FOURIER ANALYSIS IN NUMBER FIGLDS AND HEGKE'S ZDRA-FUNOTIONS


```
                    A DLSWm&TANION
```



```
Facijt of Princeton University
    in Ganciadacg fon Jhe Lecwo
    of Doctur os philbarpky
```

```
K%:&n%ar.aneptance by the
DOpartavnt )f
    .jathengti心s
        *5, 2750.
```


Abstract.

We lay the foundations for abstract analysis in the groups of valuation vectors and ideles associated with a number field. This allows us to replace the classical notion of ζ function, as the sum over integral ideals of a oertain type of ideal character, by the corresponding notion for ifeles, namely, the integral over the idele group of a rather general weight function times an idèle cheracter which is trivial on field elements. The role of Hecke's complicated theta - formulas for theta functions formed over a lattice in the n-dimensional space of classical number theory can be played by a simple Poisson Formula for generel functions of valuation vectors, summed over the discrete subgroup of field elements. With this Poisson Fornula, which is of great importance in itself, inasmuch as it is the number thesretic analogue of the Riemann-Roch theorem, an analytic continuation can be given at one stroke for all of the generalized ζ-functions, and an elegant functional equation can be established for them. Translating these results back into classical terms one ohtains the Fecke functional equation, together with an interpretation of the complicated factor in it as a product of certain local fantors coming from the archimedean primes and the primes of the conductor. The notion of local ζ function has been introdused to pive a local definition of these factors, and table of them has been computed.

Chepter I.	Introduction.
1.1	Relerrant history.
1.2	This thesis.
1.3	"Prerequisites".
Chapter II.	The Looal Theory.
2.1	Introduction.
2.2	Additive cheracters and measure.
2.3	Multiplicative characters and measure.
2.4	Local $\}$-function; functional equation.
2.5	Computation of ρ by special ζ-fiunctions.
Chapter III.	Abstract Restricted Direct Product.
3.1	Introduction.
3.2	Characters.
3.3	Measure.
Chapter IV.	The Theory in the Large.
4.1	Additive theory.
4.2	Riemann-Roch Theorem.
4.3	Multiplicative Theory.
4.4	The 5 -function; functional equation.
4.5	Comperison with the classical theory.

CHAPTER I.

Introduetione

1.1 Relerant History. Hecke was the first to prove that the Dedekind ζ-function of any algebraic number field has an analytic continuation over the whole plane and satisfies a simple functional equation. He soon realized that his method wrould work, not only for the Dedekind y-function and L-series, but also for a $\}$-function formed with a new type of ideal character which, for principal ideals depends not only on the residue class of the number modulo the "conductor", but also on the position of the conjugates of the number in the complex field. Overcoming rather extraordinary technical complications, he showed (1) that these "Hecke" $\}$-functions satisfied the same type of functional equation as the Dedekind ζ-function, but with a much more complicated factor.

In a work (2) the main purpose of which was to take analysis out of class field theory, Chevalley introduced the excellent notion of the idele group, as a refinement of the ideal group. In ideles Chevalley had not only found the best approach to class field theory, but to algebraic number thaory generally. This is shown by Artin and Whaples in (3). They defined valuation vectors as the additive counterpart of idèles, and used these notions to derive from simple axions all of the bsaic stotements of algebraic number theory.

Matchett, a student of Artin's, made a first attempt (4) to continue this program and do analytic number theory by means of idèles and vectors. She succesded in redefining the classical 5 functions in terms of integrals over the idele group, and in interpreting the characters of Hecke as exactly those characters of the ideal group which can be derived from idele characters. But in proving the fuictional equation she followed Hecke.
1.2 This Thesis. Artin suggested to me the possibility of generalizing the notion of ζ-function, and simplifying the proof of the analytic continuation
and functionsl equation for it, by making fuller use of analysis in the spaces of valuation vectors and ideles themselves than Matohett had done. This thesis is the result of my work on his suggestion. I replace the classical notion of ζ-function, as the sum over integral ideals of a certain type of ideal character, by the corresponding notion for ideles, namely, the integral over the idèle group of a rather general weight function times an idele oharacter which is trivial on field elements. The role of Hecke's complicated theta-formulas for theta functions formed over a lattice in the n-dimensional space of classical number theory can be played by a simple Poisson Formula for general functions of valuation veotors, summed over the discrete subgroup of field elements. With this Poisson Formula, which is of great importance in itself, inasmuch as it is the number theoretic analogue of the Riemann-Roch Theorem, an analytic sontinuation can be given at one stroke for all of the generalized ζ-functions, and an elegant functional equation can be established for them. Translating these results back into classical torms one obtains the Hecke functional equation, together with an interpretation of the complicated factor in it as a product of certain local factors coming from the archimedean primes and the primes of the conductor. The notion of local y-function has been introdinced to give a local definition of these factors, and a table of them has been oomputed.

I wish to express to Artin my great appreciation for his suggestion of this topic and for the continued encouragement he has given me in my worke
1.3 "Prerequisites". In number theory we assume only the knowledge of the slassical algebraic number theory, and its relation to the local theory. No knowledge of the idele ard valuation vector point of view is required. because, in order to introriuce abstract analysis on the idele and vector
groups we redefine them and discuss their structure in detail.

Concerning analysis, we assume only the most elementary faots and definitions in the theory of analytie functions of a complex variable. No knowledeg whatsoever of classical analytic number theory is raquired. Tnstead, the reader must know the basic facts of abstract Fourier analysis in a locally compact ahelian group fs 1.) The existence and vniqueness of a Haar measure on such a group, and its ecuivalence with a positive invariant functional on the space $L(G)$ of continuous functions on G whioh vanish outside a compact. 2.) The duality between G and its charactar group, \widehat{G}, and between subgroups of G and factor groups of $\widehat{G} .3_{0}$) The definition of the Fourier transform, \hat{f}, of a function $f \in I_{\mathcal{L}}(G)$, together with the fact that, if we choose in \widehat{G} the measure which is dual to the measure in G, the Fourier Inversion Formule holds (in the naive sense) for all functions for which it could be expected to hold; namely, for functions $f \in L_{1}(G)$ such that f is continuous and $\widehat{f} \in L_{i}(\hat{G})$. (This class of functions we denote by $P_{j}(G)$). An elegant account of this theory can be found for example in (5).

The Local Theory:

2.1 Introductione Throughout this section, k denotes the completion of an algebraic number field at a prime divisory. Accordingly, k is either the real or complex field if if is archimedean, while k is " $\mathrm{f} \boldsymbol{f}$ adie" field if y is discrete. In the latter case k contains a ring of integers $\}$ having a single prime ideal y with a finite residue class field W/y of Ny elements. In both cases k is a complete topological field in the topology associated with the prime divisor g.

From the infinity of equivalent raluations of k belonging to y we solsct the normed valuation defined bys
$|\alpha|=$ ordinary absolute value if k is real.
$|\alpha|=$ square of ordinary absolute value if k is complex. $|\alpha| \equiv(1 / g)^{-\nu}$, where ν is the ordinal number of α, if ic is y madio.

We know that k is locally compact. The nore exact statement which one can prove iss a subset Befis relatively compact (has a oompact closure) if and only if it is bounded in absolute value. Indeed, this is a well known fact for subsets of the line or plane if k is the real or complex field; and one can prove it in a similar manner in case k is If -adic by using a "Schubfachschluss" involving the finiteness of the residue class field.
2. 2 Additive Charaoters and Measure. Denote by $\mathbf{k}^{\mathbf{t}}$ the additive group of k_{0} as a locally compact commatative group, and by ξ its general element. We wish to determine the oharacter group of k^{+1}, and are happy to see that this task is essentially accomplishod by the following: Lemma 2.2.1: If $\xi \rightarrow X(\xi)$ is one non-trivial character of $k{ }^{t}$, then for each $\eta \in k, \xi \rightarrow X(\eta \xi)$ is also a character. The correspondence $\eta \leftrightarrow X(\eta \xi)$
is an isomorphism, both topological and algebraic, between k^{+}and its charaoter groupe

Proof: 1.) $X(\eta \zeta)$ is a character for any fixed η because the map $\xi \rightarrow \eta \zeta$ is a continuous homomorphism of k^{+}into itself.
2.) $x\left(\left(\eta_{1}+\eta_{2}\right) \xi\right)=x\left(\eta_{1} \xi+\eta_{2} \xi\right)=x\left(\eta_{1} \xi\right) x\left(\eta_{2} \xi\right)$ shows that the $\operatorname{map} \eta \rightarrow X(\eta 5)$ is an algebraic homozmorphism of k^{+}into its character groupe
3.) $x(\eta \xi)=1,0.11 \xi^{+} \Rightarrow \eta k^{+} \neq k^{+} \Rightarrow \eta=0$. Hence it is an
algebraic isomorphism into.
4.! $X(\eta \xi)=1, \operatorname{all} \eta \Rightarrow \mathbf{k}^{+} \xi \neq \mathbf{k}^{+} \Rightarrow \xi=0$. Therefore the characters of the form $X(\eta \xi)$ are overywhere dense in the character group.
5.) Denote by B the (compact) set of all $\xi \in k$ with $|\xi| \leqslant M$ for a large μ_{0} Then: η close to 0 in $k^{+} \Rightarrow \eta^{B}$ olose to 0 in $k^{+} \Rightarrow X(\eta B)$ close to 1 in complex plane $\Rightarrow X(\eta 5)$ close to the identity character in the character group. On the other hand, if ξ_{0} is a fixed elament with $X\left(\xi_{0}\right) \neq 1_{0}$ then: $X(\eta \xi)$ close to identity oharacter $\Rightarrow X(\eta B)$ close to 1 , oloser, say, than $X\left(\xi_{0}\right) \Rightarrow \xi_{0} \notin B \Rightarrow \xi_{0}$ close to 0 in k^{+}. Therefore the correspondence $\eta \rightarrow X(\eta \xi)$ is bioontimuous.
6.) Hence the characters of the form $X(\eta \xi)$ comprise a locally compact subgroup of the oharacter groupe Local compactness implies-eompertneef implies completeness and therefore closure, which together with 4.) shows that the mapping is onte.

To fix the identification of k^{+}with its character group pronised by the preceding lemma, we must construct a secial non-trivial character. Let p be the rational prime divisor which gedivides, and R the completion of the rational field at p. Define a map $x \rightarrow \lambda(x)$ of R into the reals mod 2 as foll.ows:

Case 1.) P archimedean, and therefore R the real numbers.

$$
\lambda(x)=-x(\bmod 1)
$$

(Note the minus signs)
Case 2.) discrete, R the field of p-adic numbers $\lambda(x)$ shall be determined by the properties:
a.) $\lambda(x)$ is a rational number with only a p-power in the denominator.
be) $\lambda(x)-x$ is a p-adic integer.
(To find such $a \lambda(x)$, let $p^{\nu} x$ be integral, and chose an ordinary integer n such that $n \boldsymbol{E P}^{\boldsymbol{\nu}} \boldsymbol{x}\left(\bmod p^{\nu}\right)$. Then put $\lambda(x)=n / p^{\prime} ; \lambda(x)$ is obviously uniquely determined modulo 1)

Lemma 2.2: $x \rightarrow \lambda(x)$ is a non-trivial, continuous additive map of R into the group of reals $(\bmod 1)$.

Proof In case 1.) this is trivial. In case 2.) we check that the number $\lambda(x)+\lambda(y)$ satisfies properties a) and b) for $x+y$, so the map is additive. It is continuous at 0 , yet non-trivial because of the obvious property: $\lambda(x)=0 \Leftrightarrow x$ is panic integer.

Define now for $\xi \in \mathbf{k}^{+}, \Lambda(\xi)=\lambda\left(S_{k} / R \xi\right)$. Recalling that S_{k} / R is an additive continuous map of k onto R. we see that $\xi \rightarrow e^{2 \pi i \Lambda(\xi)}$ is a non-trivial character of \mathbf{k}. We have proved

Theorem 2. 21 : k^{+}is naturally its own character group if we identify the character $\xi \rightarrow e^{2 \pi i \Lambda(\eta \xi)}$ with the element $\eta \in k^{+}$.

Lemma 2.23: In case \mathcal{L} is discrete, the charactery $\rightarrow e^{2 \pi i \Lambda(\eta S)}$ associated with η is trivial on $v i f$ and only if $\eta \in N, N$ denoting the absolute different of k
Proof: $\Lambda\left(\eta^{v}\right)=0 \Leftrightarrow \lambda\left(s_{k / R}(\eta v)\right)=0 \Leftrightarrow s_{k / R}(\eta v) \subset v_{R}$

Let now μ be a Haar measure for $\mathbf{k}^{\boldsymbol{+}}$.
Lemma 2.2.4: If we define $\mu_{1}(M)=\mu(\alpha M)$ for $\alpha \neq 0 \in k$, and M a measurable set in k^{+}, then $\mu, i s$ a Haar measure, and consequently there exists a number $\varphi(\alpha)>0$ such that $\mu_{1}=\varphi(\alpha) \mu_{0}$.
 Haar measure is determined, up to a positive constant, by the topological and algebraic structure of \mathbf{k}^{+}.

Lemma 2.2.5: The constant $\varphi(\alpha)$ of the preceding lemma is $\mathbf{1} \alpha \mathbf{i}_{\text {, }}$ i.e we have $\mu(\alpha M)=1 \alpha \|(M)$.
Proof: If k is the real field, this is obvious. If k is coxplex, it is just as obvious since in that case we ohose $|\alpha|$ to be the aquare of the ordinary absolute value. If k is y-adic, we notice that sincevis both compaot and open, $0<\mu(v)<\infty$, and it therefore suffices to compare the size of v with that of αv. For α integral, there are $N(\alpha v)$ cosets of αv in v, hence $\mu(\alpha v)=(N(\alpha v))^{-1} \mu(v)=\|\alpha\|(v)$. For nonintegral α, replace α by α^{-1}.

We have now another reason for calling the normed valuation the natural one. $\mid \alpha!$ may be interpreted as the factor by which the additive group k^{+}is "stretched" under the transformation $\mathcal{S} \rightarrow \infty \xi$.

For the integral, the meaning of the preceding lemma is clearlys $d \mu(\alpha \xi)=1 \alpha \mid d \mu(\xi)$; or more fully: $\int f(\xi) d \mu(\xi)=|\alpha| \int f(\alpha \xi)$ $d \mu(\xi)$.

So much for a general Haar measure μ. Let us now select a fixed Haar measure for our additive group k^{+}. Theorem 2. 2.1 onables us to do this in an invariant way by seleoting that measure which is its own Fourier
transform under the interpretation of $k^{\boldsymbol{+}}$ as its own character group established in that theorem. We state the choice of measure which does this, writing $d \xi$ instead of $d \mu(\xi)$. for simplicity s
$\pm \xi=$ ordinary Lesbegue measure on real line if k is real.

$d \xi=$ that measure for which \mathcal{F} gets measure (N, N) ${ }^{-\frac{1}{2}}$ if k is g-dice Theorem 2.2.2: If we define the Fourier transform \hat{f} of a function $f \in L_{1}\left(k^{+}\right)$byz

$$
\hat{f}(\eta)=\int f(\xi) e^{-2 \pi i \Lambda(\eta \xi)} d \xi
$$

then with our choice of measure, the inversion formula

$$
f(\xi)=\int \hat{f}(\eta) e^{+2 \pi i \Lambda(\eta \xi)_{d \eta}=\hat{f}(-\xi)}
$$

holds for $f \in W\left(x^{+}\right)$.
Proof: We need only establish the inversion formula for one nontrivial function, since from abstrant Fourier analysis we know it is true, save possibly for a constant . 'sector. For k real we can take $f(\xi)=e^{-\pi / g l^{2}}$, for k complex, $\quad \therefore(\xi)=e^{-2 \pi / \xi \mid}$; and for k g-adic. $\mathcal{H}(\xi)=$ the characteristic function of for instance For the details of the computations, the reader is referred to $\oint 2.6$ below

2.3 Multiplicative Characters and Measure. Our first insight

 into the structure of the multiplicative group k^{x} of k is given by the continuous homomorphism $\alpha \rightarrow \mid \alpha \|$ of k^{x} into the multiplicative group of positive real numbers. The kernel of this homomorphism, the subgroup of all α with $1 \alpha!$: 1 will obviously play an important role e Lot us denote it by $u_{0} \quad u$ is compact in all cases, and in case k is y-adic, u is also open.Concerning the characters of k^{x}, the situation is different from that of $\mathbf{k}^{\boldsymbol{+}}$. First of all, we are interested in all continuous multiplicative maps $\alpha \rightarrow c(\alpha)$ of k^{X} into the complex numbers, not only in the bounded ones, and shall call such a map a quasi-character.
reserving the word "character" for the conventional character of absolute value 1. Secondly, we shall find no model for the group of risicharacters, or even for the group of characters, though such a model would be of the utmost importance.

We call a quasi-oharacter unramified if it is trivial on i, and first determine the unramified quasi-characters.

Lemma 2.3.1: The unramified quasi-characters are the maps of the form o($\alpha)=1 \alpha^{3} 30^{s} \log 1 \times 1$, where s is any complex number, s is determined by c if g^{i} a archimedesn, while for discrete $y_{0} s$ is determined only mod $2 \pi i / \log N y$.

Proof: For any s, $|\alpha|^{s}$ is obviously an unramifiad quasi-character. On the other hand any unramified quasi-character will depend only on $|\alpha|$, and as function of $|\alpha|$ will be a quasi-character of the value group of k. This value group is the maltiplicative group of all positive real numbers, or of all powers of Ny , according to whether If is arohimedean or disoretes it is well known that the quasicharacters of these groups are those described.

If g is srchimedean, we may write the general element $\alpha \in k^{x}$ uniquely in the form $\alpha=\tilde{\alpha} \rho$, with $\tilde{\alpha} \in U, \rho>0$. For discrete f, we must select a fized element π of ordinal number 1 in order to write. again uniquely, $\alpha=\tilde{\alpha} \rho$, with $\tilde{\alpha} \in u$ and, this time, ρ a power of π. In either case the map $\alpha \rightarrow \tilde{\alpha} i s$ a continuous homomorphism of k^{α} onto u which is identity on u.
Theorem 2.3.1: The quasi-characters of k^{x} are the maps of the form $\alpha \rightarrow c(\alpha)=\tilde{c}(\vec{\alpha})|\alpha|^{s}$, where \tilde{C} is any character of $u_{e} \tilde{C}$ is uniquely determined by c. s is determined as in the preceding lemmae

Proof: A map of the given type is obviously a quasi-oliaracter.
Conversely, if 0 is given quasi-character and we define \mathcal{C} to be the restriction of c to u, then \tilde{C} is a quasi-character of u and is therefore a character of u since u is compact. $\alpha \rightarrow c(\alpha) / \widetilde{\sigma}(\boldsymbol{\alpha}) \neq$ is an unranified quasi-character, and therefore is of the form $\mid \boldsymbol{1}^{3}$ according to the preceding lemma.

The problem of quasi-characters c of k^{x} therefore boils down to that of the characters \widetilde{c} of u_{0}. If k is the real field. $u=\{1,-1\}$ and the characters are $\tilde{C}(\tilde{\sigma})=\tilde{\alpha}^{n}, \quad m=0$. 1 . If k is complex, u is the unit-circle, and the characters are $\widetilde{c}(\tilde{\alpha})=\tilde{\alpha}^{n}$, n any integer. In case k is y-adic, the subgroups $1+y^{\nu}, \nu>0$, of u form a fundamental system of neighborhoods of 1 in u. We must have therefore $c\left(1+y^{\nu}\right)=1$ for sufficiently large ν. Selecting $\nu \operatorname{minimal}(\nu=0$ if $\tilde{c}=1$), we call the ideal $\mathcal{F}=g^{\nu}$ the conductor of \tilde{C}. Then \mathcal{X} is a character of the finite factor group $(u / 1+f)$ and may be described by a finite table of data.

From the expression $c(\alpha)=\tilde{\boldsymbol{c}}(\tilde{\alpha}) \mid \alpha 1^{\text {s }}$ for the general quasicharacter given in theorem 2.3.1. we see that $f o(\alpha) f=1 \alpha 1^{\sigma}$, where $\sigma=\operatorname{Re}(s)$ is uniquely determined by $c(\alpha)$. It will be convenient to call σ the exponent of c. A quasi-character is a character if and only if its exponent is 0.

We will be able to select a Haar measure da on k^{x} by relating it to the measure $d \xi$ on k^{+}. If $g(\alpha) \in L\left(k^{x}\right)$, then $g(\xi) \mid \xi^{-1} \in L\left(k^{+}-0\right)$. So we may define ${ }_{n} L\left(k^{x}\right)$ a functional

$$
\Phi(g)=\int_{k=0} g(\xi)|\xi|^{-I} d \xi
$$

If $h(\alpha)=g(\beta \alpha) \quad\left(\beta \in k^{x}\right.$. fixed) is a multiplicative translation of
$g(\alpha)$, then

$$
\Phi(n)=\int_{k^{+}-0} g(\beta \xi) 1 \xi^{-1} d \xi=\Phi(g)
$$

as we see by the substitution $\xi \rightarrow \beta^{-1} \xi ; d \xi \rightarrow \mid \beta \| j$ discussed in leman 2.2.5. Therefore our functional Φ which is obviously nontrivial and positive, is also invariant under translation. It must therefore come from a Hear measure on k^{x}. Denoting this measure by d^{α}, we may write

$$
\int g(\alpha) \alpha_{j} \alpha=\int_{k^{+}} g(\xi) \not \xi^{-1} d g
$$

Obviously, the correspondence $g(\alpha) \leftrightarrow g(\xi) 15^{-1}$ is a $1-1$ correspondence between $L\left(k^{x}\right)$ and $L\left(k^{+}-0\right)$. Viewing the functions of $L_{1}\left(k^{x}\right)$ and $L_{1}\left(k^{+}-0\right)$ as limits of these basic functions we obtains Leman 2. 3. 2: $g(\alpha) \in L_{2}\left(k^{x}\right) \Leftrightarrow g(\xi)|\xi|^{-1} \in L_{i}\left(k^{+}-0\right)$, and for these functions

$$
\int g(\alpha) d_{1} \alpha=\int_{k^{+}-0}^{g}(\xi) 1 \xi i^{-1} d \xi
$$

measure
For later use, we need a multiplicative which will in general give the subgroup u the measure 1. To this effect we choose as our standard Haar measure on \mathbf{k}^{X}.
$d x=d \alpha=\frac{d \alpha}{1 \alpha \mid}$, ifyis archimedean.
$d \alpha=\frac{N y}{\sqrt{n g}=1} d_{1}=\frac{\text { NA }}{\sqrt{y+1}-1} \frac{d \alpha}{1 \alpha}$, ifyis discrete.
Lemma 2.3.3: In case gie discrete, $\int_{k} d \alpha=(N N)^{-\frac{1}{2}}$.
Proof: $\int_{u} d \alpha=\int_{u} i \xi I^{-1} d \xi=\int_{u} d \xi^{u}=\frac{N_{k}-1}{N q} \int_{v} d \xi$. Therefore
$\int_{u} d x=\frac{N g}{N g-1} \int_{u} d_{1} \alpha=\int_{v} d \xi=(N N)^{-\frac{1}{2}}$.
2.4. The Local K-function: Functional Equation: In this section $f(\xi)$
will denote a complex valued function defined on $k^{+} ; f(\alpha)$ its restriction to k^{x} - We let Z denote the class of all these functions which satisfy the two conditions:
$\left.Z_{1}\right) f(\xi)$ and $\hat{f}(\xi)$ continuous, $\in L\left(k^{+}\right) ;$1.e. $f(\xi) \in \mathcal{H}_{1}\left(k^{+}\right)$ $\left.\mathcal{Z}_{2}\right) f(\alpha)|\alpha|^{\sigma}$ and $\hat{f}(\alpha)|\alpha|^{\sigma} \in L_{1}\left(k^{x}\right)$ for $\sigma>0$.

A ζ-function of k will be what one might call a multiplicative quasiFourier transform of a function $£$ - Precisely what we mean is stated in Definition 2.4.1: Corresponding to each $\{\in \mathcal{Z}$, we introduce a function $\zeta(f, 0)$ of quasi-characters C, defined for all quasi-characters of exponent greater than 6 by

$$
\zeta(f, 0)=\int f(\alpha) 0(\alpha) d \alpha .
$$

and call such a function a $\boldsymbol{\zeta}$-function of $k_{\text {. }}$

Let us call two quasi-characters equivalent if their quotient is an unvaried quasi-character, According to lemma 2.3.1, an equivalence class of quasi-characters consists of all quasi-characters of the form $c(\alpha)=$ $c_{0}(\alpha) \mid \alpha 1^{3}$, where $c_{0}(\alpha)$ is a fixed representative of the class, a complex variable. It is apparent that by introducing the complex parameter s we may view an equivalence class of quasi-characters as a Riemann surface. In case f is archimedean, is uniquely determined by 0 , and the surface will be isofmorphic to the complex plane. In case g is discrete, is determined only mod $2 \pi i / \log N_{y}$, so the surface is isomorphic to a complex plane in which points differing by an integral multiple of $2 \pi i / \log N / y$ are identified - the type of surface on which singly periodic functions are really defined. Looking at the set of all quasi-charaoters as a collection of Riemann surfaces, it becomes clear what we mean when we talk of the regularity of a function of quasi-characters at a point or in a region, or of singularities. We may also consider the question of analytic continuation of such a function, though this must of course be carried out on each surface (equivalence class of quasi-characters) separately.

Lemma 2.4.1: A ζ-function is regular in the "domain" of all quasicharacters of exponent greater than 0 .
Proof: Wo must show that for each of exponent 0 the integral $\int f(x)$ $o(\alpha) \mid \alpha 1^{s}$ d α represents a regular function of s for s near 0 . Using the fact that the integral is absolutely convergent for s near 0 to make estimates, it is a routine matter to show that the function has a derivative for s near 0 . The derivative can in fact be computed by "differentiating under the integral sign".

It is our aim to show that the ζ-functions have a single-valued meromorphic analytic continuation to the domain of all quasi-characters by means of a simple functional equation. We start out from

Lemma 2.4.2: For 0 in the domain $0<$ exponent $0<1$ and $\hat{o}(\alpha)=1 \alpha \ell 0^{-1}(\alpha)$ we have

$$
\zeta(f, 0) \zeta(\hat{B}, \hat{0})=\zeta(\hat{f}, \hat{c}) \zeta(\mathrm{B}, 0)
$$

for any two functions $f, g \in \mathcal{Z}$.
Proof: $\zeta(f, c) \zeta(\hat{g}, \hat{0})=\int f(\alpha) c(\alpha) d \alpha \cdot \int \hat{g}(\beta) c^{-1}(\beta)|\beta| d \beta$ with both integrals absolutely convergent for c in the region we are consideringe We may write this as an absolutely convergent "double integral" over the direct product. $k^{x} x k^{x}$ of k^{x} with itself z

$$
\iint f(\alpha) \hat{g}(\beta) \circ\left(\alpha \beta^{-1}\right)|\beta| \sigma(\alpha, \beta)
$$

Subjecting $k^{\alpha} \times k^{x}$ to the "shearing" automorphism $(\alpha, \beta) \rightarrow(\alpha, \alpha \beta)$, under which the measure $X(\alpha, \beta)$ is invariant we obtain

$$
\iint f(\alpha) \hat{g}(\alpha \beta) c\left(\beta^{-1}\right)|\alpha \beta| \not \subset(\alpha, \beta)
$$

According to Fubini this is equal to the repeated integral

$$
\int\left(\int f(\alpha) \hat{g}(\alpha \beta)|\alpha| d \alpha\right) \circ\left(\beta^{-1}\right)|\beta| d \beta
$$

To prove our contention it suffices to show that the inner integral $\int f(\alpha) \hat{g}(\alpha \beta)|\alpha| d_{\alpha}$ is symmetric in f and g. This we do by writing down the obviously symmetric additive double integral:

$$
\iint f(\xi) g(\eta) \quad e^{-2 \pi i \Lambda(\xi \beta \eta)} d(\xi, \eta)
$$

changing it with the Fubini theorem into

$$
\int f(\xi)\left(\int g(\eta) e^{-2 \pi i \Lambda(\xi \beta \eta)} d \eta\right) d \xi=\int f(\xi) \hat{\xi}(\xi \beta) d \xi
$$

observing that according to lemma 2.3.2 this last expression is equal to the multiplicative integral

$$
\int f(\alpha) \hat{g}(\alpha \beta) t \alpha i d_{l} \alpha=\text { constant e } \int f(\alpha) \hat{g}(\alpha \beta) \mid \alpha 1 d \alpha
$$

We can now announce the Main Theorem of the local theory.
Theorem 2.4.1: A ζ-function has an analytic continuation to the domain of all quasi-characters, given by a functional equation of the type

$$
\zeta(f, 0)=\rho(c) \zeta(\hat{r}, \hat{c})
$$

The factor $\rho(C)$, which is independent of the function f is a meromorphic function of quasi-characters defined in the domain $0<$ exponent $0<1$ by the functional equation itself, and for all quasi-characters by analytic continuation.

Proof: In the next section we will exhibit for each equivalence class C of quasi-charactors an explicit function $f_{C} \in \mathcal{Z}$ such that the function

$$
\rho(c)=\frac{\zeta\left(f_{C}, 0\right)}{\zeta\left(\hat{f}_{C}, \hat{c}\right)}
$$

is defined (ie. has denominator not identically 0) for c in the strip $0<$ exponent $0<1$ on C. The function $\rho(0)$ defined in this manner will turn out to be a familiar meromorphic function of the parameter with which wo describe the surface C, and therefore will have an analytic continuation over all of C.

From these facts, which will be proved in $\mathbf{5} 2.5$ the theorem follow directly. For since C was any equivalence class, $\rho(c)$ is defined for all quasi-characters. And if $f(\xi)$ is any function of Z wo have according to the preceding lemma

$$
\begin{aligned}
& \zeta(f, 0) \zeta\left(\hat{f}_{C}, \hat{c}\right)=\zeta(\hat{f}, \hat{0}) \zeta\left(f_{C}, 0\right), \\
& \zeta(f, 0)=\rho(0) \zeta(\hat{\mathrm{r}}, \hat{0}),
\end{aligned}
$$

therefore
if c is any quasi-charactor in the domain of $0<$ exponent $0<1$ fere $\zeta(f, 0)$ and $\zeta(\hat{S}, \hat{d})$ are originally both defined, and C is the equivalence class of c.

Before going on to the computations of the next section which will put this theory on a sound basis, we can prove some simple properties of the factor $\rho(c)$ in the functional equation which follow directly from the functional equation itself.

Lemma 2.4.3:

$$
\text { 1.) } \rho(\hat{c})=\frac{c(-1)}{\rho(c)} \cdot \text { 2. } \rho(\bar{c})=c(-1) \overline{\rho(c)}
$$

Proof:

$$
\text { 1.) } \zeta(f, 0)=\rho(0) \zeta(\hat{\mathrm{f}}, \hat{0})=\rho(0) \rho(\hat{c}) \zeta(\hat{\hat{1}}, \hat{0})=c(-1) \zeta(f, c)
$$

because $\widehat{f}(\alpha)=f(-\alpha)$ and $\hat{\sigma}(\alpha)=c(\alpha)$. Therefore $\rho(c) \rho(\widehat{\sigma})=o(-1)$.

$$
\text { 2.) } \begin{aligned}
\bar{\zeta}(\overline{\mathrm{f}}, 0) & =\zeta(\overline{\mathrm{f}}, \overline{\mathrm{c}})=\rho(\overline{0}) \zeta(\overline{\mathrm{f}}, \overline{\mathrm{c}}) \\
& =\rho(\overline{0}) 0(-1) \zeta(\overline{\mathrm{f}}, \overline{\mathrm{C}})=\rho(\overline{0}) c(-1) \bar{\zeta}(\overline{\mathrm{a}}, \overline{\mathrm{c}})
\end{aligned}
$$

because $\hat{\mathrm{f}}(\alpha)=\hat{\hat{I}}(-\alpha)$ and $\hat{\bar{o}}(\alpha)=\overline{\mathrm{O}}(\alpha)$. On the other hand

$$
\overline{\zeta(1,0)}=\overline{\rho(c)} \overline{\zeta(1, \pi)}
$$

Therefore $\rho(\sigma)=c(-1) \rho(0)$.

Corollary 2.4.1: $|\rho(0)|=1$ for of exponent $\frac{1}{2}$ o Proof: (exponent 0) $=\frac{1}{\infty} \Rightarrow o(\alpha) \widehat{o}(\alpha)=|e(\alpha)|^{2}=|\alpha|=c(\alpha) \hat{o}(\alpha) \Rightarrow$
$\bar{C}(\alpha)=\widehat{c}(\alpha)$. Equating the two expressions for $\rho(\bar{a})$ and $\rho(\hat{c})$ given in the preceding lome yields $\rho(0) \bar{g}(c)=1$.
2. 5 Computation of $\rho(0)$ by Special S-functions. This section contains the computations promised in the proof of theorem 2.4.1. For each equivalence class C of quasi-oharacters we give an especially simple function $f_{C} \in \mathcal{Z}$ wi which it is easy to compute $\rho(c)$ on the surface $C_{\text {. }}$ Carrying
out the computation we obtain a table which gives the analytic expression for $\rho(c)$ in terms of the parameter; s, on each surface C. It will be necessary to treat the cases \mathbf{k} real; \mathbf{k} complex; and \mathbf{k} y-adic separately.
\underline{k} real.

$$
\begin{array}{ll}
\xi \text { is a real variable. } & \alpha \text { is a non-zero } \\
\Lambda(\xi)=-\xi & 1 \alpha 1 \text { is the ord } \\
d \xi \text { means ordinary Lesbegue measure. d }=\frac{d \alpha}{I \alpha} F
\end{array}
$$

The Equivalence Classes of Quasi-Characters. The quesi-characters of the form 1* $\mathbf{1}^{5}$. which we denote simply by 11^{5}, comprise one equivalence class. Those of the form (sign α) $1 \times \mathbf{I}^{s}$, which we denote by $\pm 11^{s}$ 。 comprise the other. The Corresponding Functions of \mathcal{Z} : po put $f(\xi)=0-\pi \xi^{2}$ and $f_{ \pm}(\xi)=\xi_{0}-\pi \xi^{2}$.
Their Fourier Transforms: We contend
$\hat{f}(\xi)=f(\xi)$ and $\hat{f} \pm(\xi)=i f \pm(\xi)$.
Indeed, these are simply the two identities

$$
\int_{-\infty}^{\infty}-\pi \eta^{2}+2 \pi i \xi \eta \quad d \eta=e^{-\pi \xi^{2}} \text { and } \int_{-\infty}^{\infty} \eta e^{-\pi \eta^{2}+2 \pi i \xi \eta} d \eta=1 \xi \xi^{-\pi \xi^{2}}
$$

familiar from classical Fourier analysis. The first of these can be established directly by completing the square in the exponent, making the complex substitution $\eta \rightarrow \eta+i \xi$, which is allowed by Cauchy's integral theorem, and replacing the definite integral $\int_{-\infty}^{\infty} e^{-\pi \xi^{2}} d \xi$ by its well-known value 1. The second identity is obtained by applying the operation $\frac{1}{2 \pi i} \frac{d}{d \xi}$ to the first.

The $\mathbf{5}$-functions: We readily computes

$$
\begin{aligned}
\zeta\left(f, 11^{s}\right) & \left.=\int_{f(\alpha) \mid \alpha 1^{s} d \alpha}=\int_{-\infty}^{\infty} e^{-\pi \alpha^{2}} f \alpha\right\}^{s} \frac{d \alpha}{I \alpha \mid} \\
& =2 \int_{0}^{\infty} e^{-\pi \alpha^{2}} \alpha^{s-1} d \alpha=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \zeta\left(f_{ \pm}, \pm \mid 1^{s}\right)=\int f_{ \pm}(\alpha)\left(\pm|\alpha|^{5}\right) d \alpha=\int_{-\infty}^{0} \alpha e^{-\pi \alpha^{2}}(-1)|\alpha|^{s} \frac{d \alpha}{|\alpha|}+\int_{0}^{\infty} x e^{-\pi x}|x|^{j} \frac{d \alpha}{|x|} \\
& =2 \int_{0}^{\infty} e^{-\pi \alpha^{2}} \alpha^{s} d \alpha=\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right) \text {. } \\
& \zeta(\widehat{f}, \vec{i})=\zeta\left(f, i^{1-5}\right)=\pi^{-\frac{1-5}{2}} \Gamma\left(\frac{1-5}{2}\right) \\
& \left.\sum\left(f_{ \pm}, \dot{x} \mid{ }^{s}\right)=\zeta\left(i f_{ \pm} \pm i\right)^{i-s}\right)=i \pi^{-\frac{(1-5)+1}{2}} \Gamma\left(\frac{(1-s)+1}{2}\right) \text {. }
\end{aligned}
$$

Explicit Expressions for $p(0)$:

$$
\begin{aligned}
& \rho\left(\left|\left.\right|^{s}\right)=\frac{\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)}{\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-5}{2}\right)}=2^{1-s} \pi^{-s} \cos \left(\frac{5 \pi}{2}\right) \Gamma(s)\right. \\
& \rho\left(\pm| |^{s}\right)=-i \frac{\pi^{-\frac{s+1}{2}} \Gamma\left(\frac{s+1}{2}\right)}{\pi^{-\frac{(1-5)+1}{2}} \Gamma\left(\frac{(1-s)+1}{2}\right)}=-i 2^{1-s} \pi^{-s} \sin \left(\frac{s \pi}{2}\right) \Gamma(s)
\end{aligned}
$$

Here the quotient expressions for ρ come directly from the definition of ρ as quotient of suitable ζ-functions; the second forte follows from elementary Γ-function identities.
k Complex.
$\xi=x+i y$ ia a complex variable.
$\Lambda(\xi)=-2 \operatorname{Re}(\xi)=-2 x$
$d \xi=2 \mid d x d y l$ is twice the ordinary Lebesgue measure.

$$
\begin{aligned}
\alpha= & r e^{i \theta} i \text { a non-zero complex } \\
& \text { variable. } \\
|\alpha|= & r^{2} \text { is the square of } \\
& \text { absolute value. ordinary } \\
c_{\alpha}= & \frac{d \alpha}{|\alpha|}=\frac{2 r|d r d \theta|}{r^{2}}=\frac{2}{r}|d r d \theta| .
\end{aligned}
$$

Equivalence Classes of Quasi-Characters: The characters $c_{n}(\alpha)$ defined by $o_{n}\left(r e^{i \theta}\right)=e^{i n \theta}$ on any integer, represent the different equivalence classes. The nth class consists of the characters $c_{n}(\alpha)|\alpha|^{3}$, which we denote by $o_{n} \mid 1^{5}$
The corresponding Functions of 2 : We put.

$$
f_{n}(\xi)= \begin{cases}(x-i y)^{|n|} e^{-2 \pi\left(x^{2}+y^{2}\right)}, & n \geq 0 \\ (x+i y)^{\mid n t} e^{-2 \pi\left(x^{2}+y^{2}\right)}, & n \leq 0\end{cases}
$$

Their Fourier Transforms: We contend

$$
\widehat{f_{n}}(\xi)=i^{|n|} f_{-n}(\xi) \text { for all } n
$$

Let us first establish this formula for $n \geqslant 0$ by induction. For

$$
n=0 \quad \text { the contention is amply that } \quad f_{0}(\xi)=e^{-2 \pi\left(x^{2}+y^{2}\right)}
$$

is its own Fourier trensform. This can he shown by breaking up the Fourier integral over the complex plane into a product of two reals and using again the classical formula

$$
\int_{-\infty}^{+\infty} e^{-\pi u^{2}+2 \pi i x u} d u=e^{-\pi x^{2}}
$$

(The factor 2 in the exponent of our function $f_{d}(\underline{g})$ just compensates the factor 2 in $d \xi$ and in $\Lambda(\xi)$).

Assume now we have proved the contention for some $n \neq 0$ - This means we have established the formula

$$
\int f_{n}(\eta) e^{-2 \pi i \Lambda(\xi \eta)} d \eta=i^{n} f_{-n}(\xi)
$$

which, written out, becomes

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(u-i v)^{n} e^{-2 \pi\left(u^{2}+v^{2}\right)+4 \pi i(x u-y v y} 2 d u d v=i^{n}(x+i y)^{n} e^{-2 \pi\left(x^{2}+y^{2}\right)}
$$

Applying the operator $D=\frac{1}{4 \pi^{i} i}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ to both sides, (a simple task in view of the fact that since \bar{x}^{n} is analytic, $D(x+i y)^{n}=0$). we obtain

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(u-i v)^{n+1} e^{-2 \pi\left(u^{2}+v^{2}\right)+4 \pi i(x u-y v)} 2 d u d v=i^{n+1}(x+i y)^{n+1} e^{-2 \pi\left(x^{2}+y^{2}\right)}
$$

This is the contention for $n+1$. The induction step is carried out.

To handle the case $n<0$ put a roof on the formula $\widehat{f}_{-n}(\underline{\xi})=i^{(n I} f_{n}(\xi)$ which we have already proved, and remember that $\hat{f}_{-n}(\xi)=f_{-n}(-\xi)=(-1)^{m /} f_{-n}(\xi)$.

The 5 Functions: For $\quad x=r e^{i \theta}$ we have

$$
\begin{array}{ll}
f_{n}(x)=r^{m \|} e^{-i n \theta} e^{-2 \pi r^{2}} & |\alpha|^{3}=r^{2 s} \\
C_{n}(x)=e^{i n \theta} & d x=\frac{2-\frac{d r d \theta}{r^{2}}}{} .
\end{array}
$$

Therefore

$$
\begin{aligned}
\zeta\left(f_{n}, c_{n}| |^{s}\right) & =\int_{n} f_{n}(\alpha) c_{n}(\alpha)|\alpha|^{s} d \alpha=\int_{0}^{\infty} \int_{0}^{2 \pi} r^{2(s-1)+|n|} e^{-2 \pi r^{2}} 2 r d r d \theta \\
& =2 \pi \int_{0}^{\infty}\left((-2)^{(s-1)+\frac{|n|}{2}} e^{-2 \pi r^{2}} d r^{2}=(2 \pi)^{(1-s)+\frac{|n|}{2}} \Gamma\left(s+\frac{|n|}{2}\right)\right.
\end{aligned}
$$

and

$$
\zeta\left(\hat{f}_{n}, \widehat{c_{n}| |^{s}}\right)=\xi\left(i^{|n| f_{-n}} c_{-n} \mid 1^{\mid-s}\right)=i^{|n|}(2 \pi)^{s+\frac{|n|}{2}} \Gamma\left(1-s+\frac{\ln \mid}{2}\right)
$$

Explicit Expressions for $\rho(0)$:

$$
\rho\left(C_{n}| |^{s}\right)=(-i)^{|n|} \frac{(2 \pi)^{1-s} \Gamma\left(s+\frac{|n|}{2}\right)}{\left.(2 \pi)^{s} \Gamma(11-s)+\frac{|n|}{2}\right)}
$$

$$
\begin{aligned}
& \xi=\text { ag-adic variable } \\
& \Lambda(\xi)=\lambda(S(\xi))
\end{aligned}
$$

dg is chosen so that V gets measure $(N N)^{-\frac{1}{2}}$
$\alpha=\tilde{\alpha} \pi^{\nu}$, non-zero g-adic variable, π a fixed element of ordinal number $1, \nu$ an integer.

$$
|\alpha|=(N \not g)^{-\nu}
$$

$$
d \alpha=\frac{N g e}{N g-1} \frac{d \alpha}{|\alpha|}
$$

- so that u gets multiplicative measure $(\mathbb{N} N)^{-\frac{1}{3}}$

The Equivalence Classes oi Quasi-Characters: $C_{n}(\alpha)$ for $n \geqslant 0$ shell denote any character of k^{x} with conductor exactly y^{n}, such that $c_{n}(N)=1_{0}$ These characters represent the different equivalence classes of quasicharacters.

The Corresponding Functions of $2, \quad$ We put

$$
f_{n}(\xi)= \begin{cases}e^{2 \pi i \alpha(\xi)} & , \text { for } \xi \in \mathcal{N}^{-1} g^{-n} \\ 0 & , \text { for } \xi \notin \theta^{-1} g^{-n}\end{cases}
$$

Their Fourier Transforms: We contend

$$
\hat{f}_{n}(\xi)=\left\{\begin{array}{lll}
(N N)^{+\frac{1}{2}}(N, g)^{n} & \text { for } \xi \equiv 1 & \left(\bmod g^{n}\right) \\
0 & \text { for } \xi \neq 1 & \left(\bmod g^{n}\right)
\end{array}\right.
$$

Proof:

$$
\hat{f}_{n}(\xi)=\int f_{n}(\eta) e^{-2 \pi i \hat{L}(\xi \eta)} d \eta=\int_{N^{-1}} e^{-2 \pi i \Lambda((\xi-1) \eta)} d \eta
$$

This is the integral, over the compact subgroup $\mathrm{N}^{-1} \mathrm{~g}^{-n} \subset \mathcal{k}^{+}$ of the additive character $\eta \rightarrow e^{-2 \pi i \Lambda((\xi-1) \eta)}$, If $\xi \equiv 1\left(\bmod y^{n}\right) /$ this character is trivial on the subgroup, and the integral is simply the measure of the subgroup: $N N^{\frac{1}{2}} N_{i g}^{n} \quad$. In case $\xi \neq 1\left(\bmod g^{n}\right)$
, this character is not trivial on the subgroup and the integral is 0.

The S Finnotionss First we treat the unramified cases $n=0$ The only character of type c_{0} is the identity character, and f_{0} is the characteristic function of the set N^{-1}. We shall therefore compute

$$
\xi\left(f_{0},| |^{s}\right)=\int_{N^{-1}}|\alpha|^{5} d x
$$

Denote by Av the annulus" of elements of order ν and let $\hat{N}=\hat{q}$ Then $N^{-1}=\int_{V=-d}^{\infty} A_{v}$, a disjoint union, and

$$
\begin{aligned}
\zeta\left(f_{0},| |^{s}\right) & =\sum_{v=-\alpha}^{\infty} \int_{A_{\nu}}|\alpha|^{s} d \alpha=\sum_{v=-a}^{\infty} N_{y} g_{A_{y}}^{-\nu s} d \alpha \\
& =\left(\sum_{v=-a}^{\infty} N_{y}{ }_{y}^{-\nu s} N_{N^{-\frac{1}{2}}}=\frac{N y^{d s}}{1-N g^{-s}} N A^{-\frac{1}{2}}\right. \\
& =\frac{N N^{s-\frac{1}{2}}}{1-N g^{-s}}
\end{aligned}
$$

$\widehat{f_{\sigma}}$ is $N N^{\frac{1}{2}}$ times the characteristic function of V so we have. similarly.

$$
\begin{aligned}
\zeta\left(\widehat{f_{0}}, \hat{l}^{5}\right) & =\zeta\left(\hat{f}_{0}, \mid 1^{1-5}\right)=N \theta^{\frac{1}{2}} \int_{y^{2}}|\alpha|^{1-5} d \alpha \\
& =\sum_{v=0}^{\infty} N y^{-\nu(1-5)}=\frac{1}{1-N_{y} y^{-2}}
\end{aligned}
$$

In the ramified case, $n>0$.

$$
\begin{aligned}
\zeta\left(f_{n}, C_{n}| |^{5}\right) & =\int_{N_{0}-e^{-n}} e^{2 \pi i \Lambda(\alpha)} C_{n}(\alpha)|\alpha|^{s} d \alpha \\
& =\sum_{j=-\alpha-n}^{\infty} N_{y} y^{-\nu s} \int_{A_{y}} e^{2 \pi i \Lambda(\alpha)} C_{n}(\alpha) d \alpha
\end{aligned}
$$

We assert that all terms in this sum after the first are o. In other words that

$$
\int_{A_{\nu}} e^{2 \pi i \Lambda(\alpha)} C_{n}(\alpha) d \alpha=0 \quad, \text { for } v>-d-n
$$

Proof: Case 1.) $\quad \nu \geqslant-d$. Then $A_{y} \subset \Lambda^{-1}$, so $e^{2 \pi i \Lambda(\alpha)}=1$ on A_{ν} and the integral is

$$
\int_{A_{v}} c_{n}(\alpha) d \alpha=\int_{u} C_{n}\left(\alpha \pi^{v}\right) d \alpha=\int_{u} C_{n}(\alpha) d \alpha=0
$$

since $C_{n}(\alpha)$ is ramified and therefore non-trivial on the subgroup u_{0}
Case 2.) $-d>\nu>-d-n$ (Occurs only if there is
"higher ramification"; ie. if $n>1$ - To handle this case we break up A_{ν} into disjoint sets of the type $\alpha_{0}+\mathcal{N}^{-1}=\alpha_{0}+\mathcal{H}^{-d}=$ $\alpha_{0}\left(1+j^{-d-\nu}\right)$. On such a set, Λ is constant $m \Lambda\left(\alpha_{0}\right)$ and

$$
\int_{\alpha_{0}+A^{-1}} e^{2 \pi i \Lambda(\alpha)} c_{n}(\alpha) d \alpha=e^{2 \pi i \Lambda\left(\alpha_{0}\right)} \int_{\alpha_{0}+N^{-1}} c_{n}(\alpha) d \alpha
$$

This is 0 because

$$
\int_{\alpha_{0}+N^{-1}} C(\alpha) d \alpha=\int_{\alpha_{0}\left(1+y^{-\alpha}(\alpha)\right.} C(\alpha) d \alpha=\int_{1+y^{-\alpha-y}} C\left(\alpha^{-\nu} \alpha_{0}\right) d \alpha=C\left(\alpha_{0}\right) \int_{1+g^{-\alpha-\nu}} C(\alpha) d \alpha,
$$

and this last integral is the integral over a multiplicative subgroup
$1+g^{-c_{2}-\gamma}$ of a character $c_{n}(\alpha)$ which is not trivial on the subgroup. Namely. $-\alpha>\nu \Rightarrow y \mid y^{-d-\nu} \Rightarrow 1+y^{-d-\nu}$ is \Rightarrow subgroup of k^{x}, and $v>-d-n \Rightarrow$ the conductor $f^{n} \nmid y^{-d-\gamma} \Rightarrow c_{n}(x)$ not trivial on it.

We have now shown

$$
\zeta\left(f_{n}, c_{m} \mid 1^{s}\right)=N_{1} g^{i+n+n} s \int_{-d-n} e^{2 \pi i \Lambda(\alpha)} C_{n}(\alpha) d \alpha
$$

To write this in a better form, let $\{\varepsilon\}$ be a set of representatives of the elements of the factor group $u / 1+g^{n}$ so that $u=\int_{\varepsilon} \varepsilon\left(i+i g^{n}\right)$, a disjoint union. Then

$$
A_{-d-n}=u \pi^{-d-n}=\int_{\varepsilon} \varepsilon \pi^{-d-n}\left(1+g^{n}\right)=\int_{\Sigma}\left(\varepsilon \pi^{-d-n}+N^{\theta^{-1}}\right)
$$

On each of these sets into which we have dissected $A_{-d} \dot{d} \cdot C_{n}$ is constant $\equiv n_{n}\left(\Sigma \pi^{-4-n}\right)=c_{n}(\varepsilon)$, and Λ is constant $\Lambda\left(\varepsilon \pi^{-d \cdot n}\right)$ e We therefore have

$$
\zeta\left(f_{n}, c_{n} \mid 1^{s}\right)=N_{\mu g}^{(d+n) s}\left(\sum_{\varepsilon} c_{n}(E) e^{2 \pi i \Lambda\left(\frac{\varepsilon^{2}}{\pi^{d+n}}\right)}\right) \int_{i+g^{n}} d \alpha
$$

a form which will be convenient enough.
The pay-off comes in computing $\zeta\left(\widehat{f}_{n}, \widehat{c}_{n} \|^{s}\right)=\zeta\left(\widehat{f}_{n}, c_{n}^{-1} 1^{1-5}\right)$. For \hat{f}_{n} is $N N^{\frac{1}{2}} N_{g^{n}}$ times the characteristic function of the set $1+g^{n}$ a set on which $c_{n}^{-1}(\alpha)|\alpha|^{1-s}=1$. Therefore

$$
\begin{aligned}
& \zeta\left(\hat{f}_{n}, \hat{C}_{n} \|^{s}\right)=N \theta^{\frac{1}{2}} N g^{n} \int_{i+g^{n}} d_{\alpha}, \text { a constant! } \\
& \text { Expressions for } O(c):
\end{aligned}
$$

Explicit Expressions for $g(c):$

$$
\rho\left(11^{s}\right)=N N^{s-\frac{1}{2}} \frac{1-N y^{s-1}}{1-N g^{-s}}
$$

$\rho\left(c\left|\left.\right|^{s}\right)=N(N f)^{5-\frac{1}{2}} \rho_{0}(c)\right.$, if cis a ramified character with
conductor f, such that $\quad c(\pi)=1$. $\quad \rho_{0}(c)=N f^{-\frac{1}{2}} \sum_{\varepsilon} c(\varepsilon) e^{2 \pi i \Lambda\left(\frac{\varepsilon}{\pi^{0 . d A l}}\right)}$ is a so-called root number and has absolute value 1 .
$\{\varepsilon\}$ is a set of representatives of the cosets of $1+f$ in u.

Taking the quotients of the ζ functions we have worked out yield e these expressions directly if we remember that $N=y^{d}$ and, in the ramified case, that the conductor of c_{n} was $f=f^{n}$ - The fact that

Namely, since c is a character, $c \left\lvert\, i^{\frac{1}{2}}\right.$ has exponent: $\frac{1}{2}$, so we must have $\left|\rho\left(c \left\lvert\, 1^{\frac{1}{2}}\right.\right)\right|=\left|\rho_{0}(c)\right|=1$.

Chapter 3.

Abstract Restricted Direct Product.

3.1 Introduction Let $\{y\}$ be a set of indices. Suppose we are given for each y a locally compact abelian group G_{y}, and for almost ally (meaning for all but a finite number of y), e fixed subgroup $H_{g} \subset G_{q}$ which is open and compact.

We may then form a new abstract group G whose elements $M=\left(\ldots \ldots, M_{n g}\right)$ $\ldots . .$. ...) are "vectors" having one component $\mu \mu_{y} \in G_{y}$ for each y, with $N_{y} \in H_{y}$ for almost all g. Multiplication is defined component wise.

Let s be a finite set of indices g including at least all those g
 g $\$ S$ comprise a subgroup of G which we denote by G_{S} - G_{S} is naturally isomorphic to a direct product $\prod_{y \in S} G_{y} x \prod_{\mathrm{g} \| \mathrm{S}} \mathrm{H}_{\mathrm{g}}$ of locally compact groups, almost all of which are compact, and is therefore a locally compact group in the product topology. We define a topology in G by taking as a fundamental system of neighborhoods of 1 in G, the set of neighborhoods of 1 in $G S$. The resulting topology in G does not depend on the $s e t$ of indices. S. which we selected. This can be seen from

Leman 3.1.1 The totality of all "parallelotopes" of the form $A=\prod_{i f} \mathrm{H}_{\mathrm{if}}$ o where N_{g} is neighborhood of 1 in G_{g} for all of and $H_{g}=H_{g}$ for almost all Ag \rightarrow remember the H_{y} are open by hypothesis - is a fundamental system of neighborhoods of 1 in G_{e}

Proof: By the definition of product topology a neighborhood of in G_{S} contains a parallelotope of the type described. On the other hand, since
 in a neighborhood of 1 in G_{S}

It is obvious that G_{S} is open in G and that the topology induced in G_{S} as a subspace of G is the same as the product topology we imposed on G_{s} to begin with. Therefore a compact neighborhood of 1 in G_{S} is a compact neighborhood of 1 in G. It follows that G is locally compact.

Definition 3.1.1: We call G (as locally compact abelian group) the restricted direct product of the groups G_{y} relative to the subgroups H_{y}.

It will, of course, be convenient to identify the basic group G_{y} with the subgroup of G consisting of the elements $N L_{y}=\left(1,1, \ldots, V_{y}, \ldots\right)$ having all components but the $y^{\text {th }}$ equal to 1 . For that subgroup of G is naturally isomorphic, both topologically and algebraically to G_{y}.

Since the components, $N_{i g}$, of any element $U T$ of G lie in H_{f} for almost all y . G is the union of the subgroups of the type G_{S}. This fact will allow us to reduce our investigations of G to a study of the subgroups G_{S}.

These G_{S} in turn may be effectively analysed by introducing the subgroup $G^{S} \subset G_{S} \quad$ consisting of all elements $N \in G$ such that $N M_{y}=1$ for $y \in S_{3} \quad \| \pi_{y} \in H_{y}, \mathcal{H}_{y} \neq S . \quad G^{S}$ is compact since it is naturally isomorphic to a direct product $\quad \int_{y+S} H_{y}$ of compact groups. G_{S} can be considered as the direct product $G_{S}=\left(\prod_{y \in S} G_{y g}\right) \times G^{S}$ of a finite number of our basic groups G and the compact group G.

We close our introduction of the restricted direct product with Lemma 3.1.2: A subset CCG is relatively compact (has a compact closure) if, and only, if it is contained in a parallelotope of the type $\prod_{\mathrm{y}} \mathrm{B}_{\mathrm{y}}$ 。 Where B_{y} is a compact subset of G_{g} for all g, and B_{y}. H_{g} for almost all y.

Proof: Any compact subset of G is contained in some G_{S}, because the G_{S} are open sets covering G, and the union of a finite number of subgroups G_{S} is again a G_{S}. Any compact subset of a G_{S} is contained in a parallelotope of the type described, for it, is contained in the cartesian product of its "projections" onto the component groups Go * These projections are compact since they are continuous images, and are contained in H_{y} for $y \notin S$.

On the other hand, any parallelotope $\prod_{y} B_{y}$ is obviously a compact subset of some G_{S}; therefore of G_{0}
3.2. Characters Let $o(L K)$ be quasi-character of G, ie. a continuous multiplicative mapping of G into the complex numbers. We denote by a_{y} the restriction of c to $G_{y}:\left(c_{1 g}\left(\mu_{y}\right)=c\left(\mu_{y}\right)=\right.$ $C\left(1,1, \ldots, V i_{j}, \ldots\right)$ for $N_{y y} \in G_{y}$.). o_{y} is obviously a quasi-character of G_{y}. Lemma 3.2.1: o_{yg} is trivial on H_{g}, for almost all f , and we have for any $M L \in G$

$$
C(N \tau)=\prod_{g} C_{y}\left(N \tau_{z}\right)
$$

almost all factors of the product being 1 .
Proof: Let U be a neighborhood of 1 in the complex numbers containing no multiplicative subgroup except $\{1\}$. Let $N=\prod_{y} \mathrm{~K}_{\mathrm{y}}$ be a neighborhood of I in G such that $c(N) C U$. Select an S containing all y for which $\mathrm{M}_{\mathrm{Ag}} \neq \mathrm{H}_{\mathrm{g}}$. Then $\left.G^{S} \subset \mathrm{~N} \Rightarrow \mathrm{o} \Rightarrow G^{S}\right) \subset U \Rightarrow c\left(G^{S}\right)=1 \Rightarrow c\left(\mathrm{H}_{M}\right)=1$ for $g_{\mathrm{F}} \mathrm{S}$. If $几$ is a fixed element of G we impose on S the further condition that $\mu \Omega \in G_{S}$ and write $M=\left(\prod_{Q \in S} N_{\mu g}\right) N^{S}$ with $\mu^{S} \in G_{0}^{S}$ Then

$$
c(\mu)=\prod_{y \in S} c\left(v \pi_{z}\right) \cdot c\left(1 \pi^{3}\right)=\prod_{y \in S}^{x} c_{y}\left(\mu \pi_{y}\right)=\prod_{y}\left(v \pi_{y}\right)
$$

since for $y \notin S, c_{g}\left(\mu \mu_{g}\right)=1$.

we obtain a quasi-character of G.

Proof: $o(N T)$ is obviously multiplicative. To see that it is continuous select on S containing all g for which $C_{y}\left(\mathrm{H}_{y}\right) \neq 1$. Let s be the number of y in S. Given a neighborhood, U, of 1 in the complex numbers, choose a neighborhood V such that $V^{s} \subset U$ - Let N_{y} be a neighborhood of 1 in G_{y} such that $c_{y}\left(N_{y y}\right) \subset V$ for $y \in S$, and let $N_{g}=H_{y}$ for $y \notin S$. Then $c\left(\prod_{y} M_{y}\right) \subset V^{s} \in U$.

Restricting our consideration to characters, we notice first of all that $C(\mu \Omega)=\prod_{y} 0_{g}(\mu y)$ is a character if, and only if all C_{y} are characters. Denote by \widehat{G}_{y} the character group of G_{y}, for all if; for the y where H_{f} is defined let $H_{y}^{*} \subset \widehat{G}_{y}$ be the subgroup of all $C_{y y} \in \hat{G}_{y}$ which are trivial on $H_{y y}$. Then $H_{y y}$ compact $\Rightarrow \hat{H}_{y y} \approx \hat{G}_{y y} / H_{y}^{*}$ discrete $\Rightarrow H_{y g}^{*}$ open, and H_{y} open $\Rightarrow G_{y} / H_{y}$ discrete $\Rightarrow G_{n g} / H_{y} \neq H_{y}^{*}$ compact.

Theorem 3.2.1: The restricted direct product of the groups \hat{G}_{y} relative to the subgroups H_{y}^{*} is naturally isomorphic, both topologically and algebraically, to the character group \hat{G} of G.

Proof: Of course we mean to identify $c=\left(\ldots ., c_{y}, \ldots ..\right)$ with the character $C(N)=\prod_{y} a_{y}\left(V_{y}\right)$. The two preceding lemma, applied to characters, show that this is an algebraic isomorphism between the two groups. We have only to check that the topology is the same. To this effect we reason as follows: $C=\left(\ldots, c_{y}, \ldots ..\right)$ is close to 1 as a character $\Longleftrightarrow c(B)$ close to 1 for a large compact $B \subset G \Leftrightarrow c\left(\prod_{1} B_{y}\right)$ close to 1 for $B_{y} \subset Q_{y}$, compact, $B_{y}=H_{y}$ for almost all y $\Leftrightarrow C_{y} y\left(B_{y}\right)$ close to 1 wherever $B_{y} \neq H_{y}$ and $o_{y}\left(B_{y}\right)=c_{y}\left(H_{y}\right)=1$ at the remaining . M (since H_{y} is a subgroup. $c_{y}\left(H_{y}\right)$ can be close to l only if $o_{g}\left(H_{j}\right)=1$)
$\Leftrightarrow 0_{y}$ close to 1 in \hat{G}_{y} for a finite number of y and $c_{y} \in X_{y}^{*}$ at the other $g \Longleftrightarrow$ close to 1 in the restricted direct product of the \hat{G}_{y}. 3.3 Measure. Assume now that we have chosen a Haar measure $d k_{y}$ on each Gig such that $\int_{H_{y y}} d \mu_{y}=1$ for almost all g. We wish to define a Haar measure $d U$ on G for which, in some sense, $d \mu=\prod_{y} d N L_{y}$. To do this, we select ${ }_{A} S_{\text {; }}$ then consider G_{S} as the finite direct product $G_{S}=$ $\left(\prod_{y \in S} G_{y}\right) \times G^{S}$. in order to define on G_{S} a measure $d V_{S}=\left(\prod_{y \in S} d v_{y}\right) \cdot d \mu^{S}$. where $d u^{S}$ is that measure on the compact group G^{S} for which

$$
\int_{G} d v^{S}=\prod_{\mathcal{H}}\left[\int_{H_{y}} d M_{H}\right] \text {. Since } G_{S} \text { is an open subgroup of } G \text {, Haar }
$$ measured al on G is now determined by the requirement that $d N=d V_{S}{ }^{\circ} G_{S} G^{\prime}$ To see that the dar we have just chosen is really independent of the ret S. let $T \supset S$ be a larger set of indices. Then $G_{S} \subset G_{T}$. and we have only to check that the $d N T_{T}$ constructed with T coincides on G_{S} with the $d \mu Z_{S}$ constructed with S. Now one sees from the decomposition $\left.G^{S}=\left(\prod_{y \in T-S} H_{y}\right) \not\right)_{G^{\top}}$ that $d M r^{S}=\left(\prod_{y \in T=S} d \mu r_{y}\right) \cdot d V^{\top}$; for the measure on the righthand side gives to the compact group G the required measure. Therefore

$$
d v_{S}=\prod_{y \in S} d v_{y} \cdot d r^{S}=\prod_{y \in S} d u_{y_{y}} \cdot \prod_{g \in T-S} d \pi_{y} \cdot d v^{T}=d v r_{T}
$$

Vie have therefore determined a unique Haar measure $d V$ on G which we may denote symbolically by $d V E=\prod_{y} d M_{y}$.

If $\varphi(S)$ is any function of the finite sets of indices S, with values in a topological space, we shall mean by the expression lime $\varphi(s)=\varphi_{0}$ the statements: "given any neighborhood V of φ_{0}, there exists a set $s(V)$ such that $s \supset s(V) \Rightarrow \varphi(s) \in V^{\prime \prime}$ 。 Intuitively, $\lim \varphi(s)$ means the limit of φ (S) af S becomes larger and larger. Lemma 3.3.1: If $f(V)$ is a function on G,

$$
\int_{f}(\mu) d \mu \tau=\frac{1 i m}{S} \int_{G_{S}} f(\mu) d u,
$$

if either 1.) $f(N \subset)$ measurable, $f(N /) \geqslant 0$, in which case $+\infty$ is allowed as value of the integrals; or 2.$) f(\Omega) \in I,(G)$, in which case the values of the integrals are complex numbers.
 for larger and larger compacts $B \subset G$. Since any compact, $B_{\text {, }}$ is contained in some G_{S}, the statement follows.

Lemma 3.3.2: Assume we are given for each y a continuous function $f_{u g} \in L_{1}\left(G_{y}\right)$ such that $f_{i g}\left(\nu T_{y}\right)=1$ on H_{g} for almost all gig. We define on G the function $f(\nu)$ $=\prod_{\text {g }} f_{i g}\left(N M_{y}\right)$, (this is really a finite product), and contends
$\left.l_{0}\right) f(V /)$ is continuous on G.
2.) For any set S containing at least those for which either

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{y}}\left(\mathrm{E}_{\mathrm{y}}\right) \neq 1 \text { or } \quad \int_{H_{y}} \mathrm{~d} \| \eta_{y} \neq 1 \text {, we have } \\
& \int_{G_{5}} f(v) d v=\prod_{y \in S}\left[\int_{G_{y y}}^{H_{y}} f_{y}\left(v v_{y}\right) d v \tau_{y}\right] \text {. }
\end{aligned}
$$

Proof: 2.) $f(M)$ is obviously continuous on any G_{S}; therefore on G.
2.) For $\mu<\in G_{S}, f(k R)=\prod_{\mu \in S} f_{y}\left(l l_{g}\right)$. Hence

$$
\begin{aligned}
& \int_{G_{S}} f(v) d \mu=\int_{G_{S}} f(v i) d u_{S}=\int_{G_{S}}\left(\prod_{y \in S} f_{y}\left(v \pi_{y}\right)\right)\left(\prod_{g \in S} d v_{y} \cdot d v^{S}\right) \\
& =\prod_{y \in S}\left[\int f_{y}\left(v q_{y}\right) d v q_{g}\right] \cdot \int_{\mathcal{G}_{S}} d v \tau^{S}=\prod_{y \in S}\left[\int f_{y g}\left(v v_{y}\right) d v \tau_{y}\right] \text {. }
\end{aligned}
$$

Theorem 3.3.1: If $f_{i g}\left(N l_{g}\right)$ and $f(N l)$ are the functions of the preceding lemma and if furthermore

$$
\prod_{y}\left[\int\left|f_{y}\left(v \tau_{y}\right)\right| d v \tau_{y}\right] \quad\left\langle=\lim _{S}\left\{\prod_{f \in i}\left[\int\left|f_{y}\left(v \tau_{y}\right)\right| d v_{y}\right]\right\}\right)<\infty
$$

then $f(M) \in L_{1}(G)$ and,

$$
\int f(u) d u c=\prod_{q}\left[\int f_{f}(v g) d u_{g}\right]
$$

Proof: Combine the two preceding lemmas; first for the function
$|f(\mu)| \doteq \prod_{i g}\left|f_{i g}\left(\mu \mu_{y}\right)\right|$ to see that $f(U) \in L_{1} \quad(G)$, then for $f(U)$ itself to evaluate $\int f(u) d v$.

We close this chapter with some remarks about Fourier analysis in a restricted direct product. As we have seen, \widehat{G} the character group of G is the direct product of the character groups \widehat{G}_{y} or G_{g}. relative to the subgroups $H_{\text {品 }}^{*}$ orthogonal to $H_{y g}$. Denote by $C=\left(\ldots, C_{y}, \ldots ..\right)$ the ger-ral element of \widehat{G}. (In this paragraph, C and o_{y} are characters, not quasi-characters). Let dey be the measure in $\widehat{G}_{\text {ge }}$ dual to the measured $d f_{f}$ in G_{y}. Notice that if $f_{g}\left(M_{y}\right)$ is the charaoteristic
 is $\int_{H y} d V_{y}$ times the characteristic function of H_{y}^{*}. A consequence

 characteristic function of H_{f} for almost all y, then the function $f(U)=$ $\prod_{y} f_{y}(\nu / y)$ has the Fourier transform $\hat{f}(c)=\prod_{y} \hat{f}_{y}\left(C_{y}\right)$, and $r(N \pi) \in \prod_{i}(G)$.
Proof: Apply theorem 3.3.1 to the function $f(N \pi) \overline{c(N)}=\prod_{i g} f_{y}\left(N r_{y}\right) \overline{c_{y}\left(N r_{y}\right)}$ \Longrightarrow to see that the A Fourier transforms. Since $f_{y g}\left(U_{y}\right) \in \mathcal{P}_{1}$ (G_{y}), $\widehat{f}_{\mathrm{sg}}\left(o_{\mathrm{g}}\right) \in L_{1}\left(\hat{G}_{y g}\right)$ for all gg . For almost all g . $\hat{\mathrm{f}}_{\mathrm{y}}\left(\mathrm{C}_{\mathrm{y}}\right)$ is the characteristic function of $H_{i g}^{*}$ according to the remark above. From this we see that $\hat{f}(c) \in L_{1}(\hat{G})$, hens $f(u \pi) e \eta_{1}(G)$.

Corollary 3.3.1: The measure dc $=\prod_{y} d o_{y}$ is duel to dat $=\prod_{y} d v i g$. Proof: Applying the preceding lemma to the group \hat{G} with the measure dc, we obtain for our "product" functions the inversion formula

$$
f(N)=\int \hat{f}(c) d(N \tau) d c
$$

from the component vise inversion formulas

Chapter IV.

The Theory in the Large

4.1e Additive Theory. In this chapter, k denotes a finite algebraic number field. y is the generic prime divisor of k. The completion of k at the prime divisor of shall from now on be denoted by k_{y}, and all the symbols $v, \Lambda, N, \|, c, \ldots$ etc. defined in Chapter II for this local field k_{y} shall also receive the subscript $y ; v_{y}, \Lambda_{y}, v_{y}, \ldots$ etc.

Definition 4.1.1: The additive group V of valuation vectors of k is the restricted direct sum, over all prime divisors g , of the groups k_{y}^{+} relative to the subgroups v_{g} 。

We shall denote the generic element of V (s valuation vector) by $f_{b}=\left(\cdots, y_{g}, \cdots \cdot\right)$. From theorems 3.2.1 and 2.2.1 and lemma 2.2.3 we see that the character group of V is naturally the restricted direct sum of the groups k_{y}^{+}relative to the subgroups q_{i}^{-1}. Since $v_{y}=v_{y}$ for almost ally this sum is simply V again! Locking more closely at the identifications set up in these theorems we see that the element $W_{\mathcal{H}}=\left(\cdots \cdots, W_{y} \cdot \cdots \cdot\right) \in V$ is to be identified with the charecter

$$
y=\left(\cdots, f_{y}, \cdots\right) \rightarrow \prod_{y} e^{\left.2 \pi i \Lambda_{g} g_{y} y_{b y}\right)}=e^{2 \pi i \sum_{y} \Lambda_{y}\left(n_{y} f_{y}\right)}
$$

of V_{0} This suggests that we define the additive function $\Lambda(f)=$ $\sum_{y} \Lambda_{y}\left(f_{y}\right)$ on v, and introduce component-wise multiplication
 elements of V in order to be able to assert neatly s Theorem 4.1.1: V ie naturally its own character group if we identify the element $\mathfrak{H E V}$ with the character $\quad \forall f \rightarrow e^{2 \pi i \Lambda(M y)}$ of v.

On V we shall, of course, take the measure $d y=\prod_{y} d y y$ describer
 Since these local measures dy y were chosen to be sele-dual, the same is true of $d f$, according to corollary 3.3.1. We state this fact formally in

Theorem 3.1.2: If for a function $f(f) \in L(V)$ we define the Fourier transform

$$
\hat{f}(\eta)=\int f(\varphi) e^{-2 \pi i \Lambda(भ) \notin)} d y,
$$

then for $f(y) \in \mathcal{W}_{1}(v)$ the inversion formula

$$
\left.f(\mathscr{f})=\int \hat{f}(\xi) e^{2 \pi i \Lambda(y} y\right) d y
$$

holds.
What is the analogue in the large of the local lemmas 2.2.4 and 2.2.5; that is, of the statement $d(\alpha \xi)=|\alpha| d \xi$ for $\alpha \in k_{y}^{x}$? In that local consideration, α played the role of an automorphism of $\mathbf{k}_{\mathrm{y}}{ }^{+}$, namely the automorphism $\xi \rightarrow \alpha \xi$. This leads us to investigate the question: for what $M \in V$ is $\mathscr{f} \rightarrow N T \mathcal{f}$ an automorphism of V ? Fe first observe that for any $N Z \in \nabla_{0}, f \rightarrow N / \psi$ is a continuous homomorphism of V into V. A necessary condition for it to be an automorphism is the existence of $\quad Z \in V$ such that $\mathbb{V} G=1=(1,1, \ldots \ldots)$. But this is al so sufficient, for with this 6 we obtain an inverse map $\mathscr{f} \rightarrow$ Of of the same form. Now for such 2 to exist at all as an "unrestricted" vector, weed $M_{y} \neq 0$ for all g, and then $b_{y}=M r_{y}^{-1}$. The further condition $\zeta \in V$ means $\mu_{g^{-1} \in V} V_{g}$ for almost all y. therefore $l_{y y} l_{\mathrm{g}}=1$ for almost all g. These two conditions mean simply that u is an dele in the sense of Chevalley. We have proved Lemma 4.1.1: The map $N L M \mathscr{C}$ is an automorphism of V if and only if ul is an idèle.

At present we shall consider idèles only in this role. Later we shall study the multiplicative group of ideles as a group in its own right, with its own topology, as the restricted direct product of the groups k_{y}^{x} relative to the subgroups u_{g} 。

To answer the original question concerning the transformation of the measure under these automorphisms we state Lemma 4.1.2: For an idèle, $l l$

$$
d(\mu y)=\mid \text { wal } d y \text { where }
$$

$$
|N L|=\prod_{y} \mid N_{y} l y \quad \text { (really a finite product). }
$$

Proof: If $N=\prod_{y} y_{y}$ is a compact neighborhood of 0 in V then by theorem 3.3.1 and lemma 2.2.5

$$
\int_{N} d y=\prod_{y} \int_{N_{y}} d \varphi_{y z}, \text { and } \int_{N N} d y_{y}=\prod_{y} \int_{u_{y} N_{y}} d \varphi_{y}=\prod_{y g} \mid u_{y} l_{y} \int_{N_{y}} d \varphi_{y}
$$

The last, and nest important thing we must do in our
preliminary discussion of V is to see how the field k is imbedded in V. We identify the element $\xi \in k$ with the valuation vector $\xi=$ (ξ, ξ, \ldots, e $\xi \cdot \cdot . \cdot$) having all components equal to ξ, and view k as subgroup of V. What kind of subgroup is it?

Lemma 4.1.3: If S_{∞} denotes the set of archimedian primes of k, then 1.) $k \cap v_{\delta_{\infty}}=\boldsymbol{V}$, the ring of algebraic integers in $\left.k_{\text {, and }} 2_{0}\right) k+v_{S_{\infty}}=v_{0}$ Proof: 1.) This is simply the statement that an element $\mathcal{\xi} \in k$ is an algebraic integer if and only if it is an integer at all finite primese 2.) $k+V_{S_{\infty}} \quad V$ means: given any $\underset{b}{ } \in V_{\text {, }}$ there exists a $\boldsymbol{\xi} \in k$ approximating it in the sense that $\xi-\mathscr{C}_{y} \in \psi_{y}$ for all finite y. Such a g can be found by solving simultanocus consequences in t The existence of a solution is guaranteed by the Chinese Remainder theorem

Let now \bar{F} denote the "infinite part" of V. ie. the cartesian product $\prod_{g \in S_{\infty}} k_{y}$ of the archimedian completions of k. If a generating equation for k over the rational field has r_{1} real roots and r_{2} pairs of conjugate complex roots, then \mathbb{V} is the product of r_{1} real lines and r_{2} complex planes As such it is naturally a vector space over the real numbers of dimension $n=r_{1}+2 r_{2}=$ absolute degree of k. For any
 on ${ }^{\circ}$.

Lemma 4.1.4: If $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$ is a minimal basis for the ring of integers \mathcal{V} of k over the rational integers, then $\left\{\propto_{\substack{\infty \\ j_{1}}}^{\infty} \infty_{2}, \ldots, \omega_{n}\right\}$ is a basis for the vector space \mathbb{V} over the real numbers. The
 $0 \leqslant x_{v}<1$) has the volume $\sqrt{|d|}$ (where $d=\left(\operatorname{det}\left(\omega_{i}^{(j)}\right)\right)^{2}=$ absolute discriminant of k) if measured in the measure $d \ddot{\%}=\prod_{y \in S_{\infty}} d y q_{g}$ which is natural in our setup.
Proof: The projection $\xi \rightarrow \xi^{\infty}$ of k into $\sqrt{\infty}$ is just the classical imbedding of a number field into n-space. The reader will remember the classical argument which runs k separable $\Rightarrow d=\left(\operatorname{det}\left(\omega_{i}^{(j)}\right)\right)^{2} \neq 0$ $\Rightarrow\left\{{\underset{\omega}{1}}^{\infty}, \dot{\omega}_{2}, \ldots, \mathcal{\omega}_{n}\right\}$ linearly independent, and (with o. simple determinant computation) D_{D}^{∞} has volume $\frac{1}{2^{r_{2}}} \sqrt{|d|}$. For us the volume is $2^{r_{2}}$ times as much because we have chosen for complex y measure which is twice the ordinary measure in the complex planed

Definition 4.1.2: The additive fundamental domain $D \subset V$ is the set of ally such that $q \in V_{S_{\infty}}$ and $\quad \mathscr{f} \in D^{\infty}$.
Theorem 4.1.3: 1.) D deserves its name because any vector $\mathscr{\%} \in V$ is congruent to one and only one vector of D modulo the field elements ξ. In other words, $V=\bigcup_{\xi \in k}(\xi+D)$, a disjoint union.
2.) D has measure 1.

Proof: 10) Starting with an arbitrary $\mathscr{G} \in V$ we can bring it into V_{∞} by the addition of a field element which is unique mod $\boldsymbol{\mu}$ (lemma 4.1.3). Once in $V_{S_{\infty}}$ we can find a unique element of v, by the addition of which we can stay in $V_{S_{\infty}}$ and adjust the infinite components so that they lie in D. (lemma 4.1.4).
2.) To compute the measure of D, notice that $D \subset V_{S_{\infty}}$ and $D=\mathbf{D} \times \mathbf{V}^{\mathbf{S}_{0}}$. Therefore

Now since the discriminant d (as ideal) is the norm of the absolute different $\hat{\mathcal{V}}$ of k, and since $\hat{\mathcal{V}}$ is the product of the local differents v_{y}, we have $|d|=\prod_{g \& S_{\infty}} N_{y} g y$. Therefore the measure which we have computed is 1.

Corollary 4.1.1: k is a discrete subgroup of V. The factor group V $\bmod k$ is compact.

Proof: k is discrete, since D has an interior. V mod k is compact, since D is relatively compact. Lemma 4.1.5: $\Lambda(\xi)=0$ for all $\xi \in k$
Proof:

$$
\Lambda(\xi)=\sum_{y} \Lambda_{y}(\xi)=\sum_{\xi} \lambda_{p}\left(S_{k j}(\xi)\right)=\sum_{p} \lambda_{p}\left(\sum_{y \mid p} S_{y}(\xi)\right)=\sum_{p} \lambda_{p} S(\xi)
$$

because "the trace is the sum of the local traces". Since $S(\xi)$ is a rational number, the problem is reduced to proving that $\sum_{p} \lambda_{p}(x) \equiv 0$ (mod 1) for rational $x_{\text {. }}$ This we do by observing that the rational number $\quad \sum_{p} \lambda_{p}(x)$ is integral with respect to each fixed rational prime q. Namely

$$
\sum_{p} \lambda_{p}(x)=\left(\sum_{p \neq q, p_{p}} \lambda_{p}(x)\right)+\lambda_{q}(x)+\lambda_{p_{p}}(x)=\left(\sum_{p \neq q, p_{p}} \lambda_{p}(x)\right)+\left(\lambda_{q}(x)-x\right)
$$

expresses $\lambda(x)$ as sum of q-adic integers.

Theorem 4.1.4: $k^{*}=k \quad ;$ that is $\Lambda(\mathscr{f} \xi)=0$ for all $\xi \Leftrightarrow \mathscr{f} \Leftrightarrow k_{0}$ Proof: Since k^{*} is the character group of the compact factor group V $\bmod k, k^{*}$ is discrete. k^{*} contains k according to the preceding lemma, and therefore we may consider the factor group k^{*} mod k. As discrete subgroup of the compact group $V \bmod k, k^{*} \bmod k$ is a finite group. But since it is a prior clear that k^{*} is a vector space over k, and since k is not a finite field, the index ($k^{*} k$) cannot be finite unless it is 1.
4. 2 Riemann-Roch Theorem: We shall call a function $\varphi(\mathcal{f})$ periodic if $\varphi(\mathscr{q}+\xi) \equiv \varphi(\underline{q})$ for all $\xi \in k_{*} \quad$ The periodic functions represent in a natural way all functions on the compact factor group $V \bmod k$. $\quad \varphi(\varphi)$ represents a continuous function on V mod k if and only if it is itself continuous on V.
Lemma 4.2.1: If $\varphi(\varphi)$ is continuous and periodic, then $\int_{D} \varphi(\varphi) d y$
the integral over the factor group $V \bmod k$ of the function on that group which $\varphi(f)$ represents with respect to that Haar measure on $V \bmod k$ which gives the whole group $V \bmod k$ the measure 1. Proof: Define $I(\varphi)=\int_{D} \varphi(\varphi) d \varphi$ and consider it as functional on $L(V$ moak $)$. Observe that it has the properties characterizing the Haar integral. (To check invariance under translation merely requires breaking D up into a disjoint sum of its intersections with a translation of itself). The functional is normed to 1 because $\int_{D} d y=1$.
k is naturally the character group of V mod k in view of theorem 4.1.4. The Fourier transform, $\hat{\varphi}(\xi)$. of the continuous function on $V_{\text {mod }} k$ which is represented by $\varphi(\mathscr{f})$ is

$$
\widehat{\varphi}(\xi)=\int_{D} \varphi(\underline{b}) e^{-2 \pi i \Lambda(\xi \mathscr{b})} d \underline{b}
$$

Lemma 4.2.2: If $\varphi(\varphi)$ is continuous and periodic and $\sum_{\xi \in k}|\hat{\varphi}(\xi)|<\infty$, then

$$
\varphi(\eta)=\sum_{\xi \in R} \hat{\varphi}(\xi) e^{2 \pi i \Lambda(\varphi \xi)}
$$

Proof: The hypothesis $\quad \sum_{\xi \in R}|\varphi(\xi)|<\infty \quad$ means that the fourier transform $\hat{\varphi}(\xi)$ is summable on k, guaranteeing that the inversion formula holds. The asserted equality is simply the inversion formula explicitly written out.
Lemma 4.2.3: If $f(\mathscr{f})$ is continuous, $\epsilon L_{1}(v)$, and $\sum_{\eta \in K} f(\varphi+\eta)$ is uniformly convergent in $\mathscr{\int}$ (convergence means absolute convergence because k is not ordered in any way), then for the resulting continuous periodic function $\varphi(\ell)=\sum_{\eta \in k} f(\varphi+\eta)$ we have $\hat{\varphi}(\xi)=\hat{f}(\xi)$.
Proof:

$$
\begin{aligned}
\hat{\varphi}(\xi) & =\int_{D} \varphi(\varphi) e^{-2 \pi i \Lambda(\varphi \xi)} d \varphi \\
& =\int_{D}\left(\sum_{\eta \in k} f(\varphi+\eta) e^{-2 \pi i \Lambda(q \xi)} d \varphi\right. \\
& =\sum_{\eta \in K} \int_{D} f(q+\eta) e^{-2 \pi i \Lambda(q \xi)} d \varphi
\end{aligned}
$$

(The interchange is justified because we assumed the convergence to be uniform on D, and D has finite measure).

$$
\left.\left.\begin{array}{l}
=\sum_{\eta \in k} \int_{\eta+D} f(\varphi) e^{-2 \pi i \Lambda(\varphi \xi-\eta \xi)} \\
=\sum_{\eta \in k} \int_{\eta+D} f(\varphi) e^{-2 \pi i \Lambda(\varphi \xi)} d \varphi \\
=\int f(\varphi) e^{-2 \pi i \Lambda(\varphi \xi)}(L \varphi
\end{array}\right) \quad(\eta \xi)=0\right)
$$

Combining the last two lemmas 4.2.2 and 4.2.3. and putting
$x=0$ in the assertion of lemma 4.2.2 we obtain
Lemma 4.2.4: (Poisson Formula) If $f(\mathscr{C})$ satisfies the conditions:
1.) $f(f)$ continuous, $\in L_{1}(V)$;
2.) $\sum_{\beta \in R} f(\varphi+\xi)$ uniformly convergent in \mathcal{F}_{5}
3.) $\sum_{\xi \in \mathbb{K}}|\hat{f}(\xi)|$ convergent;

Then

$$
\sum_{\xi \in k} \hat{f}(\xi)=\sum_{\xi \in k} f(\xi)
$$

If we replace $f(\varphi)$ by $f(N / \varphi)$ ($N /$ an idele) we obtain a theorem which may be looked upon as the number theoretic analogue of the Riemann-Roch theorem.

Theorem 4.2.1: (Riemann-Roch Theorem) If $f(\mathcal{f})$ satisfies the conditions:
1.) $f(p)$ continuous, $\in L_{i}(v)$;
2.) $\sum_{\mathcal{\xi} \in k}^{\infty} f(\mu(\varphi+\xi))$ convergent for all inelesila and valuation vectors φ, uniformly in $\varphi ;$
3.) $\sum_{\xi \in k}|\hat{f}(\mu \mathcal{\xi})|$ convergent for all idèles μ,
then

$$
\frac{1}{|N|} \sum_{\xi \in R} \hat{f}\left(\frac{\xi}{N \pi}\right)=\sum_{\xi \in k} f(N z \xi)
$$

Proof: The function $g(\mathscr{f})=f(N / \mathscr{f})$ satisfies the conditions of the preceding lemma because

$$
\begin{aligned}
& \hat{g}(f)=\int f(v \gamma) e^{-2 \pi i \Lambda(f z)} d z \\
& =\frac{1}{|N \pi|} \int f(2 g) e^{-2 \pi i \Lambda\left(\frac{1 \pi y}{A \pi}\right)} d y
\end{aligned}
$$

(Under the transformation $y \rightarrow$ ig/ar. $d r j \rightarrow d i f / i v i$).

$$
=\frac{1}{|N \tau|} \hat{\mathbf{f}}\left(\frac{q}{N \eta}\right)
$$

We may therefore conclude

$$
\sum_{\xi \in \mathcal{k}} \hat{g}(\xi)=\sum_{\xi \in k} g(\xi) \text {, that is, } \frac{1}{\text { Wii }} \sum_{\xi \in k} f\left(\frac{\xi}{v}\right)=\sum_{\xi \in \mathbb{R}} f(\text { (r) } \xi)
$$

It is amusing to remark that, had we never bothered to compute the exact measure of D, we would now know it is 1 o For we could have carried out all the arguments of this section with an unknown measure, say $\mu(D)$, of D. The only change would be that in order to have the inversion formula of lemma 4.2 .2 we would have to have given each element of k the weight $1 / \mu(D)$. The Poisson Formula would then have read,

$$
\frac{1}{\mu(D)} \sum_{\xi \in k} \hat{f}(\xi)=\sum_{\xi \in k} f(\xi)
$$

Iteration of this would yield $(\mu(D))^{2}=1$, therefore $\mu(D)=1$
4.3 Multiplicative Theory. In this section we shall discuss the basic features of the multiplicative group of ideles. Definition 4.3.1: The multiplicative group, I, of idoles is the restricted direct product of the groups k_{y}^{x} relative to the subgroups u_{f} *

We shall denote the generic idele by $N(=(\ldots . ., N / y, \ldots$.$) . The$ name idèle is explained (at least partly explained) by the fact that the Adele group may be considered as a refinement of the ideal group of k.
 then the map $\Omega \sim \varphi(\Omega)$ is obviously a continuous homomorphism of the idele group onto the discrete group of ideals of k. Since the kernel of this homomorphism is $I_{S_{\infty}}$, we may say that an idele is a refinement of an ideal in two ways. First, the archimedean primes figure in its make-up, and second, it takes into account the units at the discrete primes.

Concerning quasi-characters of I, we can only state, according to § 3.2, that the general quasi-character $c(M)$ is of the form $c\left(v_{i}\right)=\prod_{g} c_{y}\left(\nu \nu_{g}\right)$, where $0_{g}\left(v_{\rho}\right)$ is a local auasi-character (described in $g 2.3$) and $c_{\text {a }}\left(\mu^{\prime} g\right.$) is unramified at almost all g

For a measure, dur, on $I_{\text {we shall of course choose }}$ dir $=\prod_{y} d{ }^{2} r_{y}$ the Girl being the local multiplicative measure defined in §2.3.

We can do nothing really significant with the idèle group until wo imbed the multiplicative group k^{x} of k in it, by identifying the element $\alpha \in k^{x}$ with the adele $\alpha=(\alpha, \alpha, \ldots ., \alpha, \ldots$.$) Throughout$ the remainder of this section our discussion will center about the structure of relative to the subgroup k^{x}. The first fact to notice is that the ideal $\varphi(\alpha)$ associated with an adele $\alpha \in k^{X}$ is the principal ideal a V generated by α, as it should be. Next we have the "product formula" for elements $\alpha \in k^{x}$. Though this is well-known, we state it formally in a theorem in order to present an amusing proof. Theorem 4.3.1: $|N| \quad\left(=\prod_{y} \mid N l_{y}\right)=1$ for $\alpha \in k^{x}$. Proof: According to lemma 4.1.2 the (additive) measure of αD is $l a / t i m e s$ the measure of D. Since $\alpha \mathbf{k}^{+}=\mathbf{k}^{\boldsymbol{+}}, \alpha D$ would serve as additive fundamental ${ }_{\wedge}$ just as well as D. From this it is intuitively clear that α D has the same measure as D and therefore $|\alpha|=1$. To make a formal proof one has simply to chop up D and αD into congruent pieces of the form $D \cap(\xi+\alpha D)$ and $(-\xi+D) \cap \alpha$ respectively, ξ running through k.

This theorem reminds us to mention explicitly the continuous homomorphism $N L \rightarrow M K L=\prod_{y} \mid N L l_{g} \quad$ of Tonto the multiplicative group of positive real numbers. The kernel is a closed subgroup of I which will play on important role. We denote this subgroup by J, and its generic element (idele of absolute value 1) by $\hat{6}$.

It will be convenient (although it is aesthetically disturbing and not really necessary) to select arbitrarily a subgroup T of I with which we can write $I=T X J$ (direct product). To this effect we choose random one
of the archimedean primes of k - call it g_{0} - and let. T be the subgroup of all ideles such that $\mu r_{y_{0}}>0$ and $\mu r_{y}=1$ for $g \neq y_{0}$. Such an idèle is obviously uniquely determined by its absolute value; indeed the $\operatorname{map} N \pi|N|$, restricted to T, is an isomorphism between T and the multiplicative group of positive real numbers, and it will cause no confusion if we denote an idle of T simply by the real number which is its absolute value. Thus a real number $t>0$ also stands either for the idle $(t, 1,1, \ldots$,$) or for the dele (\sqrt{t}, 1,1, \ldots$.$) , according to$ whether y_{0} is real or complex, if we write the g_{0} - component first. Since we can write any idèle u uniquely in the form $\quad u=\mid u \pi l Z \quad$ with $|v \Omega| \in T$ and $Z=N \| L^{-1} \in J_{0}$ it is clear that $I=T \times J$ (direct product).

In order to select a fixed measure db on J we take on T the measure $d t=d t / t$ and require $d a r=d t \cdot d Z$. Then for computational purposes we have (in the sense of Fubini) the formulas

$$
\int f(r) d e r=\int_{0}^{\infty}\left[\int_{J} f(t b) d b\right] \frac{d t}{t}=\int_{J}\left[\int_{0}^{\infty} f(t b) \frac{d t}{t}\right] d b
$$

for a summable idè function $f(U)$.

The product formula means that $k^{x} \subset J_{\text {, }}$ and we wish now to describe a "fundamental domain" for $J \bmod k^{x}$. The mapping of ideles onto ideals allows us to descend to the subgroup $J_{S_{\infty}}=J \cap I_{S_{\infty}}$. To study $J_{S_{\infty}}$ we map the iddles $\delta \in J_{S_{\infty}}$ onto vectors $\ell(\zeta)=\left(\ldots, \log 16 l_{y}, \ldots\right)_{y \in S_{\infty}^{\prime}}$ having one component, $\log |6|_{g}$ for each archimedean prime except \mathscr{G}_{0}. (This set, of $\Omega=\Omega_{1}+r_{2}-1$ primes is denoted by $S_{\text {os. }}^{\prime}$) It is obvious that the map $\delta \rightarrow \ell(B)$ is a continuous homomorphism of J_{S} onto group of inchdean The onto mess results from the fact that although the infinite oompenents oi an idols $\quad Z \in J_{s_{0}}$ are constrained by the condition $\prod_{i j}\left\|_{j}=\prod_{j=0} \mid\right\|_{y}=1$ 。 they are completely free in the set S_{∞}^{\prime} since we can adjust the dj p components
$k^{x} \cap J_{S_{6}}$ is the group of all elements $\varepsilon \in k^{x}$ which are units at all finite primes; that is, which are units of the ring w. The units ζ for which $l(\zeta)=0$ are the roots of unity in k and form a finite s cyclic group. It is proved classically that the group of units \mathcal{E}, modulo the group of roots of unity ζ, is a free abelian group on r generators. This proof is effected by showing that the images $l(\varepsilon)$ of unit: ε form a lattice $n f$ highest dimension in the r-spoce.

If, therefore, $\left\{\varepsilon_{i}\right\}_{1 \leq i \leq r}$ is a basis for the group of units modulo roots of unity, the vectors $l\left(\varepsilon_{i}\right)$ are a basis for the r-space over the real mimers and we may write for any $Z \in J_{S_{\infty}}, l(Z)=$
Ω $\sum_{v=1}^{\Omega} x_{v} l\left(\varepsilon_{v}\right)$, with unique real numbers x_{ν}. Call P the parallelotope in the $R-s$ pace spanned by the vectors $\ell\left(\varepsilon_{i}\right)$; that is, the set of all vectors $\sum_{v=1}^{n} x_{\nu}\left\{\left(\varepsilon_{\nu}\right)\right.$ with $0 \leqslant x_{\nu}<1$ Call Q the "unit cube" in the r-space; that is the set of all vector $\left(\cdots \cdot x_{y g}, \cdots\right)_{y \in S_{\infty}^{\prime}}$ with $0 \leqslant x_{y}<1 。$
Lemma 4.3.1:

$$
\int_{R^{-1}(P)} d B=\frac{2^{R_{1}}(2 \pi)_{R}^{R_{R}}}{\sqrt{1 d!}} \text { where }
$$

$\ell^{-1}(P)$ is the set of aj.1 $\quad Z \in J_{S_{\infty}}$ such that $l(Z) \in P$, and $R=$ $\pm \operatorname{det}\left(\log \left|\varepsilon_{i}\right|_{f \rho}\right) \begin{gathered}i s i \leq r \\ y \in S l_{0}\end{gathered} \quad$ is the regulator of $k_{\text {. }}$

Proof: Because α is a homomorphism,

$$
\frac{\text { measure of } l^{-1}(P)}{\text { measure of } l^{-1}(Q)}=\frac{\text { volume of } P}{\text { Volume of } Q}= \pm \operatorname{det}\left(\log \left|\varepsilon_{i}\right|_{y}\right)=R_{\text {. }}
$$

and we have only to show $\int_{L^{-}(a)} \pi \sigma=\frac{2^{n_{1}}(2 \pi)^{r_{2}}}{\sqrt{|x|}}$.

$$
\ell^{-1}(Q) \text { is the set of all } b \in J_{j_{\infty}} \text { with } 1 \leqslant \mid \dot{G} \|_{j} \text { for } y \in S_{\infty}^{\prime}
$$

 Then
because tb $\in Q^{*} \Leftrightarrow \forall \equiv K^{-1}(Q)$ and $1 \leqslant 1 t \operatorname{cif}^{-L}$ - We have therefore only (4.12)
to since the: $\quad \int_{3} \pi u=\frac{\dot{x}^{1}(2 \pi)^{r_{2}}}{7_{1}}$
两rite Q^{*} as the cartesian rrodiot $Q^{*}=\prod_{y \in S_{\infty}} Q_{y}^{m} I^{S}$, where Q_{4}^{*} is

for real,
forficomplex,

$$
p_{y}^{1} a_{y}=\left[j_{-e}^{-1}+\int_{1}^{e} \frac{d x}{|x|}=2 j_{1}^{e_{1}}=\cdots\right.
$$

an

$$
\int_{\alpha_{y}}^{x_{j}}=\int_{0}^{2 \pi} ; \sqrt{2} \because \frac{i r d \theta}{\tau}=2 R
$$

Definition 4.3.2: Let h be the class number of k, and select ideals $\delta^{(1)}, \ldots, c^{(\lambda)} \in J$ such that the corresponding ideals $y^{\prime}\left(\tilde{c}^{(1)}\right), \ldots$, $i\left(F^{(\alpha)}\right)$ represent the different ideal classes. feet ar be the number of roots of unity in k. Let F_{0} be the subset of all ic ip) (see
 fund ameatal domain. E, for J mod i^{x} to be

$$
E=E_{0} Z^{(1)} U E_{0} b^{(2)} U \ldots, \| E_{,} \ddot{i}^{(\lambda)}
$$

Theorem 4.3.2: 1.) $I=\$ U 2, a disjoint union.
2.) $\quad \int_{E} d b^{\alpha}=\frac{2^{r_{1}}(2 \pi)^{2_{2}} \not R R}{\sqrt{1 d \mid} W}$.

Proof: 10) Starting with any idele $\hat{O} \in \mathrm{t}$ w can change it into an idèle whish represents a principal ideal by dividing it by a uniquely determined $\hat{b}^{(i)}$. If this principal ideal is at r (x uniquely determined modulo units) multiplication by α^{-1} brings us to an ides of J representing the ideal ir therefore into $J_{\Sigma_{x}}$ - Once in $J_{s_{\infty}}$ we can ind a unique power product
 at our disposal. This $\leq i s$ exactly what we need to adjust the argument of the y_{0} component to be in the interval $[0,4 \pi)$. Lo and behold we are in E_{0} For our original idèle we have found a unique $-t$ and a unique $\lambda^{(i)}$ such that $\Rightarrow \in 2^{(i)} F_{3}$
2.) (measure $E)=h o\left(\right.$ measure $\left.E_{0}\right)=\frac{h}{w}\left(\right.$ measure $\left.l^{-1}(P)\right)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h \mathrm{R}}{\sqrt{|d|} W}$
acoording to the two disjoint decompositions

$$
\begin{aligned}
& E=\int_{\nu=1}^{h} G^{(\nu)} E_{0}, \quad \lambda^{-1}(P)=\sum_{\zeta} \quad \zeta E_{0} \\
& \text { ding lemma. }
\end{aligned}
$$

and the preceding lemma.
Conollary 4.3.1: k^{X} is a discrete subgroup of J (therefore of I). J $\bmod k^{X}$ is compact.

Proof: One sees easily that E has an interior in J. On the other hand, E is contained in a compast.

We shall really be interested not in all quasi-charactors of I. but only in those which are trivial on k^{X}. From now on when we use the word quasi-character we mean one of this tyoe. Let vs close our introduction to the idele group with a few remarks about these quasicharacters.

The first thing to notice is that on the subgroup J_{s} a quasi-character is a character; i.e. $|C(O)|=1$ for all it $\quad J$, because $J \bmod k^{x}$ is compact.

Next we mention that the quasi-oharacters which are trivial on J are exactly those of the form $C(N I)=|V|^{5}$, where s is a complex number uniouely determined by $c(M)$. For if $c(M)$ is trivial on J, then $c(M C)$ depends only on $|\mu|$, and in this dependence is a continuous multiplicative map of the positive real numbers into the complex numbers. Such a map is of the form $t \rightarrow t^{3}$ as is well-known.

To each quasi-character $C(\mu)$ there exists a unique real number σ auch that $|c(\Omega)|=|u|^{\sigma}$ - Namely, $|c(\mu \Omega)|$ is a quasi-character which is trivial on J. Therefore $|\mathrm{d}(\mu)|=,|\mu|^{s}$, for some complex s. Since $|C(1)|>O$, s is real. We oall σ the exponent of C - A quasi-character is a character if and only if its exponent is 0 .
4.4 The 5 -Functions; Functional Equation. In this section $f(\mathbb{q})$ will denote a complex-valued function of valuation vectors $f(N)$ its restriction to idèles. We let Z denote the class of all functions $f(\varphi)$ satisfying the true conditions:
$\eta_{1} \quad f(\mathscr{y})$, and $\hat{\mathbf{f}}(\mathscr{y})$ are continuous, $\in L_{1}(v)$ in. $f(\mathscr{y}) \in \mathscr{W}_{1}(v)$. $\left.\mathcal{Z}_{2}\right) \sum_{\xi \in \mathcal{H}} f(N(\varphi+\xi))$ and $\sum_{\xi \in k} \hat{f}(N(\varphi+\xi))$ are both convergent for each idjlelland vector f, the convergence being uniform in the pair (μ, \mathscr{f}) for f ranging over V and $N \pi$ ranging over any fixed compact subset of I.
$\left.夕_{3}\right) f(v)|\mu|^{\sigma} \quad$ and $\hat{f}(\mu)|\mu|^{\sigma} \in L_{1}$ (I) for $\sigma>1$.
(notice that if $f(\rho)$ is continuous on V, then, a fortiorif $f(v)$ is continuous on I, since the topology we have adopted in I is stronger than that which I would get as subspace of V).

In view of Z_{1}) and Z_{2}), the Riemann-Rooh theorem is valid for functions of Z. The purpose of Z_{3})is to enable us to define \leq-functions with theme

Definition 4.4.1: We associate with each $f \in \mathcal{G}$ function $\zeta(f, 0)$ of quasi-characters, defined for all quasi-characters c of exponent greater than 1 by

$$
S(f, c)=\int f(\mu) c(\mu) d \mu .
$$

We call such a function a ζ-function of k.
Remember that we are now considering only those quasi-characters which are trivial on k^{x}. These were discussed at the end of the preceding section, where the notion "exponent" is explained. If we call two quasi-charaoters which coincide on J equivalent, then an equivalence class of quasi-cheracters consist e of all quasi-charecters of the form $c(U)=c_{0}(U) \| M l^{3}$, where $c_{0}(N)$ is fixed representative of the class and s is a complex number uniquely determined by c_{0}

Such a parametrization by the complex variable allows us to view an equivalence class of quasi-characters es a Riemann surface, just as we did in the local theory (cf. \oint 2.4). It is obvious from their definition as an integral that the ζ-functions are regular in the domain of all quasi-characters of exponent greater than 1. (see the corresponding local lemma). What about analytic continuation???

Main Theorem 4.4.1: (Analytic Continuation and Functional Equation of the $\zeta^{\text {-Functions }) . ~ B y ~ a n a l y t i c ~ c o n t i n u a t i o n ~ w e ~ m a y ~ e x t e n d ~ t h e ~}$ definition of any ζ-function $\zeta(f, c)$ to the domain of all quasi-characters. The extended function is single valued and regular, except at $c(\mu)=1$ and $C(M Z)=|M|$ where it has simple poles with residues - KP (O) and $+\alpha \hat{r}(0)$, respectively $\left(K=\quad 2^{n_{1}}(2 \pi)^{h_{2}} h R /(\omega \sqrt{l d l})=\right.$ volume of the multiplicative fundamental domain). $\zeta(f, C)$ satisfies the functional equation

$$
\zeta(f, c)=(\hat{i}, \hat{c})
$$

where $\widehat{c}(N \Omega)=\| N 10^{-1}(\Omega)$ as in the local theory
Proof: For c of exponent greater than 1 we have $\zeta(f, c)=\int f(\mu r) c(\mu r) d u r=$ $\int_{0}^{\infty}\left[\int_{J} f(t b) c(t b) d t\right] \frac{d t}{t}=\int_{0}^{\infty} \zeta_{t}(f, c) \frac{d t}{t}$, say. Fere $\zeta(f, c)=$ $\int_{J} f(t b) c(t \zeta) d Z$ is absolutely convergent for c of any exponent, at least for almost all t, because it is convergent for some c, and $|c(t b)|=$ t exponent e, is constant for $b \in J$. The essential step in our prorir consists in using the Riemann-Roch theorem to establish a functional equation for

$$
\zeta_{t}(f, c):
$$

Lemma A: For all quasi-characters we have

$$
\zeta_{t}(t, L)+f(0) \int_{E} c(t b) d t=\zeta_{\frac{1}{t}}(\hat{f}, \hat{c})+\hat{f}(0) \int_{E} \hat{c}\left(\frac{1}{t} \gamma\right) d \hat{b}
$$

$$
=\sum_{\alpha \in \kappa^{k}} \int_{\alpha E} f(t z) c(t b) d z+f(0) \int_{E} c(t b) d z
$$

$$
\begin{aligned}
& =\sum_{\alpha \in R^{x}} \int_{E} f(\alpha t b) c(t b) d b+f(0) \int_{E} c(t b) d b \\
(d(\alpha b)=d b ; \quad c(\alpha t b) & =c(t b)) \\
& =\int_{E}\left[\sum_{\alpha \in \mathbb{R}^{x}} f(\alpha t b)\right] c(t b) d b+\int_{E} f(0) c(t b) d b
\end{aligned}
$$

(By hypothesis \mathcal{Z}_{2}) for f, the sum in uniformly convergent for \mathcal{Z} in the relatively compact subset EJ.

$$
\begin{aligned}
& =\int_{E}\left[\sum_{\xi \in k} f(\xi t b)\right] c(t b) d b \\
& =\int_{E}\left[\sum_{\xi \in k} \hat{f}\left(\frac{\xi}{t b}\right)\right] \frac{1}{|t b|} c(t b) d b
\end{aligned}
$$

(Eiemann-Roch theorem 4.2.1)

$$
\begin{aligned}
& =\int_{E}\left[\sum_{\hat{S} \in k} \hat{f}\left(\xi \frac{1}{t} b\right)\right] \hat{c}\left(\frac{1}{t} b\right) d b \\
\left(b \rightarrow \frac{1}{b} ; d b\right. & \rightarrow d b)
\end{aligned}
$$

Reversing the steps completes the proof.

Lemme. E:

$$
\int c(t b) y b=\left\{\begin{array}{l}
x t^{5}, i f(i z)=(v)^{5}, \\
\end{array}\right.
$$

0 , it $c(u)$ is non-trivial on J.
Proof:

$$
\left.\int_{E}(t b) d b=c(t)\right)_{E}(b) d b . \quad \int_{E}(b) d t \text { is the }
$$

integral over the factor group J mod k^{λ} of the character of this group which C (6) represents. Therefore it is either ($=$ (mes sure of E), or 0 , according to whether $C(U)$ is trivial on Jor int. Ir the former case in e must notice that $C(t)=|t|^{s}=t^{s}$.

To prove the theorem write, for c of exponent greater than 1.

$$
S(t, c)=\int_{0} \zeta_{t}(t, c) \frac{\mu u}{t}=\int_{0} \zeta_{t}(f, c) \frac{\omega}{t}+\int_{i} \zeta_{t}(f, c) \frac{\mu v}{t} .
$$

The \int_{1}^{∞} is no problems For it is equal to the integral of $f(\mu r) c(t r) d a r$ over that half of $I_{\text {where }}|\mu| \geqslant 1$. Therefore it converges the better, the less the exponent of c is; and since it converges for c of exponent greater than 1. it must converge for all c. Now, the point is that we on use lemma A (and the auxiliary lemma B) to transform the \int_{0}^{1} into an \int_{1}^{∞}. thereby obtaining an analytic expression for $\zeta(f, c)$ which will be good for all c. Namely:

$$
\int_{0}^{1} \zeta_{t}(f, c) \frac{d t}{t}=\int_{0}^{1} S_{\frac{1}{t}}(\hat{f}, \hat{c}) \frac{d t}{t}+\left\{\left\{\int_{0}^{1} r e \hat{f}(0)\left(\frac{1}{t}\right)^{1-s} \frac{d t}{t}-\int_{0}^{1} r e f(0) t^{s} \frac{d t}{t}\right\}\right\},
$$

where the expression $\{\{\ldots .\}$.$\} is to be included only if c$ is trivial on J_{g} in which case we assume $o(V)=|\Delta K|^{5}$. We are still looking only at 0 of exponent greater than 1 . If $c(U \Omega)=\mid \mu l^{s}$ this means $\operatorname{Re}(s)>1$. which is just what is needed for the auxiliary integrals under the double bracket to make sense. Evaluating them and making the substitution $t \rightarrow \frac{1}{t}$ in the main part of the expression we obtain

$$
\int_{0}^{1} \zeta_{t}(f, c) \frac{d t}{t}=\int_{1}^{\infty} S_{t}(\hat{f}, \hat{c}) \frac{d t}{t}+\left\{\left\{\frac{x \hat{f}(0)}{s-1}-\frac{k f(0)}{s}\right\}\right\},
$$

and therefore

$$
\zeta(f, c)=\int_{1}^{\infty} \zeta_{t}(f, c) \frac{d t}{t}+\int_{1}^{\infty} \zeta_{t}(\hat{f}, \hat{c}) \frac{d t}{t}+\left\{\left\{\frac{\kappa \hat{f}(0)}{s-1}-\frac{x f(0)}{s}\right\}\right\}
$$

The two integrals are analytic for all C - This expression gives therefore the analytic continuation of $\zeta(f, C)$ to the domain of all quasi-characters. From it we can read off the poles and residues directly. Noticing that for $C(v)=w_{i} i^{j}, \hat{c}(N)^{\prime}=i \mu i^{1-s}$, we see that even the form of the expression is unchanged by the substitution $(f, 0) \rightarrow(\hat{f}, \hat{c})$. Therefore the functional equation

$$
\zeta(f, 0)=\zeta(\hat{f}, \hat{c})
$$

holds. The Main Theorem if proved!
4.5 Comparison with the Classical Theory. We will now show that our theory is not without content, inasmuch as there do exist nontrivial 5 functions. In fact we shall exhibit for each equivalence class C of quesi-characters an explicit function $f \in \mathcal{Z}$ such that the corresponding ζ-function $\mathcal{Y}(f, c)$ is nontrivial on C. These special ζ-functions will turn out to be, essentially, the classical ζ-functions and L-series. The analytic continuation and the functional equation for our ζ-functions will yield the same for the classical functions.

We can pattern our discussion after the computation of the special local ζ-functions in $\delta 2.5$. There we treated the cases k real; k complex, and ky-adic. Now we treat the case

k in the large

The Equivalence Classes of Quasi-Characters: According to a remark at the end of $\oint 4.3$, each class of quasi-characters can be represented by a character. To describe the characters in detail, we will take an arbitrary, but fixed, finite set of primes, S, (containing at least all archimedean primes) and discuss the characters which are unramified outside S. A character of this type is nothing more nor less than a product

$$
o(N)=\prod_{g} o_{y}\left(M_{y}\right)
$$

of local characters, C_{y}, satisfying the two conditions

$$
\begin{aligned}
& \text { 1.) } C_{y} \text { unramified outside } \text { s. } \\
& \text { 2.) } \prod_{g} C_{g}(\alpha)=1, \text { for } \alpha \in k^{x}
\end{aligned}
$$

To construct such characters and express them in more concrete terms, we write for $\phi \in S:$

$$
c_{y g}\left(N \pi_{y}\right)=\tilde{c}_{y y}\left(\tilde{v}_{y g}\right)\left|\mu \pi_{y g}\right|_{y} t_{y}
$$

\tilde{c}_{y} being a character of $u_{y y}, t_{y z}$ a real number (cf. Theorem 2,3.1).

For $y \notin S$, we throw all the local characters together into a angle character, say

$$
c^{*}(v)=\prod_{y \notin S} c_{y}\left(\mu_{y}\right)
$$

and interpret o^{*} as coming from an ideal character. Namely s The map $\mu \rightarrow \varphi_{S}(\Omega)=\prod_{y} \| S g^{\text {ordinal }}$ is a homomorphism of the idele group onto the multiplicative group of ideals prime to S. Its kernel is I_{S}. $c^{*}(\mu \pi)$ is identity on I_{S}. We have therefore

$$
c^{*}(\nu \tau)=x\left(\varphi_{5}(\nu \tau)\right)
$$

where X is some character of the group of ideals prime to S. Our character $c(V)$ is now written in the form

$$
o(\nu r)=\prod_{y \in S} \tilde{a}_{i g}\left(\tilde{n}_{y}\right) \cdot \prod_{y \in S}|\mu r|_{y} t_{y y} \cdot x\left(\varphi_{S}(\mu)\right)
$$

To construct such characters we must select our $\tilde{\sigma}_{y}, t_{y}{ }_{y}$ and X such that $o(\alpha)=1$, for $\alpha \in k_{0}^{x}$ For this purpose we first look at the subunits, ε, of k, i.e. the elements of $k^{x} \cap I_{S}$, for which $\varphi_{S}(\varepsilon)=\mathcal{V}$. Assume S contains $m+1$ primes let ε_{0} be a primitive root of unity in k, and let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{m}\right\}$ be a basis for the free abolian group of Smarts modulo roots of unity. For $c(V)$ to be trivial on the s-units it is then necessary and sufficient that $c\left(\varepsilon_{\nu}\right)=1, \quad 0 \leqslant \nu \leqslant m_{0}$ The requirement $o\left(\varepsilon_{0}\right)=1$ is simply a condition on the \tilde{c}_{y} :
A) $\prod_{y \in S} \tilde{c}_{y}\left(\varepsilon_{0}\right)=1$.

We therefore first saject a set of $\tilde{c_{y}}$, for $y \in S$, which satisfies A. The requirements $o\left(\varepsilon_{\nu}\right)=1, \quad 1 \leqslant \nu \leqslant m$, give conditions on the $t_{y}{ }^{2}$

$$
\prod_{y \in S}\left|\varepsilon_{v}\right|_{y g}^{i t_{y}}=\prod_{y \in S} \tilde{C}_{y}^{-i}\left(\tilde{\varepsilon}_{\nu_{y y}}\right) \quad 1 \leqslant \nu \leqslant m
$$

which will be satisfied if and only if the numbers $t_{f g}$ solve the real linear equations
B) $\sum_{y \in S} t_{y g} \log \left|\varepsilon_{v}\right|_{y}=i \log \left(\prod_{g \in S} \widetilde{C}_{g g}\left(\tilde{\varepsilon}_{v y}\right)\right), 1 \leqslant \nu \leqslant m$
for some value of the logarithms on the righthand side. We now select a set of values for those logarithms and a set of numbers t_{y} solving the resulting equations B. Since, as is well-known, the rank of the matrix $\left(\log \left|\varepsilon_{\nu}\right|_{y}\right)$ is m, there always exist solutions $t_{\gamma g}$. And since $\sum_{y \in S} \log \left|\varepsilon_{\nu}\right|_{y}=0$ for all ν_{s} the most general. solution is then $t_{y}^{\prime}=t_{y}+t_{0}$ for any t. While we are on the subject of existence and uniqueness of the t_{y} we may remind the reader that if y is archimedean, different t_{g} give different local characters $o_{y}=\sigma_{y} / l_{y}^{i t} y$; but if y is discrete, those t which are congruent mod $2 \pi / \log n y$ give the same local

$$
{ }^{c} y
$$

Having selected the \tilde{o}_{y} and t_{y}, how much freedom is left for the ideal character X ? Not much. The requirement $c(\alpha)=1$ for all $\alpha \in k^{x}$ means that X must satisfy the condition
c) $X\left(\varphi_{S}(\alpha)\right)=\prod_{g \in S_{S}} \tilde{c}_{y}^{-1}\left(\tilde{x}_{n}\right) \mid \alpha i_{g}^{-i t} y$
for all ideals of the form $\varphi_{S}(\alpha)$, the ideals obtained from principal ideals by cancelling the powers of primes in S from their factorization. These ideals form a subgroup of finite index h_{S} (less than or equal to the class number $h ; h_{S}=1$ if s large enough) in the group of all ideals prime to S. Since the multiplicative function of α on the righthand side of condition C.) has been fixed up to be trivial on the S-units, it amounts to a character of this subgroup of ideals of the form $\varphi_{5}(\alpha)$. We must select χ to be one of the finite number \hat{n}_{5} of extensions of this character to the group of all ideals prime to S.

The Corresponding Functions of 3 : Having selected a character $o(N)=\prod_{y} o_{y}\left(\mu_{g}\right)=\prod_{y \in j} \tilde{o}_{y}\left(\tilde{\pi}_{y}\right)|N|_{y}^{i t_{g}} \cdot \chi\left(\varphi_{S}(\mu)\right)$. unramified outside S, we wish to find a simple function $f(\varphi) \in \mathcal{y}$ whose ζ-function is non-triviel on the surface on which $c(V)$ lies io this effect we choose for each $g \in S$ some function $f_{f(f)}(f) \in Z$ whose (local) ζ-function
is nontrivial on the surface on which ${ }^{\prime} y$ lies (for instance select f_{y} to be the function used to compute $\rho_{g}\left(c_{\mathrm{g}}| |_{\mathrm{y}}^{\mathrm{s}}\right)$ in $\left.\oint 2.5\right)$. For $\mathscr{g} \notin$ s. we let $f_{y}\left(\mathcal{L}_{\mathrm{y}}\right)$ be the characteristic function of the set $\mathcal{Y}_{\mathcal{L}}$ 。 We then put

$$
f(q)=\prod_{y} f_{g}(q)
$$

(We will show in the course of our computations that this $f(\varphi)$ is in the class Z)
Their Fourier Transforms: According to lemma 3.3.3.

$$
\hat{\mathrm{r}}(\boldsymbol{f})=\prod_{y} \hat{\mathrm{r}}_{y}(\mathscr{f}(f)
$$

and moreover, $f \in \mathcal{H}_{1}(v)$. ice. f. satisfies axiom \mathcal{Z}_{1}). Notice that $\hat{f}(\mathcal{f})$ is the same type of function as $f(\varphi)$, except for the fact that at those $g \notin S$ where $v_{g} \neq v_{y}, f_{y}\left(f_{y}\right)$ equals $N g_{y}^{-\frac{1}{2}}$ times the characteristic function of v_{y}^{-1}. rather than the characteristic function of v_{y}. The ζ-Functions: Since $|f(N \pi) \| N K|^{\sigma}=\prod_{y}\left|f_{\mathcal{H}}\left(N \tau_{g}\right)\right||N \pi|_{g}^{\sigma}$ is a product of local functions, almost all of which are 1 on u_{y}, wo may use theorem 3.3 .1 to check the summability of $|f(\mu \tau) \| N|^{\sigma}$ for $\sigma>1$. A simple computation shows, for $g \notin S$,

The summability follows therefore from the well-known fact that the product

$$
\prod_{y \notin S_{\infty}} \frac{1}{1-N y^{-6}}
$$

is convergent for $\sigma>1$. Well-known as this fact is it should he stressed that it is a keystone of the whole theory. The existence of our ζ functions, just as that of the classical functions, depends on it. It is proved by descending directly to the basic infield of rational numbers (see for example Landau, Algebraigche Zahlen, and edition, pages 55 and 56.). Because $\widehat{f}(\underline{y})$ is the same type of function as $f(p)$, we see that $|\vec{f}(\mu)| /\left.\mu\right|^{\sigma}$ is also summable for $\sigma>1$. Therefore $f\left(\frac{1}{6}\right)$ satisfies axiom z_{3}).

Having established the summabi?ty, we can also use theorist 3.3 .1 to
express the ζ-function as a product of local ζ-functions, Namely,

$$
\zeta(x, c)=\prod_{\pi} \zeta\left(f_{y} \cdot e_{y}\right)
$$

for any quasi-character $c=\prod_{y} g$ of exponent greater than 1 . If a now denotes our special character, $o(N)=\prod_{y} c_{y}\left(\mu l_{y}\right)=\prod_{y \in S} 0_{y}\left(\mu M_{y}\right) \cdot \chi\left(\varphi_{S}(N)\right)$. we con compute explicitly the local factors of $\zeta\left(f, c l^{s}\right)$ for $g \notin S$. Indeed,

$$
\begin{aligned}
S_{y}\left(f_{y}, c_{y} \|_{k y}^{s}\right) & =\int_{v_{y g}} c_{y}\left(v r_{y}\right)\left|r_{y}\right|^{5} y d v y \\
& =\sum_{v=0}^{\infty} x\left(y^{\nu}\right) N y^{-v s} \cdot N v_{y}^{-\frac{1}{2}} \\
& =\frac{N v^{-\frac{1}{2}}}{1-X(g) N y^{-s}}
\end{aligned}
$$

because, for $y \notin s, c_{y}\left(N l_{y}\right)=\chi\left(y^{0 d_{y}} v_{y} y\right)$. Is therefore we introduce the classical ζ-function $\zeta(s, X)$, defined for $\operatorname{Re}(s)>1$ by the Euler product

$$
\zeta(s, x)=\prod_{y \notin S} \frac{1}{1-x(y) N g^{-S}},
$$

we can write

$$
\zeta\left(f, c \|^{s}\right)=\prod_{j \in S} \zeta_{y}\left(f_{y}, c_{y} \|_{y}^{s}\right) \cdot \prod_{y \neq S} N d_{y}^{-\frac{1}{2}} \cdot S(s, x)
$$

We see that our $\zeta\left(f, c \|^{j}\right)$ is, essentially, the classical function $\zeta(s, X)$. It may be remarked here that we could have obtained directly the additive expression for $\zeta(s, X)$,

$$
\zeta(s, X)=\sum_{\substack{\varphi(\text { integral ideal } \\ \text { prime to } s}} \frac{x(\varphi)}{N \mu^{s}}
$$

had we computed $\zeta\left(f, 011^{s}\right.$) by breaking up $I_{\text {into the coset of }} I_{S}$. integrating over each coset, and summing the results, rather than by
 integrals

Treating the ζ-function of $\hat{\mathrm{f}}$ in the same way we find

Before discussing the resulting analytic continuation and functional equation for $\zeta(s, X)$, we should set our minds completely at rest by checking that our $f(\mathscr{y})$ satisfies axiom \mathcal{Y}_{2}) that is. that the sum

$$
\sum_{\xi \in k} f(M(\varphi+\xi))
$$

is uniformly convergent for N in a compact subset of I and $\mathscr{f} \in D$. We can do this easily under the assumption that, for $y \in S$, the local functions f_{y} we chose in constructing f do not differ too much from the s tandard local functions which we wrote down in $\oint 2.5$. Namely, we assume for discrete $g \in S$, that $f_{i j}$ vanishes outside a compacts and for archimedean y, that $f_{y}\left(H_{y}\right)$ goes exponentially to zero as $\mathcal{G} y$ tends to infinity. Under these assumptions one sees first that there is an ideal. $\varphi($, of k such that $\varphi(\mu(\varphi+\xi))=0$ if $\xi \notin C($ for all N in tine compact and f in D. The sum may then be viewed as a sum over a lattice in the r-dimensional space which is the infinite part of V, of the values of a function which goes exponentially to zero with the distance from the origin. The lattice depends on M and \% to be sure, but the restriction of 4 to a compact means that a certain fixed smell cube will always fit into the fundamental parallelotope of the lattice. The uniform convergence of the sum is then obvious.

Analytic Continuation and Functional Equation for $\zeta(s, X)$: The analytic continuation which we have established for our ζ-functions, both in the large and locally, now gives directly the analytic continuation of $\zeta(s, X)$ into the whole plane. Our functional equations

$$
\zeta(\hat{f}, \hat{c})=\zeta(f, c) \quad \text { and } \quad \zeta y\left(f_{y}, c_{y}\right)=\rho_{y}\left(c_{y}\right) \zeta_{y}\left(\hat{f_{y}}, \widehat{c_{y}}\right)
$$

yield for $\zeta(s, X)$ the functional equation

The explicit expressions for the local functions ρ_{y} are cabuleted in $\xi^{2} .5$. The meaning of the \tilde{c}_{y} and t_{y} and sheir relationshif to the ideal character X. is iiscussed in the firat paragraph of this section.

These ideal charasters, X, which we have constructed out of idele characters, are exactly the characters which Hecke introduced in order to define his "new type of ζ-funotion". $\zeta(s, X)$ is that ζ-function; and the functional equation we have just written down is the functinnal equation Hocke proved for it.

References.

1. Hecke, E. îber eine neue Art von Zetafunctionen und ihre Beziehungen zur Verteilung der Frimzahlen. Math. Zeitschr. 1 (1918) and 4 (1920).
2. Chevalley, C. La Theorie du Corps de Classes, Ann. of Math, vol. 41 (1940) pp. 394-418.
3. Artin, E. and Whaples, G. Axiomatic Characterization of Fields by the Product Formula for Valuations. Bull. Amer. Math. Soce, vol. 51, No. 7, (1945) pp. 469-492.
4. Matchett, Mo Thesis, Indiana University (1946), unpublished.
5. Cartan, H. and Godemont, R. Théorie de la dualité et onalyse harmonique dans les groups abéliens localement compacts. Ann. Soi. Ecole Norm. Sup. (3), 64 (1947). pp. 79-99.
