbf{n}$
$O u t[3]=6006023$

First we write n as $2^{\wedge} \mathrm{k} \mathrm{r}$ with r odd.

```
ln[4]:= r=(n-1)/2
Out[4]= 3003011
```

We only took out one power of 2, so can only square once.
Now let's take a random number and test whether it is a witness, say,
$\ln [5]:=\mathbf{a}=\mathbf{2}$;
PowerMod [a, n-1, n]
Out[6]= 2311920

Aha, so 2 is already a "Fermat witness" for the compositeness of n , and we are
now certain that it is not prime.
Try another value of j
$\ln [7]:=\mathbf{j}=201 ;$
Then n is
$\ln [8]:=\mathbf{n}$
Out $[8]=6036053$

Again we compute r, the odd part of $n-I$
$\ln [9]:=\mathbf{r}=(\mathbf{n}-\mathbf{1}) / \mathbf{2}$
Out[9]= 3018026

Nope, take out more 2's
$\mathrm{m}(\mathrm{t})=\mathrm{r}=(\mathrm{n}-1) / \mathbf{2}^{\wedge} \mathbf{2}$
outitio) 1509013

Ok good, so when we get to the squaring step, we will be able to square twice.
Again let's try as our first witness

```
ln[11]:= a = 2;
    PowerMod[a,n-1,n]
Out[12]= 1853105
```

And again we immediately find that n is composite, since $a^{\wedge}(n-I)$ is not $I \bmod n$. Increment jagain
m $1(13)=\mathbf{j}=202$;
n
Out[14]= 6066083

Now compute r
$m(t)=r=(n-1) / 2$
Out[15]= 3033041

So we will only be able to square once (which by Matt's observation means we
don't need to square at all -- if $a^{\wedge} r$ is not $+/-I$, then n must be composite). Trying our first witness:
$\ln [16]:=\mathbf{a}=\mathbf{2 ;}$
PowerMod [a, n-1, n]
Out[17]= 1

Ok, this n might finally be prime. So begin the Miller-Rabin challenge. Raise a to the $r \bmod n$:
$\ln [18]:=\mathbf{b}=\operatorname{PowerMod}[\mathbf{a}, \mathbf{r}, \mathbf{n}]$
Out[18]= 6066082

Looks random at first, but no! That's just n-I, i.e., -I. Just for fun, let's square b
$\ln [19]:=\mathbf{b 1}=\operatorname{PowerMod}[\mathbf{b}, \mathbf{2 , n}]$
Out[19]= 1

Of course, that's what it had to come out to. So the value $\mathrm{a}=2$ does not give us a witness for the compositeness of n . With " 75% certainty", n is prime. Let's try another (more random) value
$\ln [20]:=\mathbf{a}=31231$;
PowerMod [a, n-1, n]
Out[21]= 1

And compute b
$\ln [22]:=\mathbf{b}=\operatorname{PowerMod}[\mathbf{a}, \mathbf{r}, \mathbf{n}]$
Out[22]= 1

So this value of a is also not a witness. Now we are
$\ln [23]:=\mathbf{N}\left[1-(1 / 4)^{\wedge} 2\right]$
Out[23]= 0.9375
" 93% certain" that n is prime. Another random value

```
ln[24]:= a = 3121;
    PowerMod [a, n-1,n]
```

Out[25]= 1
$\ln [26]:=\mathbf{b}=\operatorname{PowerMod}[\mathbf{a}, \mathbf{r}, \mathbf{n}]$
Out[26]= 6066082

With 3 witnesses, we are

```
ln[27]]=N[1-(1/4)^3]
```

Out[27]= 0.984375
" 98% certain" that n is prime. If we tried another 97 witnesses, all of whom failed to force the compositeness of n, we would know that n is prime with "probability"
$\ln [28]:=\mathbf{N}[1-(1 / 4) \wedge 100,100]$
Out[28]= 0.993776984722138858292 : 8559359462198757594097

Indeed,
In[29]:= PrimeQ[n]
Out[29]= True
and we've found our desired large prime.
Now

Change this file and follow along with Example 3.19 on p . 128 in the book, as well as Example 3.22 on p. I 30.

