Math 640:348 Prof. Kontorovich Spring 2015, 3/27 lecture

We will try to find a prime of size about a million by the Miller-Rabin test

First try numbers of the form

```
\label{eq:ln[1]:=} n = 2 \times 3 \times 5 \times 7 \times 11 \times 13 \ j + 23 Out[1]= 23 + 30 030 j
```

because these are guaranteed to be coprime to 2, 3, 5, 7, 11, and 13, so we have slightly better odds of finding a prime. (This is sometimes called "pre-sieving".) Let's start, say, with

ln[2]:= j = 200;

so that n is

In[3]:= **n** Out[3]= 6006023

First we write n as 2^k r with r odd.

```
ln[4]:= \mathbf{r} = (\mathbf{n} - \mathbf{1}) / \mathbf{2}
Out[4]= 3 003 011
```

We only took out one power of 2, so can only square once.

Now let's take a random number and test whether it is a witness, say,

```
In[5]:= a = 2;
PowerMod[a, n - 1, n]
Out[6]= 2 311 920
```

Aha, so 2 is already a "Fermat witness" for the compositeness of n, and we are

now certain that it is not prime.

Try another value of j

In[7]:= **j = 201;**

Then n is

In[8]:= **n** Out[8]= 6036053

Again we compute r, the odd part of n-I

In[9]:= r = (n - 1) / 2Out[9]= 3 018 026

Nope, take out more 2's

 $\ln[10] = \mathbf{r} = (\mathbf{n} - \mathbf{1}) / 2^2$ Out[10] = 1509013

Ok good, so when we get to the squaring step, we will be able to square twice.

Again let's try as our first witness

```
In[11]:= a = 2;
PowerMod[a, n - 1, n]
Out[12]= 1853105
```

And again we immediately find that n is composite, since $a^{(n-1)}$ is not 1 mod n.

Increment j again

```
ln[13]:= j = 202;
n
Out[14]= 6066083
```

Now compute r

 $In[15]:= \mathbf{r} = (\mathbf{n} - \mathbf{1}) / \mathbf{2}$ Out[15]= 3 033 041

So we will only be able to square once (which by Matt's observation means we

don't need to square at all -- if a^r is not +/-1, then n must be composite). Trying our first witness:

```
In[16]:= a = 2;
PowerMod[a, n - 1, n]
Out[17]= 1
```

Ok, this n might finally be prime. So begin the Miller-Rabin challenge. Raise a to the r mod n:

```
In[18]:= b = PowerMod[a, r, n]
Out[18]= 6066082
```

Looks random at first, but no! That's just n-1, i.e., -1. Just for fun, let's square b

```
In[19]:= b1 = PowerMod[b, 2, n]
Out[19]= 1
```

Of course, that's what it had to come out to. So the value a=2 does not give us a witness for the compositeness of n. With "75% certainty", n is prime. Let's try another (more random) value

```
In[20]:= a = 31231;
PowerMod[a, n - 1, n]
Out[21]= 1
```

And compute b

```
In[22]:= b = PowerMod[a, r, n]
Out[22]= 1
```

So this value of a is also not a witness. Now we are

```
In[23]:= N[1-(1/4)^2]
Out[23]= 0.9375
```

"93% certain" that n is prime. Another random value

```
In[24]:= a = 3121;
        PowerMod[a, n - 1, n]
Out[25]= 1
In[26]:= b = PowerMod[a, r, n]
Out[26]= 6066082
```

```
With 3 witnesses, we are

In[27]:= N[1-(1/4)^3]

Out[27]= 0.984375
```

"98% certain" that n is prime. If we tried another 97 witnesses, all of whom failed to force the compositeness of n, we would know that n is prime with "probability"

Indeed,

In[29]:= **PrimeQ[n]**

Out[29]= True

and we've found our desired large prime.

Now

Change this file and follow along with Example 3.19 on p. 128 in the book, as well as Example 3.22 on p. 130.