Math 640:348 Prof. Kontorovich
Spring 2015, 5/6 review session 2

We review factoring by the Pollard rho method

Take a composite integer, say
= p = Prime[13];
q = Prime[20];
n=pq
outal= 2911

We will iterate a “random” function, like

n4= £[x_] :=Mod[x"2+5, n];

and test when the tortoise has caught the hare by checking if ged(y_i-x_i, n) >
I. We begin with

ns= 1=0; x=1; y=1;

and apply f

nel= i =13
{x, v} ={£f[x], £f[£f[y]]}
ou7= {6, 41}

What is a “collision” now? It's when x=y(mod p) (or mod q). But we don’t know
what p and q are! So we test whether

ingl= GCD[x -y, n]

outsl= 1



2 | FactoringByPollardRho.nb

is non-trivial.

Now iterate

o= 1++;

{x, v} = {£[x], £[£[y]]}
GCD[x-y, n] #1

ourio- {41, 1465}

oufi1]= False

n2k= 1++3
{x, v} ={£f[x], £f[£f[y]]}
GCD[X—Y, l'l] #1

ou13= {1686, 1982}

oui4- False

(5= 1++3;

{x, v} = {£[x], £[£[y]1]}
GCD[x-y, n] #1

ouie- {1465, 2112}

oufi7-= False

nfel= i++3
{x, v} ={f[x], £f[£f[y]]}
GCD[x-y, n] #1

oui9]= {823, 1178}

out20]= True

Aha! We found a collision. It’s not a collision mod n, since x#y, but it is a
collision mod either p or g. Indeed,

1= GCD[x -y, n]

outztl= 71

So 71 is a factor of n, the other one being

ne2)= n/ 71

oute2= 41

Note that, had we known p, q from the beginning, this really would be a genuine
collision:

nesi= Mod[{x, ¥}, P]
ouesl= {3, 30}



FactoringByPollardRho.nb | 3

Not mod p

n24}= Mod [{x, ¥}, ql
outea]= {42, 42}

But yes mod g; that’s the real collision. But since we shouldn’t know p or q to
start, the way to test for this collision is as above, namely, by checking whether

ged[x-y,n]>1.
How long did we expect to run the algorithm? Roughly n*1/4 =
nesi= n™~(1/4) // N

out2sl= 7.34532

steps, and we halted in

in26]:= i

out[26]= 5

steps. Pollard rho wins again.



