Math 640:348 Prof. Kontorovich Spring 2015, 5/6 review session

We will illustrate a Pollard rho attack on the Elliptic Curve Discrete Log Problem (ECDLP)

In general our curves will be of the form
$E: y^{\wedge} 2=f(x)$
where $f(x)=x^{\wedge} 3+A x+B$
$\ln [1]=\mathbf{f}\left[\mathbf{x}_{-}\right]:=\mathbf{x}^{\wedge} \mathbf{3}+\mathbf{A} \mathbf{x}+\mathbf{B}$;
and we will study these curves over finite fields F_p, say
$\ln [2]=\mathbf{p}=13 ;$
For concreteness, lets choose

$$
\ln [3]:=\mathbf{A}=\mathbf{3} \boldsymbol{;} \mathbf{B}=\mathbf{7} ;
$$

We must verify that we have not accidentally chosen a singular curve, that is, the discrimant must not be $0(\bmod p)$

```
ln[4]:= Mod[4 A^3+27 B^2, p]
```

Out[4]= 1

Ok good. Now lets get all the points mod p
$\ln [5]:=\operatorname{check}\left[\left\{\mathbf{x}_{-}, \mathbf{y}_{-}\right\}\right]:=\left(\operatorname{Mod}\left[\mathbf{y}^{\wedge} \mathbf{2}, \mathbf{p}\right]==\operatorname{Mod}[\mathbf{f}[\mathbf{x}], \mathbf{p}]\right)$

This function determines whether $y^{\wedge} 2=f(x)(\bmod p)$ for a given pair $\{x, y\}$.
Lets get a list of all points on E/F_p, including the point at infinity, which is the "identity" for the group

```
ln[[]]= pts = {Infinity}; (* start with infinity *)
    For[x = 0, x < p, x++,
        For[y = 0, y < p, y ++,
            If[check[pt = {x, y}], (* check whether y^2=f(x), *)
            Print[pt];
            AppendTo[pts, pt]; (* if so,
            store the pair {x,y} on our list of points *)
            ];
        ];
    ];
    Clear[x, y]
    {3, 2}
    {3, 11}
    {5, 2}
    {5,11}
    {8, 6}
    {8,7}
    {9, 3}
    {9, 10}
    {10, 6}
    {10, 7}
    {12, 4}
    {12, 9}
```

Note that the size of $E\left(F _p\right)$, that is, the total number of points, is
$\ln [9]:=\mathbf{s i z e E}=$ Length[pts]
Out $[9]=13$
which tells us that all points will have order I3.
Now let's write down the addition law (as in Theorem 5.5 in the book):

```
In[10]:= x[P_] := P[[1]]; (* this gives the x-coordinate of P *)
    y[P_] := P[[2]]; (* this gives the y-coordinate of P *)
```

```
ln[12]:= add[P_, Q_] := Module[
    (* this function computes the sum of P and Q, which is called S=(xS,yS) *)
    {S, lambda, xS, yS}, (* these are the variable names to be used*)
    If [Length[P] = 2, (* that is, if P==Infinity*)
        S = Q;
        (* otherwise P f Infinity *)
        If [Length[Q] # 2, (* that is, if Q:= Infinity*)
            S = P;
            ,
            (* otherwise both P and Q # Infinity, so we compute *)
            If [(x[P] == x[Q])&& (y[P] == Mod[p-y[Q], p]),
                (* if the x coordinates of P and Q are the same but the
                y coordinates are negatives, then their sum is Infinity *)
                S = Infinity;
                '
                (* otherwise, compute the slope *)
                If[P== Q,
                    lambda = Mod[(3x[P]^2 + A) PowerMod[(2 y [P]), - 1, p], p];
                        (* this is the slope if P=Q *)
                ,
                lambda = Mod[(y[Q]-y[P]) PowerMod[(x[Q]-x[P]), - 1, p], p];
                (* this is the slope of P\not=Q *)
                ];
                xS = Mod[lambda^2-x[P]-x[Q], p];
                yS = Mod[lambda (x[P] - xS) - y [P], p];
                S = {xS, yS };
            ];
        ];
    ];
    (* now return the point S as the answer *)
    S
    ];
```

Given the addition law, we can now make the addition table (of course one would not do this for secure -- that is, very large -- primes p !)
$\ln [13]:=$ (addTab $=$ Table [

```
add[pts[[i]], pts[[j]]]
```

 , \{i, 1, sizeE\}, \{j, 1, sizeE\}])// MatrixForm
 Out[13]//MatrixForm=

$$
\left(\begin{array}{ccccccccccc}
\infty & \{3,2\} & \{3,11\} & \{5,2\} & \{5,11\} & \{8,6\} & \{8,7\} & \{9,3\} & \{9,10\} & \{10,6\} & \{10, \\
\{3,2\} & \{8,6\} & \infty & \{5,11\} & \{9,10\} & \{12,9\} & \{3,11\} & \{5,2\} & \{10,6\} & \{12,4\} & \{9, \\
\{3,11\} & \infty & \{8,7\} & \{9,3\} & \{5,2\} & \{3,2\} & \{12,4\} & \{10,7\} & \{5,11\} & \{9,10\} & \{12, \\
\{5,2\} & \{5,11\} & \{9,3\} & \{3,11\} & \infty & \{9,10\} & \{10,7\} & \{8,7\} & \{3,2\} & \{8,6\} & \{12, \\
\{5,11\} & \{9,10\} & \{5,2\} & \infty \infty & \{3,2\} & \{10,6\} & \{9,3\} & \{3,11\} & \{8,6\} & \{12,9\} & \{8, \\
\{8,6\} & \{12,9\} & \{3,2\} & \{9,10\} & \{10,6\} & \{10,7\} & \infty, \infty & \{5,11\} & \{12,4\} & \{8,7\} & \{5, \\
\{8,7\} & \{3,11\} & \{12,4\} & \{10,7\} & \{9,3\} & \infty, & \{10,6\} & \{12,9\} & \{5,2\} & \{5,11\} & \{8, \\
\{9,3\} & \{5,2\} & \{10,7\} & \{8,7\} & \{3,11\} & \{5,11\} & \{12,9\} & \{12,4\} & \infty & \{3,2\} & \{10, \\
\{9,10\} & \{10,6\} & \{5,11\} & \{3,2\} & \{8,6\} & \{12,4\} & \{5,2\} & \infty & \{12,9\} & \{10,7\} & \{3,1 \\
\{10,6\} & \{12,4\} & \{9,10\} & \{8,6\} & \{12,9\} & \{8,7\} & \{5,11\} & \{3,2\} & \{10,7\} & \{9,3\} & \infty \\
\{10,7\} & \{9,3\} & \{12,9\} & \{12,4\} & \{8,7\} & \{5,2\} & \{8,6\} & \{10,6\} & \{3,11\} & \infty & \{9,1 \\
\{12,4\} & \{8,7\} & \{10,6\} & \{12,9\} & \{10,7\} & \{3,11\} & \{9,10\} & \{8,6\} & \{9,3\} & \{5,2\} & \{3, \\
\{12,9\} & \{10,7\} & \{8,6\} & \{10,6\} & \{12,4\} & \{9,3\} & \{3,2\} & \{9,10\} & \{8,7\} & \{3,11\} & \{5,1
\end{array}\right.
$$

Note here again that each row is a permutation of the points (as is each column).
Finally, we'll need the analog of "fast powering", that is, the "double and add" algorithm, as described in Table 5.3 in the book

```
ln[1]]:= fastadd[P_, n_] := Module[
    (* this adds P to itself n times *)
    {Q, R, m}, (* these are the variables to be used *)
    (* First set Q=P and R=Infinity and m=n *)
    Q = P;
    R= Infinity;
    m}=n
    While[m>0,
    If[Mod[m, 2] == 1, (* If n is odd *)
        R = add[R,Q];
    ];
    Q = add[Q,Q];
    m = Floor[m/2];
    ];
    R(* At the end, R = n P *)
]
```

Let's check that it works: add $\mathrm{P}=(3,2)$ to itself $\mid 3$ times
$|n| 15]=P=\{3,2\} ;$
Table
fastadd[$\mathrm{P}, \mathrm{j}]$
, \{j, 1, sizeE\}]
Out[16] $=\{\{3,2\},\{8,6\},\{12,9\},\{10,7\},\{9,3\},\{5,2\}$, $\{5,11\},\{9,10\},\{10,6\},\{12,4\},\{8,7\},\{3,11\}, \infty\}$

Great, so P is a point of order $13=\#\left(E / F _p\right)$; that is, it's a generator of all of E/F_p. (Recall generators do not exist in general for elliptic curves (!), though points of large order do.)

That means we can take any other point, say
$\ln [17]:=\mathbf{Q}=\{5,11\} ;$
and try to find n so that $\mathrm{Q}=\mathrm{nP}$. (Of course we can look at our table above and see that $n=7$ works. Again since P has order I3, the full answer is: $n=7(\bmod 13)$.)

Let's use the Pollard rho algorithm to solve this ECDLP. The expected runtime is about sqrt[E/F_P]=sqrt[I3]=4, so it shouldn't take long. First we need a "random" function, so why not use the analogous one to the classical DLP as in Chapter 4.5.2 of the book.

```
ln[18]:= f[{R_, alpha_, beta_}] :=
    Module[{R1, alpha1, beta1}, (* the point R is sent to a "random" point R1,
        and alpha/beta's are incremented *)
        If[Length[R] # 2(* that is, if R=Infinity, add P *),
        R1 = P;
        alpha1 = Mod[alpha+1, sizeE]; (* remember that both P and Q
            have order a divisor of 9, so alpha and beta are numbers mod 9 *)
        beta1 = beta;
            '
        (* otherwise test the three ranges of x_R *)
        If[x[R]< p/3,
            R1 = add[P, R]; (* if in the low range, add P *)
            alpha1 = Mod[alpha + 1, sizeE]; (* and increment alpha *)
            beta1 = beta;
                ,
            (* or else if we're in the middle range, double R *)
            If[x[R]<2p/3,
                    R1 = add[R, R];
                        alpha1 = Mod[2 alpha, sizeE]; (* double alpha *)
                    beta1 = Mod[2 beta, sizeE]; (* double beta *)
                        '
                                (* finally, in the high range, add Q *)
                        R1 = add[R, Q];
                alpha1 = alpha; (* leave alpha alone *)
                    beta1 = Mod[beta + 1, sizeE]; (* increment beta *)
                ];
            ];
        ];
        {R1, alpha1, betal} (* is the new triple *)
        ]
```


We initialize things by

$\ln [19]:=\mathbf{X}=$ Infinity; alpha $=0$; beta $=0$;
for the tortoise and

```
ln[20]:= Y = Infinity; gamma = 0; delta = 0;
```


for the hare. The initial index is

```
ln[21]:= i = 0;
```

Now we increment (as in our tables in the homework, X_i, alpha_i, beta_i, Y_i, gamma_i, delta_i)
$\ln [22]:=\mathbf{i}=\mathbf{1}$;
$\{\{x$, alpha, beta\}, \{Y, gamma, delta $\}\}=$
$\{f[\{X$, alpha, beta $\}], f[f[\{Y$, gamma, delta $\}]]\}$
(* the tortoise steps once while the hare steps twice *)
$\mathbf{X}=\mathbf{Y}$
Out[23]= $\{\{\{3,2\}, 1,0\},\{\{8,6\}, 2,0\}\}$
Out[24]= False
$\ln [25]:=\mathbf{i}=\mathbf{2}$;
$\{\{X$, alpha, beta\}, $\{Y$, gamma, delta $\}\}=$
$\{f[\{X$, alpha, beta $\}], f[f[\{y$, gamma, delta $\}]]\}$
$\mathrm{X}=$
Y
Out[26]= $\{\{\{8,6\}, 2,0\},\{\{8,7\}, 4,1\}\}$
Out[27]= False
$\ln [28]:=\mathbf{i}=\mathbf{3} ;$
$\{\{\mathrm{X}$, alpha, beta\}, $\{\mathrm{Y}$, gamma, delta $\}\}=$
$\{f[\{x$, alpha, beta $\}], f[f[\{Y$, gamma, delta $\}]\}$
$\mathrm{X}=$
Y
Out[29]= $\{\{\{10,7\}, 4,0\},\{\{12,9\}, 8,3\}\}$
Out[30]= False
$\ln [31]:=\mathbf{i}=4$;
\{\{X, alpha, beta\}, \{Y, gamma, delta\}\} =
$\{f[\{X$, alpha, beta $\}], f[f[\{Y$, gamma, delta $\}]\}$
$\mathrm{X}=$
\mathbf{Y}
Out[32]= $\{\{\{8,7\}, 4,1\},\{\{10,7\}, 8,5\}\}$
Out[33]= False
$\ln [34]:=\mathbf{i}=5$;
\{ $\{\mathrm{X}$, alpha, beta\}, $\{\mathbf{Y}$, gamma, delta $\}\}=$
$\{f[\{X$, alpha, beta $\}], f[f[\{Y$, gamma, delta $\}]]\}$
$\mathrm{X}=$
Y
Out[35]= $\{\{\{10,6\}, 8,2\},\{\{10,6\}, 3,12\}\}$
Out[36]= True
that:
$8 P+2 Q=3 P+12 Q$

So
$10 Q=5 P$.

Lets just check:

```
ln[37]:= fastadd[Q, 10]
    fastadd[P, 5]
```

Out[37]=\{9, 3$\}$
$O u[[38]=\{9,3\}$

Great, but what do we do now? We want just Q on one side, and we have 10 Q . But we know that I3Q = Infinity, since that's true for any point on E (because the number of points is 13).
$\ln [39]=$ fastadd [Q, sizeE]
Out[39]= ∞

So we need the multiplicative inverse of $10 \bmod \mathrm{I} 3$!
$\ln [40]:=$ PowerMod [10, - 1, 13]
Out[40]= 4

By hand, you would do this with the extended Euclidean algorithm. What this tells us is that we should add the equation

$$
10 Q=5 P
$$

to itself 4 times. (Like taking a classical DLP equation and raising both sides to the 4th power.) We get:
$4 * 10 Q=4 * 5 P$
or
$40 \mathrm{Q}=20 \mathrm{P}$
or, since $40=3 *|3+|$
$Q=20 \mathrm{P}$,
and since $20=13+7$, we recover the value of n
$Q=7 P$.
So $n=7$!
Always check your work:
fastadd [P, 7]
Q
Out[4] $=\{5,11\}$
$O u t[42]=\{5,11\}$

