Math 640:348 Prof. Kontorovich Spring 2015, 5/6 review session 2

We review factoring by the Pollard rho method

```
Take a composite integer, say
```

```
In[1]:= p = Prime[13];
    q = Prime[20];
    n = p q
Out[3]= 2911
```

We will iterate a "random" function, like

```
ln[4]:= f[x_] := Mod[x^2 + 5, n];
```

and test when the tortoise has caught the hare by checking if $gcd(y_i-x_i \, , \, n) > 1$. We begin with

What is a "collision" now? It's when $x=y \pmod{p}$ (or mod q). But we don't know what p and q are! So we test whether

```
In[8]:= GCD[x-y, n]
Out[8]= 1
```

is non-trivial.

Now iterate

```
In[9]:= i++;
       {x, y} = {f[x], f[f[y]]}
      GCD[x-y, n] \neq 1
Out[10]= \{41, 1465\}
Out[11]= False
In[12]:= i++;
       {x, y} = {f[x], f[f[y]]}
      \texttt{GCD}\left[\,x\,-\,y\,,\,\,n\,\right]\,\neq\,1
Out[13]= \{1686, 1982\}
Out[14]= False
In[15]:= i++;
       {x, y} = {f[x], f[f[y]]}
      GCD[x-y, n] \neq 1
Out[16]= \{1465, 2112\}
Out[17]= False
In[18]:= i++;
       {x, y} = {f[x], f[f[y]]}
      GCD[x-y, n] \neq 1
Out[19]= \{823, 1178\}
Out[20]= True
```

Aha! We found a collision. It's not a collision mod n, since x ≠ y, but it is a collision mod either p or q. Indeed,

```
ln[21]:= GCD [x - y, n]
\mathsf{Out}[21] = \ 71
```

So 71 is a factor of n, the other one being

```
In[22]:= n / 71
Out[22]= 41
```

Note that, had we known p, q from the beginning, this really would be a genuine collision:

```
ln[23]:= Mod[{x, y}, p]
Out[23]= \{3, 30\}
```

Not mod p

```
In[24]:= Mod[{x, y}, q]
Out[24]= \{42, 42\}
```

But yes mod q; that's the real collision. But since we shouldn't know p or q to start, the way to test for this collision is as above, namely, by checking whether gcd[x-y,n]>1.

How long did we expect to run the algorithm? Roughly $n^1/4 =$

```
In[25]:= n^ (1 / 4) // N
Out[25]= 7.34532
```

steps, and we halted in

In[26]:= **i** Out[26]= 5

steps. Pollard rho wins again.