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Abstract,

We lay the foundations for abstract snalysis in the groups of wvaluation
voctors and idSles associated with a number fields This allows us to
replase the classical notion of g-function, as the sum over integral
ideals of a certain type of ideal character, by the corresponding motion for
iddles, namely, the integral over the iddle group of a rather gensral
weight fﬁhction times an idSle cheracter which is trivial or field slements,
The role of Hecke's complicated theta - formulas.for theta functions formed
over a lattice in the n-dimensional space of classical number thneory can
be played by a simple Poissor Formula for genersl fuunctions of veluation
vectors, summed cver the discrete subgroup of field elements, With this
Poisson Formula, which is of great importance in itself, inasmuch es it is
the number thenretic analogue of the Riemann«Roch theorem, an analytic
continuation can be given at one stroke for all of the gensralized
E-runctions. and an elegant functional equation can be established for them,
Translating these results back into classical terms one ohtains the Recke

~ functional equation, together with an interpretation of the complicated
factor in it as a product of ceftain local factofs coming from the
archimedean primes and the primes of the conductor, The notion of local

bR

- ‘S-function has been introdused to give a loocal definition of these factors,

: and a table of them has been computed,
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CHAPTER I,

Introduction,

lol Relevant Historye FHecke was the first to nrove that the Dedekind

3 -function of any algehraic number field has an anslytic continuation over
the whole plane and satisfies a simple functional equation. He =scou realized
that his method would work, not only for the Dedekind Y-function and Le-series,
but also for als-function formed with a new type of ideal character which,
for principal ideals depends not only on the residue class of the number
modulo the "conductor", but also on the position of the conjugates of the nivmber
in the complex field, Overcoming rather extraordinary technical complications,
he showed (1) thet these "Hecke".k-functions satisfied the same type of
functional egquation as the Dedekinﬁ k-function, but with a much more com-
rlicated fectors

In a work (2) thes mein purpose of which was to take analysis EEE.°f class
field theory, Chevalley introduced the exnellent notion of the idsle group,
s a refinement of the ideal group. In iddles Chevalley had not only found
the best approach to class field theory, but to algebraic number thscry
generally. This is shown by Artin and Whavplee in (3)e They defined valuation
vectors as the additive counterpart of iddles, and used these notions to derive

from simple axioms all of the basic stetements of alg=braic number theorye

Matchett, a student of Artin's, mede a first attempt (4) to continue this
progrem and do analytic number theory by means of idéles and vectors. She
succeeded in redefining the classical k-functions in terms of integrals over
the idale group, and in interpreting the characters of Hecke as exactly those
characters of the ideal group which can be derived from id¥le characterse But
in vroving the fuuctional equation she followed Heckeo

1e2 This Thesise Artin suggested to me the possibility of generalizing

the notion of t-function, and simplifying the proof of the analytic continuation

”
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and functionsl equation for it, by making fuller use of analysis in the
spaces of vsluation vectors and idSles themselves than Matchett had dones
This thesis is fhe result of my werk on his suggestion, I replace the
classical notion of k-function, as the sum over integral ideals of a

certain type of ideal character, by the corresponding notion for idéles,
namely, the integral over the idéle group of a rather general weight function
times an idele character which is trivial on field elements. The role of
Hecke's complicated theta=-formulas for theta functions formed over a

lattice in ths n-dimensional space of classical number theory can be

played by a simple Poisson Formula for general functions of valuation
vectors, summed over the discrete subgroup of field elements, With this
Poisson Formula, which is of great importance in itself, inasmuch as it is
the number theoretic analogue of the Riemann=Roch Theorem, sn analytie
ocontinuation can be given at one stroke for all of the generalized z—-functionq,
ahd an elegant functional equation can be established for theme Translating
these results back into classical torms one obtains the Hecke functional
equation, together with an interpretation of the complicated factor in it

as a product of certain local factors coming from the archimedean primes

And the primes of the conductore. The notinn of loecal k-function has ‘aen
introdnced to give a local definition of these factors, and a table of them

has heen computed.

I wish to express to Artin my great appreciation for his suggestion of

this topic and for the continued ensouragement he has given me in my works

1,3 "Prerequisites”, In mumter theory we assume only the knowledge of the

nlassical algebraic number theory, and its relation to the local theory.
No knowledge of the idéle ard valuation vector peint of view is required,

because, in order to introduce ahstract analysis on the iddle and vector
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groups we redefine them and discuss their structure in detail.

Corcerning analysis, we assume only the most elementary facts
and definitions in the theory of analytic functions of a complex variablees
No knowledge whatsoever of classical analytic number theory is reguired.
Instead, the reeder must know the basic facts ofl abstract Fourier analysis
in a lcoally compact abeliar group Gs 1l.) The existence and-uniqueness
of a Haar messure on such a group, and its equivalence with a positive
invariant functional on the space L(G) of continuous functions on G which
vanish outside a compect. 2,) The duality between G and its character
group, '(?, and between subgrovps o7 G and factor groups of z. 3.) The
definition of the Fourier transform, ¥, of & function fE-LI(G), together
with the fact that, if we choose in /G\ the measure which is dual to the
measure in G, the Fourier Inversion Formule holds (in the naive sense)
for all functions for which it could he expected to holdsy mnamely,
for functions feL, (G) sﬁch thet f is continuoue and ?E’L‘ . (This
class of functions we denote by W(G)). An elegant account of thie theory

can be found for example in (5).

(1.03)



CHAPTER 2,

The Local Theo:z.

21 Introductions Throughout this section, k denotes the completion

of an algebraic number field at a prime divisor ’. Accordingly, k is
either the real or complex field if’ is archimedean, while k is a "y—
edic® field if ’ ie discrete, In the latter case k contains a ring of
integers U” having a single prime idealy with a finite residue class field
0’/? of Ny elements. In both cases k is a complete topological field in

the topology assooiated with the prime divisor,f .

From the infinity of equivalent valuations of k belonging to, we
select the normed wvalustion defined by:
%] = ordinary absolute value if k is real,
% 2 gaquare of ordinary absolute value if k is complex,

jx} = (ng)-v, where ¥ is the ordinal number of & , if k is 4 =adice

We know that k is locally compact. The more exact statement which
one can prove iss a subset B& Ris relatively compact (has a compact |
closure) if and only if it is bounded in absolute value, Indeed, this is
2 woll known faot for subsets of the line or plane if k is the real or
complex fieldj end one cam prove it in a similar manner in case k is
g-adic by using a "Schubfachaschluss" involving the finiteness of the

residue class field,

2.2 Additive Cherascters and Measure, Denote by k¥ the additive group

of kX, as a locally compact commutative group, and by g its general
element, We wish to determine the character group of k+ » 8nd are happy
to ses that this task is essentially accomplished by the followings

Lemme, 2,21t If g—»x(g) is one non=trivial character of k", then for

sach 7ek ,g-—:x(tlg) is also a charaoter, The correspondence q»l((qg)

€ a mm N



is an isomorphism, both topological and elgebraic, betwsen k' and its character

groupe

Proof: 1le) x(vlg) is a character for any rixedo( because the map Y—>V§
is a continuous homomorphism of k* into itself,

2.) Z((M+0)8) 3 X(98+%8) = X( g )X(,¢) shows that the
map 7->X(r1 _g) is an algebraioc homoymorphism of k¥ into its character groupe

5¢) X(ng) =1, o11% > pk™# k* => »= 0, Henoe it is an
algebraic isomorphism into,

4.) X(qg) =1, ally 3 K§# X = §=20s Therefore the
characters of the form I(V(§) are everywhere demse in the character groupe

5¢) Denote by B the (compact) set of all Sk with lg{s M for a
large Mo  Then: y close to O in k" = »B olose to O in ' = 1(78) close
to 1 in complex plane =>x(75) close to the identity character in the
character groups On the other hand, if§, is a fixed elament with X(%,)# 1,
thens 1(75) close to identity character 2 X(nB) close to 1, closer, say,
than X(§,)=> ¥, B = g, close to 0 in k¥, Therefors the correspondence
N~ I(qg) iz biocontinuous,

6e) Hence the characters of the form X(l?g) comprise a locally
compact subgroup of the character groupe Looal compactness implies—ecm—
poetness implies completeness and therefore closure, which together with

4,) shows that the mapping ie onto,

To fix the identification of k¥ with its character group pronmised by the
preceding lemma, we must construct a special non-trivial character, Let p
be the rational prime divisor which ?dividea » ard R the completion of the

rational field at pe Define a map x~—>A(x) of R into the reals mod 1 as

follows;
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Case 1,) ) 4 archimedean, and therefore R the real numbers,
NMx) 2 =« x (mod 1)
(Note the minus sign})
Case 2,) § discrete, R the field of p-adic numberse N\(x) shall be
determined by the properties:

2¢) A(x) is a rational number with only a p-power in the
denominatore

be) Mx) = x is a p-adic integers
(To £ind such a A(x), let p’x be integrel, and chose an
ordinary integer n such thet n 2 p¥ x (mod p”)e Then
put Mx) 8 n/p” 3 A(x) is obviously uniquely determined

modulo lg)

Lomma 2.242¢ x—> A(x) is a non-trivial, continuous additive map of R into

the group of reals (mod 1).
Proof In case 1,) this is triviale 1In case 2,) we check that the number
Mx) + My) satisfies properties a) and b) for x+y, s0 the mav is

additive, It is continuous at 0, yet non-trivial because of the obvious

propertys A\(x) ® 0 & x is p-adic integers

Define now for ¥ek® , A(%) = )\(Sk/R'E)o Recalling that sk/ﬁ' is

an additive continuous map of k onto R , we see that g_’e_zm'../\.( §) is a

non-trivial character of kb We have proveds

Theorem 2,21l:s k¥ is naturally its own character group if we identify +the

chareaocter g - ezn' LA(')E ) with the element qe k".

Lemma 2,33: In case 4y is discrete, the character!,-bez "‘A(qg) associated

with qis trivial on v if and only if ne A ,,8- denoting the absolute
different of ks
Proofs /\(y¥) = 0O NMSp/plnv)) 2 06 S () c vy
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Let now /u be a Haar measure for k+ .

Lemma 2+2¢41 If we define /u,(l{) 2 m(=xM) for «30€k, and M & measurable

set in kT s then /J,is a Haar measure, and consequently there exists a
number P(X ) >0 such that M= ¥ (x )/u.

Proofs ¢ -—»u§ is en automorphism of k¥, both topological and algebraice
Haar measure is determined, up to a positive constant, by the topological
and algebreaic structure of kY .

Lemma 24245t The corctant lf(d) of the preceding lemma is Y}, i.ees we

have,.t( M) S 1“‘/4(1&).

Proof's .If k is the real field, this is obvious, If k is complex, it is
just as obvious since in that case we chose }X § to be the asquare of the
ordinary absolut-a value, If k :I.sny,-adic, we notice that since4’is both
compact and open, 0< }4(0‘)< 0o , and it therefore suffices to compare
the size of U with that of x1”e For « integral, there are N(xv’) corets
of &4’ inu, hence m(x¢) = (Neer))=t ) T %3 w(4)e  For mon-

integral o, replace X by ot~1l,

We have now another reason for calling the normed veluation the

natural one, J}® § may be interpreted as the factor by which the additive

group k¥ 1s "stretched" under the transformation E>xE o

For the integral, the meaning of the preceding lemma is clearlys
d,;(ctg) = loﬁd,‘(g )3 or more fully: Jj(g) d/,g(g ) = ta Sf(ug )
de(? e

So much for a general Haar measure /4 Py Let us now select a fixed Haar

measure for our edditive group kt, Theorem 2.2s1 enables us to do this

in an invariant way by selecting that measure which is its own Fourier

£ Aan



transf'orm under the interpretation of k+

a8 its own character group
established in that theorems We state the choice of measure which
does this, writing d¢ instead of d/A(§ )s for simplicitys
1%
a5

d§ = that measure for which 4" gets measure (N Q) - if k is ’; =adice

ordinary Lesbegue measure on real line if k is real.

twice ordinary Lesbegue measure in the plane if k is complex.

Theorem 2,223 If we define the Fourier transform ?of a function

§ € L(x*) vys

Fy = Js0g) AU o,
then with our choice of measure, the i.nveraion formuls

f(g) = j?(?) e"mA('ﬁ)aqz f{.‘\(-g)
holds for S e (W"(k*).
E‘gg_i:_z Ve need only establish the inversion formula for one noa-
trivial function, since from abstrant Fourier enalysis we know it is
true, save possibly for a constant .'tctore. For k real we can take

Seg) = £TIE Sl

X g) = the charaocteristic function of 47, for instancs. For the

s for k complex, :(§ ) = s and for k ag,-adie.

details of the computations, the reader is reoferred to 52.6 belows

2,53 Multiplicative Characters and Measures Our first insight

into the structure of the multiplicative group k* of k is given by the
continuous homomorphism o —p 11X} of K* into the multiplicative group
of positive real numbers. The kermel of this homomorphism, the subgroup
of allolwith 1o} = 1 will obviously play an important rolees let us
denote it by ue u is compact in all cases, and in case k is ?-adic,

u is also open,

Concerning the characters of * s the situation is different from
that of ¥x¥', First of all, we are interested in all continuous
multiplicative maps k> c(X) of k* futo the complex numbers, not only
in the bounded ones, and shall call such a map a quasi-character,
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reserving the word ’éharacte; for the conventional character of absolute
value 1o Secondly, we shall find no model for the group of .ixsie
characters, or even for the group of characters, though such a model

would be of the utmost importance,

We call a quasi-character unramified if it is trivial on =1, and

first determine the unremified quasi-characterse

Lemma 2.5,1t The unramified quasi-characters are the maps of the

form o( () = Jx}3 8 o 8 108 "l, where 8 is any complex number,
8 is determined by ¢ if égia archimedean, while for discrete 4y B is

determined only mod =z27mi/log Ng, .

Proof:s For any s, |« 12 e obviously an unramified guasi-character,
On the other nand any unramified quasi-character will dgpend only on
§ x}, and as function of | X} will be a quasi-character of the value
group of k. This wvalue group is the multipliceative group of all
positive real numbers, or of all powers of N}, according to whether
5, is archimedean or discrete; it is well known that the quasi-

characters of these groups are those described,

If y is archimedean, we may write the general element xXe kx
uniquely in the form X =&¢, with XeWw ,9>0e For discrete ¥, we
nust select a fixed element 1t of ordinal number 1 in order to write,
again uniquely; 0£=.&'5> s With XeW and, this time, § 8 power of T,
In either case the mep ¥x—>X1is a continuous homomorphism of x* onto u which
is identity on W
Theorem 23,11 The quasi-characters of kX are the maps of the form

L

x > c(ex) = T(X) i%1°, where Cis any character of us C is

uniquely determined by ce 8 is deterninsd as in the preceding lemmes

(2,06)



¢

Prooft A map of the given type is obviously a quesi-clisracter.
Conversely, if o is » given quasi-character and we define Tto be the
restriotion of ¢ to u, then € is a quasi-character of u and is therefore
a character of u since u is compacts x —> c(=)/3(&) £== is an
unrsmified quasi-character, and therefore is of the form o }® according

to the preceding lemmsa,

The problem of quasi-charscters ¢ of k* therefore boils down to that
of the characters € of e If k is the real field, u = {1, - 1?; and the

~

characters are C(& = &~ , M =20, 1« If k is complex, u is the
unit-circle, and the characters ere T{#¥) = X', n any integer, Inm
case k is g,-adic, the subgroups 1*-7," s Y20, of u form a fundamental
system of neighborhoods of 1 in us We must have theresfore & (1 _,,,’V) =1
for sufficiently large » . Selecting » minimal (V= 0 ire= 1), we call
the ideal £ = 3" the conductor of Ce Then & is a character of the

finite factor group (uw/1 +,¢)and may be described by a finite talle of data,

From the expression ¢(x) =z T(X ) §«}® for the general quasi-
charscter given in theorem 2.3.1, we see that | o(x) f= lo(la-, where
0 <= Re(s) is uniquely determinad by c(X ). It will be convenient to
call " the exponent of cs A quasi-character is e character if amnd only

if its exponent is 0.

We will be able to select a Haar measure d= on &* by relating it to the
measure dg on k¥ . If g(wx )€ L (), then g(5) 1£1-Ye L(x* ~0)s 50
m ., x 3
we may define AL(k ) & functional

Beor = f ee) rg1-tag.

)

If h(o) = s((sot) (\/3 e k* , fixed) is a multiplicative translation of
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g{«), then
Bm = § e 1817lag = F o),

63 we see by the substitution g—#p’lg $ dg—? 1@[;15 discussed in lemma
2¢2o5¢ Therefore our functional § which is obviously non~trivial and
positive, is also invariasnt under tremslations It must therefore come from

a Haar measure on k¥ e Denoting this messure by 4N,we may write
g(x) & = (g(g) 1€l “lag. |
f ] 2 2 g

Obvicusly, the correspondence g(x )«>g(¥) IS §-1 is a 1~1 correspondence
between L(K*) and L(k* —6). Viewing the functions of Ly (k") and Ly(k"~0)
as limits of these basic functions we obtaing

Lemma 2.3.2¢ E(% )e Ly(k* )& g(g) 1817 € L, (K" ~0), and for these

functions

fetorer = § s(ergiles.

measure
For later use, we need a multiplicative‘\which will in general give the

subgroup W the measure 1l To this effect we choose as our standard Haar
measure on kx s

dw = d—,o( s d if¢ is archimedean,
vy »

dXx= N = ¥ dx  ifqis disorete.
wal wfr e 4
Lexma 2,303t In case yis discrete, SJ& = (Nb)‘%.

Proofs é'a,"og ® élg l'ld§ =§L 4g = Nf;l 6‘/ df « Thereforse

£

204 The Locsl L~functions Funotional Equation: In this section f(g)

will denote a complex wvalued function defined on k' 3 f£() its restriction
to k* o We let 3_denote the class of all these functions which satisfy the two
conditions:

(2,08)



31) £(§), amd F(X) continuous,eL(x* )5 t.e. £(g) € WY
%) £l and E(e )1 1" € | (k") for ¢>0,

A =-function of k will be what one might call a multiplicative quasi-

Fourier trensform of a function E(é, e Precisely what we mean is stated in

Definition 2.4.,1: Corresponding to each § E% s We introduce a function 3(f,c)
of quasi-characters €, defined for all quasi-characters of expconent greater
than 8 by

(2,00 = [ ()0l ) dox,

and call such & function a S-function of ke

Let us call two quasi-characters equivalent if their quotient is an
unremified quasiecharacter., According to lemma 2,.,3.1, an equivalence clacs
of quasi-cheracters consiasts of all quasi-characters of the form ¢(« ) =
co (o(.) 10t §8, where c,(x) is a fixed representative of the class, s a
complex variable, It is apparent that by introducing the complex parameter s
we may view an equivalence class of quasi-characters as a Riemann surface.

In case f is archimedean, s is uniquely determined by ¢, and the surface
will be isoymorphic to the complex plane. In ocase ? is discrets, s is
determined only mod 2w /105 Ny s 80 the surfece 1s isomorphic to a complex
plane in which points differing by an integral multiple of 2w /log N?
are identified = the type of surface on which singly periodic functions are
really defineds Locking at the set of all quasi-characters es a collection
of RKiemann surfaces, it becomes clear what we mean when we talk of the
regularity of a function of quesi-characters at a point or in a region, or
of singularities, We may also consider the question of analytic continuation
of such a function, though this must of course be carried out on each
surface (equivualence class of quasi-characters) separately,
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Definition_2.4.it

Lemma 244e¢1: A Y =function.is regular in the "domain" of all quasi-

characters of sxponent greater than O,

Proofsr = We must show that for each & of exponent O the integral jf( )

oot )i 48 A represents a regular function of s for s mear O Using the

fact that the integral is absolutely convergent for s near 0 to make

estimates, it 1s a routine matter to show that the function has a derivative for
8 near O, The derivative can in fact be computed by "differentiating under

the integral sign".

It is our aim to show that the § -functions have a single-valued
meromorphic ansalytic continuation to the domain of all quasi-characters by
means of a simple fumnctional equation, We start out from

Lemme 2.4.2¢ For ¢ in the domain @ < exponent ¢ <1 and 8( ) = fax | o= (x)

we have
5(£,0) 3(£,8) = (£ lese)
for any two functions f,g e}.
Proof: (f,0) %(E8) = fe(e)elx Yo - JA(B) c1(8) 141 A8 with botn
integrals absolutely convergent for ¢ in the region we are oconsidering. We
may write this as an absolutely convergent "double integrel"™ over the direct
product, K'x Xk of k- with itselfs
ffr) € (p) o @) 1p1 A ).
Subjecting X*x K to the "shearing" automorphism (N,P) »(« +%8), under which the
measure a(a,lp) is invariant we obtain
o) By o5 1t dexs)
According to Fubini this is equel to the repeated integrsl
§(fecr & e 1arda) o(p)y 18140 .
To prove our contention it suffices to show that the inner integral
S.fio( )g(ot,s) jex t& is symmetric in f and g. This we do by writing

down the obviously symmetric additive double integrall

(2410)



Hr(g)s(vg) e > A€ UEM),
changirg it with the Fubini theorem into

Sf( g) (gg(q )& A gEn) dy)ds = jf(g e (ge)ag , ana
observing that according to lemma 2,3.2 this last expression is equal to the
multiplicative integral

S-f(“ )g(q{s )1«15",* = constante If(ﬂ )E‘(ﬂp)ldia&

We can now annocunce the Metw Theorem of the local theory.

Theorem 2.4.1:t A y-function has an analytic continuation to the domain of
all quasi-characters, given by a functional equation of the type

5(£,0) = 9(o) g (£3)e
The faotor ?(C). which is independent of the function £, is a meromorphic
function of quasi-characters defined in the domain o < exponent o <1 by the
functional equation itself, snd for all quasi-characters by analytio
continuation.
Proof: In the next section we will exhibit for each equivalence cless C

of quasi-charascters an explicit function fGE} such that the function
[ (e) = _x(fg, o)
5(%,¢)

is defined (i.e. has denominator not identically O) for ¢ in the strip

0< exponent o <1 on Ce The funotiong(c) defined in this manner will
turn out to be a familiar meromorphic functionm of the parameter s with
which we describe the surface C, and therefore will have an analytic

continuation over all of C.

From these facts, which will be proved in 82.5 the theorem follows
directly, For since C was any equivalence class, 9(0) is defined for
all quasi-characters, And if f('s‘) is any function ofg, we have
according to the preceding lemma

(2411)



gltee) T(FR) = §(2,8) 1(fg,0),
therefore ‘S(f,o) = 5>(c) g(f,c
if ¢ is any quasi-character in the domain of 6 < exponent o<iphere &(£,0)

and S(?,@) are originelly both defined, and C is the equivalence class of ce

Before going on to the computations of the next section which will
put this theory on a sound basis, we can prove some simple properties
of the factor g(c) in the functional esquation which follow @irectly from the
functional equation itself.

Lemma 2.4.3:2

l.)p(3) = ;(;1) «  2e) 9(5) = ‘c(-l) ¢ (o).

Proof's

1) g(£,0) = g(e) G(FS3) 2 9(c)p () (BB = o(-1) g(t,0)
because ’f(ﬂ) = f(-xX) and o(°<) = c(x). Therefore?(c)g(’o‘) = o(-1).

2.) X(He) = y(F,5) =9(3) 3(F)

29(‘6) o(-1) 3(£,3) = 9(3) o(-1) T
because 2(0¢) = F (=) and 3 (X ) SB(x)s On the other hand
m -9—(_) Xl <(%3)e

Therefore 9 (v) e (-1) ?‘c_)o

Corollary 2.4¢1: )_9 (e)} =1 for ¢ of exponent %.
Proofs (exponent ¢) = §Do(x) o (&) = fe(e N2 = jx} =0 ()8 ()
T(x) 2 T (®K)e Equating the two expressions for 9(3') and f(@)

given in the preceding lemme yields 9(0) y!c) =],

2,6 Computation of 0 (o) by Special t-funotions, This section contains
4

the computations promised in the proof of theorem 2.4ele For each
equivalence class C of quasi-characters we give an especially simple function

fo e}with which it is easy to compute g(c) on the surface Ce Carrying

(2.12)



out this computation we obtain a table which gives the analytin
expression for _9("’) in terms of the parameter;s,on each surface C.
It will be necessary to treat the cases k real; k complex; and k
e-ad.ic separately,
¥ real.
k3 is a real variable. o, is a non-zeroc real variable.
A(g) T - § . to] is the ordinary sbsclute value,

dg means ordinsry Lesbegue measure. o = 4

Tatl

The Equivalence Classes of Qua.si-Charo;cters. The quesi=characters of the

form I« l‘, which we denote simply by % l‘ » comprise one equivaleixce class.
Those of the form (signe Y t‘. which we denote by % }{¥ , comprise the other,
The Corresponding Functions of s Ve put

f(g) = o "TE%" ama f: (§) = %o -TEn,

Their Fourier Transformss We contend
F(g)= £(2) amda FTx(€)= 124 (¥
Indeed, tz;:se are simply the two identities
oD
TN +27C -~ T2 - 8
5’ 'l 37 dq = a -n—g and j’?e Wq* %q'? - 159 ﬂ.g
-

- o0

familiar from classical Fourier analysis, The first of these can be

established directly by completing the square in the exponent, meking the
complex substituticn rL—Nzﬂ'—g, which is allowed by Cauchy's integral

b =N
theorem, and replacing the definite integral e-W_E a(g by its well-known

value 1, The second identity is obtained by applying the operation

1 d to the firet,
PR dy
The § =functionss We readily computet -
b R
geaf) = fe(o) tat*da = _j'e'"'" j§  ax
-2 T3
oo o _s
z 25 o™ Tax = E [ (=)

o
(2.13)



A tor} IET]
_, (T SR I Y
=% € x%dx = T (8
AN~ 1-s -3 -
S(F,id)i= s{f07) =1 = ["(458)
. {1=5)s1 S)ﬂ
SR AT = g (=0 = iR amsen

Explicit Expressions for o(c):

I (Z)
nw .!_;:_2 [-. ( ‘.g:s_

Tf—%‘. P 2 =S _~S . %)F
L= m ‘:- = -L 2 1¢ sin( (s)
Tt' J I-l((n s)-u)

Here the quotient expressions for p oome directly from the definition

=27 1c”° cos(3E) [(s)

o1 1)

?(tt ) = -

of 9 as quotient of suitable { =functions; the second Icim follows

from elementary [‘=function identities.

k Complex,
€ S x+ iy is a complex variable. o= releis 8 non-zero complex
variable,

A. (g) = -2 Re(g) et -2x. t"; J’uﬁ\‘ﬂ of

l«] = r*is twdwe, the ordinsry
dg= 2ldxdyl is twice the ordinary abzolute value,

Lebgsgue measure.
du=d% < 2T 1dedel - 2 yar dol.
=X

Equivalence Classes of Quasi-Characterss The characters ©n (x)

defined by o (re‘e ) = ol"® _n any integer, represent the different
3
equivalence classes., The nth class consists of the characters °n (o )| ’

which we denote by o, | I° «

The Corresponding Functions of 4.1 We put
ng A

il -2 0y

£0)={ T Sty
= 2 (K _

S (x+£7)lnl o t(x"+y ’ "0

n2o

(214)



Their Fourier Transformsg We contend

ﬁ‘g) = im‘{n(g’) s for all n,

Let us first establish this formula for w»0 by irduction, For
_ -2aTe (e Y?)

n=0 s the contention is simply that f.(e)=1¢
is its own Fourier trensform, This can be shcwn by bresking up the

Fourier integral over the complex plane into a product of two resls

and using again the classical formula

a0

S ~TCUS+2TCLXA 2
e

~<TTX
du = | .

.-
(The factor 2 in the exponent of our function -E,cg) just compensates

the factor 2 in d¥ and in A(¥)).
Assume now we have proved the contention for some N0 o This
means we have established the formula

j 'Fn(')‘ e—z‘u'i A(gv)&q L 'F-n(g)

which, written out, beconmes

T ~2T (U W) o+ AL (XU =y V) _ . _~2T(x"*y?
5 w=w)"e e 2 dudv = iM(x+iyle | r?

- e =00

i .
Applying the operator ])’-4—-1.?'{_(3—3)‘( ‘N—%) to both sides, (a simple

i)
task in view of the fact that since =" is analytic, D (x+ty) =0 )

we obtain
. (Ul y™) +4TL (XU-Y V) : . —ar x5y
Tﬁu-w)"”e 2dudvy =™ (K-H.y{‘"e ¥ . )
-00 -po

This is the contention for N+l o The induction step is carried out,

A~

To handle the case N<QO , put a roof on the /zormula ‘F_n(g):i.m' ﬁ‘l g)

e o
which we have already proved, and remember that 'En(g) =f_“(‘§) = (_-l)mf_nlg).

]
The Y% =Functionss For xare we have

-t ~-aa@rk . .
ftwd = rME0e =

Cala) = €7 dw = 27

(2.15)



Therefore

o® 2T
5lh,6t) = [’k = SS rED e BT e dirdo
(]
s o
= 2Tt (r-Z.)ts -» |2- l‘lﬂ‘:‘r = (2 .n:s )+ F(S"'l"l

o

5(,%::’62175) = ; ( i‘"“f_“,(_hl ‘u-s) = Lml (21'C) ";,‘ F(I—S-*w

Explicit Expressions for ¢(c)s

-3 . m
el(Cnlt®) = gt ) Cis+%Y
2r)® [C(u-s)+ lnl)

k # =adic.

g = ay-adic variable.

A(g) = Ms(g)).

dg is chosen so that U gets measure (J\(/&).%

o d '-'&JTC" s NON~zero ?-adic variable, 70 a fixed element of ordinal

number 1 , ¥ an integer.
i = (Ng)™

dn = o

F‘é{:—'— _% » 80 that u gets multiplicative measure (\NI& ).

The Equivalence Classes o Quasi-Characters: C,(«x) , for n 20 shell

denote any character of k* with conductor exactly %“ s 8uch that Cp(iM)=1,
These characters represent the different equivalence classes of quasi-

characters,

The Corresponding Functions of§ 3 We put

.F( ) eﬂ.ﬂ'l‘. A.(S\ X for g & (s-lls-ﬂ
n'€) =

0 , for £ €974,

(2.16)



Their Fourier Transforme: We contend

(N g )+i.(N$S‘ for g =1 ( mod y_")

f.9) =
n'S 0 for €% | (moclg")
Proofs
-2l dtg -zri A((g~-0n)

f n(S) = 5'&,(7 qdq -'3-5:-.? 47

This is the integral, over the compact su"fgroup _"‘fm s
2wl N\ (E-D ") n

of the additive character n—> e . Ir g =} (’"Od 3,).

this character is trivial on the subgroup, and the integral is simply
i n n
the measure of the subgroup: \NIS".N,y e Incase ¥ FI (mody )
', this character is not trivial on the subaroup and the

integral is O,

The ¥ «Functions: First we treat the unramified cases n=0 °

The only character of type c, 1is the identity chareacter, and f,

-\
i8 the characteristic function of the set 13‘ . We shal) therefors

compute
s
SC6P) = [ rfdx .
P
Denote by Ay the Mamnulus™ of elemsnts of order ¥V , and let =4 .
oo

Then /3-‘ = Uv 4 AV s & disjoint union, and

;(f,,u’)--f: { 1= & =Z‘_ “”S:ru

ve-dl Ay vi-a
> -ys ’i ds L
s ( Z;_d Ny ) NA& .___#p_-_“—- N

]
P
§
Z
/&
[ 4]
.

/i": is N,&i‘ +imes the characteristic function nf‘()j, sc we have,

-

similarly,

fo2.17%)



SN - £ (@) - Nt 1

- 4’
- -v(i-5)_ i
- Z;o NA& T - Ngs-d. .

In the ramified cese, N>0 ,

5 (£ Cal ) S eaw;A“)Ch(«)lﬂsd’u

Z Nig > Sem‘A‘“)c,,M)d'x

Yowc~
We assert that all terms in this sum a.trter the first are Oy In

other words that

genn.A( ) («)é'o( = ‘For v>-d-n .

v 21 i A\() _
Proofs Case 1l,) V>,—-d ¢« Then Avcz& » 80 € =1 on Av,

and the integral is
§ caenydx = Jeatandu = [c,‘(x)du = o.
) vy

Ay
since Cn(o() is ramified and therefore non-trivial on the subgroup u,

Case 2,) ",d >V > -d-n  (Occurs only if there is

"higher ramification™; i.ee if N>1 ¢ To handle this case we break

up Ay into disjoint sets of the type 0(04—/0“ = o, +Ag_d
X, |+ Agd v e On such a set,/\ is constent 2 /\ («,) and
YAYCY) ' |
M codu = e"“‘A‘“) C () dix
N -t ~M
do"&-' “51'/3

This is O because

S C(a) Jfo\ = S C(M‘)Gtcx = 5 Lm&o) ‘rq = CLos )) ,(d)dtx

uov/ﬂ-. - Q(OU-U.S ) ,'n%‘u ¥ ‘y‘g"“ Y
and this last integral is the integral over a maltiplicative subgroup
b . ,‘\‘g,.'c;""" of a character cn(':\) which is not trivial on the
-d-V ~d-y
subgroupe Namely, -~d >V (5 \g, = i+4 ia s

subgroup of k* , and V> ~d-n => the ccnductor Ag"*«; -"-> Cpl=)

not trivisl on it,

(2a18)



We have now shown

o L A
B(ﬁ,’cnus) = Ng‘-‘ h)sjezm «

Cule) dx ,
A-d-n '
To write this in a better #+mw form, let {E} be a. set of
representatives of the elements of the factor group W /u-‘g(" .
so that W= UE 3 “""‘}")' » & disjoint union, Then
Y. b "d' . -l -f
A =m\:4"=U£n "(!+5@")=U(£1r“"+n9).
-d-n 3 s
On each of these sets into which we have dissected A.’d'_h- "9 ©, 18
constant = £, ( ER4" ) = ¢, (g),end /L is constant =
N\ ecd” e We therefore have . c
td+n)s 1'lt‘l'.A‘1rdvn)) S
5 (fa,Cat 1) = Ng®™* (T cpere d ,
Hg.

a form which will be convenient enoughe

N P - -5
The pay-off comee in computing ‘5('f, ,Chll’) :S(/f: ,C.,: W o).

AN n
For f,, is Nl\)'-& N? timee the characteristic function of the set

~ -s
\ +Ag,n » 8 set on which ¢,(a Ny =1le Therefore

SO, ) = NASNg" [dx 4 constant |

u-g"

Explicit Expressions for o(e¢):
s-8 1= N>
e (! 1°) = N * ‘;‘:‘“‘,{"?:}.‘ .
-
9(CHS) = N('sf) 90(6) s if ¢ ie a remified character with ' €
. | s et A\ Toieg)
conductor {, such that C(R)=1, gOLC) = N{ %C(h)e

is a so-called root number and has sbsolute value i ,

{€¢ 1is a set of representatives of the ccsets of \+{“ in Wo.

Taking the quotients of the & =functions we have worked out yields
these expressions directly if we remember that /\9:1}"* and, in the
ramified case, that the conductor of ¢, was .{-lf" . The fact that

the constant 9" (c) has absolute value L fellows from corollary 2.4.le

(2.19)



Namely, since ¢ is a character, ¢ | 1% has exponent i‘, 80 we must

have | ?(C ”-‘.-')| = \S)oLc)l = {.

(2420}



Chapter 3.

Abstract Restricted Direoct Precduct.

3.1 Introduction. Let ftgi be a set of indices. Suppose we are given for

each y,s. locally compact abelian group G,} » and for almost all»} (meaning for

all but a finite number ofg ), & fixed subgroup H?'C Gy_ which is open and

comgact.

We may then form a new abstract group G whose elements Ul = (.._......,Ul,)
sessesses) are "vectors" having one component m,e G‘f for eachg, with

M€ H? for almost all »g e Multiplication is defined component wise.

s

Let S be a finite set of indices 2’ including at least all those Ag,

for which H_ is not derined. The elements M€ G such thet 1€ H

¢ ¢ ¥
«gd:’ S comprise a subgroup of G which we denote by GS s GS is naturally

for

isomorphic to a direct product TI.G, X TT K,, of locally compact
groups, elmost all of which are compact, and is therefore a locally compact
group in the product topology. We define a topology in G by teking as a
fundamental system of neighborhoods of i in G, the set of neighborhoods of

1in G The resulting topology in G does not depend on the set of indices,

s L J

8, which we selectede This can be seen from

Lemma 3.1, The totality of all "parallelotopes" of the form N 'TTN »

8

where N is a neighborhood of i in G, for "11'5 o and N = H _for almost all

¥ ¥ Y ¢

Ag — premember the H# are cpen by hypothesis == 1is a fundamental system

of neighborhoods of 1 in Ge

Proof: By the definition of product topology a neighborhood of 1 in GS

contains a parsllelotope of the type describeds Or the other hand, since

N, ¥ B, for almost all 4 , the intersection ( ];‘;Ns )a GS = T(N% X ﬂ(ﬂyﬂH,",\

R i oES
in a neighborhood of 1 in GS.

(3.01)



It is obvious that Gs is open in G and that the topology
induced in Gs as A subspace of G is the same as the product topology we
imposed on Gs to begin withe Therefore a compact neighborhood of | in
G, is a compact neighborhood of{ in G, It follows that G is locally

compacte

Definition 3.1.13 We call G (as locally compact abelian group) the

restricted direct product of the groups G—s relative to the subgroups H} .
It will, of course, be convenient to identify the basic grocup G’f

with the subgroup of G consisting of the elements msr' (1,1, cceyll,, oo0¢)

having all components but the ﬁth equal to L ., For that subgroup of G

is naturally isomorvhic, both topologically and algebrailcelly to G‘& .
Since the components, UIS s of any element MVl of G lie in H_ for

¥

almost all :8, s G is the union of the subgroups of the type Gs e This
fact will allow us to reduce our investigations of G to a study of the

subgroups Gg »

These GS in turn may be effectively analysed by introducing the
subgroup G° c G consisting of all elements NM1&€G such that M,§=I

for Age Ss3 M, € H Ajﬁ Se Gs is compact since it is naturally

$
isomorphic to a direct product W ’ of compact groupse. G.S
APES
can be considered as the direct product G ( TT GAS ) X G® of

finite number of our basic groups G.8 and the compact group Gs

We close our introduction of the restricted direct product with

Lemma 3.1.23 A subset Cc=G is relatively compact (has a compact closure)

if, and only,if it is contained in a parallelotope of the type];‘- By »

where B, is a compact subset of GX’ for all ‘3, and B,} = H‘}, for almost all Ag,c

(2402)



gx_'gg_{'_t Any compact subset of G is contained in some GS s becauss the
Gr$ are open sets covering G, and the union of a finite number of

subgroups G5 is again a GS s Any compact subset of a GS is contained
in a parellelotope of the type described, for it is contained in the
cartesian product of its "projections™ onto the component groups Gg N
These projections are compact since they are continuous images, and are contained

in Hx for ;5¢ Se

On the other hand, any parallelotope -n- B? is obviously a compact

subset of some GS 3 therefore of G,

3.2 Charescterse Let o(If) be a quasi-character of G, ie.e. a

continuous multiplicative mapping of G into the complex numbers, We
denote by ¢,, the restriction of ¢ to G ] ¢ s c( N =
. Vi, , oo for M _ € G ¢ is obviously a quasi-character of G,
C(4s1s *°°» 4 9 ) 4€ Oug e 9 Yy aq 3,‘

Lemma 3.2.1: 0'3' is trivial on H,g_, for almost 31148, and we have for

an; € G
r M c(m)=gc3(wg)
almost all factors of the product being 1
Proofs Let U be a neighborhood of Tin the complex numbers containing no
multiplicative subgroup except ({ﬁ) e Let N 'W H* be a neighborhood of
} in G such that ¢(N)cU o, Select an S co?rbaining all Y for which
g ¥ Hg. Then G°C N = o(Gs)CU — c(GS)-| %C(E?)=[
for %G Se IfWM ie a fixed element of G we impoae on S the further

ocondition that UleGs and write 1 = TTW?) \f( with U(,S € G. Then

- ) e T, 59
cny=TT clingy - el Jl"*‘mf) qu\gmzf)
since for y ¢ s, c%(mg) =l .

L

trivial on Hq’ for almost all s Then if we define C(viy=1} CASLUL:S)

Lewma 3.2,23 Let o

be a given quesi=character of G‘ﬁ for oac;j, with o"}?

(2.03)



we obtain a quasi=character of G.

Proof: o(W1) is obviously multiplicative. To see that it is continucus
select an S containing all A for which r.}(ﬁ,g V£l & Let s be the
number ofg:l.n Se Given a neighborhood, U » of 1in the complex numbers,
choose a meighborhood V such that VSC U e Let N’} be a neighborhood

of 1in G‘3 such that Cy (N’f eV forgeS, and let Ng ® B, forp ¢S. Then

(T N’)chﬁU.
P2

Restricting our consideration to characters, we notice first of all
that c(W) = || o (#g) 1s @ character if, and only if all Cy are
characters, Denote by /G)} the charaocter group of Gx g for all Ag 3
for the A;where Hﬁ is defined 1let H; c ex be the subgroup of all
C*é f‘y\x which are trivial on H,. Then H'S compact =D ﬁ,’ o @’/ﬂ;

discrete = Hg open, and H’ open = G? /H2 discrete = ﬁgg H;

compacte

Theorem 3.2413 The restricted direct product of the groups /6\3 relative to

. the subgroups H‘.; is naturally isomorphic, both topologically and

algebraically, to the character group T of G,

Proofs Of course we mean to identify ¢ 3 (esee, Cg » esse) with the

character C(R) = T‘go,} (N,)e The two preceding lemmas, applied to

characters, show that this is en algebraic isomorphism between the two
groups. We have only to check that the topology is the same. To thie
effect we resson as followss C = (eess, cg, sess) is close tolas a

charscter &> ¢(B) close tolror a large compact B¢ & (1T By )
close to 1 sor ZB._,CG j Lompact , By= Ny, Sor almost  all N S c;’(y?

close tol wherever B;g* H,s and c,g(Bs) = °‘§ (H;) 2| at the remsining . .

(since H,, is a subgroup, ¢, (H,, ) can be close tof only if o, (H,) =1)
' § 5%

&

(3.04)



@ 03 close to 1 in G for a Pinite number of‘:z and ¢,, € - et the

? %

other s <> o close to Lin the restricted direct product of the G,

3 [ ]

3ed Measures. Assume now that we have chosen 2 Haar measure dvtx, on each

G'8 such that ‘S dmg =1 for almost all g o We wish to define a Haar
p]

measure dU{ on G for which, in some sense, d il =1;rdm4§ e« To do this,
we selec*g:lS; then consider GS as the finite direct product Gs
(TTG )x G> s in order to define on G_ a measure dMUl_ = ( 1T du ).dU(S.
geS § S S T4yes Y
where d U is that measure on the compact group G for which
Ss‘lms ¢s [ Sdmnj] . Since GS is an open subgroup of G, a Haar
measure &K’gn G is now determined by the requirement that dWL = dmson Gg -
To see that the dit we have just chosen is really independent of the nret
S, let T®8 be a larger set of indicess Then Gsc GT »
and we have only to check that the dm.‘. oconstructaed with T coincides
on Gswith the duzs constructed with S, Now one sees from the decomporition
¢S = (,Z_ISH );.G that dUt = (Ta ,‘) dm 3 for the measure on the

righthand slde gives to the compact zroup Gs the required measuree

Therefore

T—dm dwn® = Trdu l;lngmg-dmr = duep

Vie have therefore determined a unique Haar measure dV{ on G which we
may denote symbolically by di -—lem,‘,.
If \e(s) is any function oé the finite sets of indices S, with
values in a topoloéioal space, we shall mean by the expression 1%1! \?(S) =%
the statements "given any neighborhoodVof tf, s there exists a set
S(V' ) such that S ©28(V' ) = ue(s) eV » e Intuitively, lém \.f (s)
means the limit of ¢ (S) ae S bacomes larger and larger.
Lemma 3,3,1: If f{U{ ) is & function on G,

fecwy am = 1w SeCuyam

G5
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tha

if either 1l.) £(ML) measurable, £(VL) >0 , in which case +00 is
ellowed as value of the integralssy or 2.) f(Ul)elL, (G), in which

case the values of the integrals are compnlex numbers,

Proof: In either case 1l,) or 2,) .51‘(01)&01 is the limit of Sf(lﬂ-)dUL
- B

for larger and larger compacts Bc G. Since any compact, B, is

contained in some Gs s tho statement follows.

Lemna 3.30.2: Assume we are given for each ? a continucus function f:&e L.(G") such
f£ (mg) s { on H_ for almost all i o We define on G the function £(ix)

) 3

= TT f, (U(y), (this is really a finite product), and contends

L l.)
2.) For any set S containing at least those X for which either

AX’ )'#-1., or 5 dm_g +£{ , we have
S:(Ul)dllt. Tr[ A*(‘WX)AM I

£(ur) is continvous on G,

Proof's l.) () is obv:.ously con inuous on any G 5 3 therefore on

Ge

2.) For MULE G, Fig) = ﬂ-g&(mg) Hence
é:cmdm Sﬂmsdus = S (T £ wr’)) T‘ diny -rixns)
le)dm‘g] édmb :;];[S dUlaJ

(UL;) and £(M1) are the functions of the

|
= @
~
—
oé-h

Theoram 3.3,1s If f

4

vreceding lemma and if furthermore

T [§ 1 gmgldang] (- gnf 1T (15l b, [}) < oo

then £(U1)€ L, (G) and,

Sﬂu‘ﬂduc = j;(— {Sﬁgu*ﬂgiiwﬁ
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Proof's Combine the two preceding lemmas; first for the funetion
el = l [ \f,%(m?)\ to see that ()& L, (G), then for £(1N)

itself to evaluste Sf(m)dm.

We close this chapter with some remarks about Fourier analysis in
a restricted direct product. As we have seen)@ the character group of
G is the direot oproduct of the character groups f}:& of G} s relative teo
the subgroups H;_ orthogonsl to'Bg e Denote by C» (eese,Cp,, *+*°) the
ger-ral element of @,  (In this parsgraph, C , end 0‘3' are charascters,
pot quasi-characters). let dc* be the measure in ﬁ; dual to the
measured du," in G'ﬁ' e Notice that if 1‘45 ( U‘l?) is the charaocteristic
function of H? s its Fourier transform i‘; (6‘5) = Ei‘"}_ (%}-de%
in Sdﬂlx times the charsascteristic functior of H; s A consequence
of this fact and the inversicn formula is that { Sdﬂl%) ( Ldo y=1,

Therefore S dc = 1 for elmosat a]lg, ard we may put dc = n.dc%

Lemma 3.3.3: If f,s (U‘[s_)e '\J:(G‘S/) for a'llA;and f‘f (m‘f) 18 the
characteristic functicn of H? for almost ally , then the function f(Ul) =
Tr £ (Ut?) has the Fourier transform f‘( ¢ ) -Trf (C“,), and
r(m)e‘\{)(e).

Proof: Apply theorem 3.3,1 to the function f'(xn)c(m) = T{- f (Ul‘i) c?ng)

Fourier Cransform of the product is the product of the W
=ft=—o3 to see that fheAFourter transforms. Since f,&(ug)e (Gg),

f/‘; (<>,,.s e L'(G‘S) for el1 e For almost all %, ( c.;) is the
*x

characteristic function of H,s according to the remnrk aboves From this

we see thet 'f(c ) € L, (8), henos £{U1)e 1()1(6).

‘&

Proof: Avplying the preceding lemma to the group T with the measure de,

CorollarL_S.S.l: The measure dC = T‘g do is dusl to dMl 'T:gdm,,}

we obtain for our "product™ functions the inversion formula
ran) = Y Fedoturrac

from the comnonent wise inversion formulasa
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Chapter IV,

The Theorz in the Lar)g_.e_._

40le Additive Theorye Ir this chapter, k denotes a finite algebrsic

number field, Ag is the generic prime divisor of k, The completion of
k at the prime divisor ;8, shall from now on be dencted by kA& s and all the
symbols V,A, l&,“,c » ~~-+ etce defined in Chapter II for this local field

k.%shall also receive the subscript A& ) U-*S)Aﬂj;),\, ) sese etce

Definition 4¢le)lt The additive group V of wvaluation vectors of k iz the

restricted direct sum, over all prime divisors Ag s of the groups x5

r
relative to the subgroups Y, o

L1

We shall denote the generic element of V (= valuetion vector) by
N = (----.g?, seee)s From theorems 3.2.1 and 2.2,1 and lorma 2,2,3
we see that the character group of V is naturally the restricted direct
supr of the groups k'% relative to the subgroups "}.;l s Since 1\9,.’= U’X’

for almost all% this sum is simply V again! locking more closely

at the identificetionsset up in these theorems we see that the slement

'\(&- (....,Qgg, sese)eV i8 to be identified with the charecter

ey the_char
Y= fgy) T gy = 7 G s Y
3

of Vo This suggests that we define the additive function A(;g) -
Z:_ [\"3(%;) on V, and introduce component-wise multiplication
’\9% = (....,3%, ....)(....,gg, cese) w ("“’19‘{}5”‘}‘ eeee) of
elements of V in order to be able to assert neatly:

Theorem 4.,1e¢1ls V is nmaturally ite own charescter group if we identify the

2L .A_('\?g)
element xge—v with the charecter 'g - € of V.

(4.01)



On V we shall, of course, teke the mess dy = 1T
’ » asure 36 g %3 described
in § a3, 4 fs being the locel additive measure defined in § 2.2,
Since these local measures djg‘;_'} were chosen to be self-dual, the same

is true of d‘g; s according to corollary 3.3.1le¢ We state this fact

formally in

Theorem 3,1,2: If for a function r(%)en‘(v) we define the

Fourier tremsform

2wl A (WY

~ )
f(wa) = S{?(g)e %4,

then for f(g )eWQ(v) the inversion formula

f(»g) _ S'/f\(’lQ) CzﬁLA(g}?Z(’)g,
holdse

What is the analogue in the large of the local lermmas 2.2+4 and
2,2,5, that is, of the statemsnt d(ug) = kldg forae k; ? In

that local consideration,x pleyed the role of an suto-morphism of

k,g- s namely the autcmorphism E%ﬂg e This leads us to investigate
the question: for what Ml € ¥V is ?—"Aﬂ‘g an sutomorphism of V?

Ve first observe that for anyMeV, g -)»Utjﬁ is a continuous
homomorphism of V into V. A necessary condition for it to be an
automorphism is the existence of a b€V such that U(B =1 = (1,4, ecee),
But this is aleo sufficient, for with thisb we obtain an inverse map
% “""b% of the same forme, Now for such a ® to exist at all as an
"unrestriocted" vector, we need Nh,_#-o for all 4&, and then /b,s"”(; .
The further condition O € V means Lﬂ;ev.g, for almost all Yo

therefore Imlgl.s= L for slmost allie These two conditions mean

simply that Wl is an idSle in the senss of Chevalleyes We have vroved

Lomma 4elels The map Ml -nn.g is an automorphism of V if and only if

Ui is sn ideéles

(4402)



At present we shall consider idéles only in this role.
Later we shall study the multiplicative grcup of idéles as a group
in its own right, with its own topology, as the restricted direct
product of the groups k,; relative to the subgroups u.,f.

To answer the original question concerning the transformation
of the measure under these automorphisms we state

Lerme 4.14231 For an idéle, UL,

d(u)g’) = Wil d/g, where

wi| = TT W‘g"g (reslly a finite product),
Proofs If N = 1:3"_ N 13 e compact neighborhood of O in V, then by

¥

theorem 3,31 and lemma 2,2,5
dg, , ond S dig, = 11 1oy, $d
Sy =TT fdgg> a2y = 000 L) e
The last, and mcst important thing we must do in our
preliminary discussion of V is to see how the field k is imbedded in V.
We identify the element Eek with the wvaluation vector E = (g,g e Stee,

5 e ®°*°*e) having all components equal %o § » and view k as subgroup of

Ve What kind of subgroup is it?

Lemma 441e3s If S, denotes the set of erchimedian primes of k, then

1.) k0 Vio = {/, the ring of algebraio integers in k, and 2.) k+V5 = Ve
0

Proofs l,) This is simply the statement that an slement E€ k is an
algebraic integer if and only if it is an integer at all finite orimes,

24) k+V;, = V meanss given any #€V, there exists a Eek

o b

approximating it in the sense that  § ™ (¢ Ufg for all finitel
Such a S can be found by solving simultanecue consequences in{” ¢ The

existence of a solution is guaranteed by the Chinese Remsinder theorems

(4.03)



Let now V denote the ™infinite part" of V, i.e. the cartesian
product ﬂzg., k? of the archimedian completions of ke If a generating
equation for k over the rational fisld has % real roots and r, pairs of
conjugate complex roots, then ¥ is the product of ry real lines and r
complex planess As such it is naturally a vector space over the real

numbers of dimension N =Y *2Y = absolute degree of k. For any

ce . oo
»’lfe V denote byg the nrojection ¥* (eoes, % R “")gés., of/g

o
on V.

Lemma 4el.4: If {w,;u“....,w,,g is =2 minimal basis for the ring

of integers \Yof k over the rational integers, themn 1&J,,%%,)" - ::“’nx
is a basis for the vector space ? over the reasl numberse The
parallelctope D spanned by this basis. (¥ = set of all? . vi;‘ x,"q‘?,, with
0<x,<1) has the volume ~idl (where 4 = (det('z-wfj) ))2.= absolute
discriminant of k) if measured in the measure d “f :Tf; dffy which is
natural in our set-up, 3& -

Proof:t The projection g-> Q‘g of k¥ into \7 iz just the oclassicel
imbedding of a number field into N ~svace, The reader will remember the
classical argument which runss k separable = d = (det( LJL‘-"' ))2'#0
=2 {m. ,a;,,"",ao’n% lineerly independent, and (with s simple determinent
computation) P has volume —2‘;: [di ¢ For us the volume is 2™

times as much because we have chosen for complex)& a meesure which is

twice the ordinary measure in the complex planee

Defipnition 4.1.2: The additive fundamental domain DcV is the set of

211y such that @<\ and fé’ﬁ’.

Theorem 4,1.3: 1la) D deserves its name beceuse any vectorge V is

congruent to one and only one vector of D modulo the field elements g.c

Tr other words, V = U (E"' D), a disjoint union,
gek

(4.04)



2s) D has measure le

Proofs 1l.) Starting with an arbitrary gev we oen bring it into Vg
ol

by the addition of a field element which is unique mod 4V (lemms 4.1.3).

Once in V.  we can find a unique element of Y , by the addition of

o
which we can stay in V. and adjust the infinite components so hat

_ S
they lie in %o (lemma. 4.104)0

2.) To compute the measure of D, notice that DcV_. and

Sw0

D= ﬁ; X VS'. Therefore

- 2 { . R - ) 3 v
fig ~Jig =S = 2B mglm"s )

Pxv
Now since the discriminant 4 (as ideal) is the norm of the absolute
different t\9- of k, and sincel\9 is the product of the local
differents ‘5 » We have ldl = T“;_;N's‘sf e Therefore the measure
which we have computed is 1,

Corollary 4.1.1s k is a discrete subgroup of V. The factor group V

med k is compacts
Proof:s k is discrete, since D has an interior, Vmod k is compact, since
D is relatively compact.

Lemna ¢.1.5: /\(g) =0 for all Seks

Proof's
)

A= ZAgtg) -Zx (Sg2) Z_A S lg) 7 A, O19)
because "the trace is the gsum of tne local treces", Since 5(5) is
a rational number, the problem is reduced to proving that ;Ap(") =0
(mod L) for rational x, This we do by observing that the rational
number . 2;"1\?(:) is integrel with respect to each fixed rational

prime q e Namely

Z;A?(x‘)- 7 )\Ps.x)> +X i) +)\ u&) e (Z A (l)) + ()\ \X)*x)
4

t‘ Pa ?*%ﬂ'ﬂ
expresses A(x) as sum of ({-adic integerse

(4,05)



Theorem 4.1.4t k™ @ k  ; that is A(gg) 20 forall 8 & ge ko

2_!:_221‘_: Since k* is the character group of the compact factor group V
mod k, k* is discrete. k oontains k according to the preceding lemms,
and therefore we may consider the factor group k* mod k. As discrete
subgroup of the compact group V mod Ik, k™ mod k is a finite groups

But since it is a priori clear that k* is a vector space over k, and
since k is not a finite field, the index (k™ik) cannot be finite

unless it is 1.

4.2 Riemsmn-Roch Theorem: We shall call a function ' (g) periodic
if (((g-rg) = ¢ (g) for all gek. The periodic functions
represent in a natural way all functions on the compact factor group'_
V mod k. *f ( g) represents a continuous funotion on V mod k if

and only if it is itself continuous on V.

Lerma 4,2,1: If © (:(() is continuous and periodic, then j)g‘f(t )d;g
is equal tos

the integrsl over tiie factor group V mod k of

the function on that group which ¢ (’46) represents

with respect to that Hear measure on V mod k which

gives the whole group V mod k the measure 1.

Proof:  Define I(\?) s S\?(? )dlgand consider it as functional
on L(V modk)e Observe that it has the properties characterizing the
Haar integral, (To cheock invariance under translation merely

reguires breaking D up into a disjoint sum of its intersections with a

translation of itself)e The funoctional is normed to 1 because gdg-i .

k is naturally the character group of V mod k in view of theorem
4:1.4s The Fourier transform, @'( 3)' of the continuous function on

Vmod k which is represented by uf(g) is

(4.06)



-27c e A(g 46)0‘

Qe = éue(}g)e p.

Lomma 4.2,23 If Q(—g) is continuous and periodic and %:kl@(%)l < oo N
€

then zmei Ay e)
w = /_ §e)e
= 2 9t
Proofs The hypothesis g% “?(g)|<°° means thet the Fourier

transform ff(g) is summable on k, guaranteeing that the inversion
formula holde, The asserted equelity is simply the inversion formula
explicitly written out,.

Lemma 4423t If f(g) is continuous, € L‘(V). eand ZE'-E f(g-f? )
2

is uniformly convergent in g {convergence means absoclute convergence

becauss k is not ordered in any way), then for the resulting continuous
Ve

periodic funotion (@) = 2. 2(+1 ) we have © () = T(e)

) P g) Pl S Fis 5 )

Proofs

-ami A (pg)
Pm- S e Ty
- (. f(gw)e““‘m"%g,
o -awi A pE)

i

q; ;F(g’-ﬂz)e df

(The interchange is justified because we assumed the convergence to

be uniform on D, and D has finite measure),

—amwi AlYE -'Igd)

< Z S ‘F‘@é)e
\lek n+¥d
e ALyg)
= f(p)e d
'1%-7« '141’ 4 £
<2 AJ?‘E) (Aigp=o ‘

] fl
REJEES
C »
AN

~7

L)

&

o
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Combining the last two lemmas 4.2.2 and 4,2.3, ard putting
X =0 in the assertion of lemma 4.2.2 we obtain

Lemna 4.2.4: (Poigson Formula) If f(g) satisfies the conditions:

1.) f(g) continuous, € L, (V);
2.) ;:k f(gfg ) uniformly convergent in g';
A
3.) Z_ IFY( 5 )l converzent;
Lek
Then
A
7 Mey= 2e
S g) &3 (g)e
If we replace f(g) by f(mg) (MU an iddle) we obtain a theorsm
which may be looked upon as the number theoretic analogue of the

' Riemann-Roch theorems

Theorem 4.2,1; (Riemann-Roch Theorem) If f(/z) satisfies the

conditionss
1,) f(g ) continuous, € L,(V);
2 £{N o convergent for all idslesi{and
.)Ezfe< (R (4g +5)) ¢
valuatinn vectorsjg, uniformly ing;
3e) EAZVZ( l’f\(mg )\converg;ent for all ideles Ml j
€
then

7 F(& £ ()
i fex w0 g}. 5
Proofr The function g(fg) s f(mg) satisfies the conditions of the

preceding lemma because

2re A
¥e- SF‘“"?)Q ) -zug-‘éz)v
W‘! 5‘“39 C ATt dy{},

(Under the transformation }(). - TQ/U‘L d\(a-‘) dk"a’/’.lml e

= W (_g_),

Vie may therefore conclude

5 Flug
&%(g)-zzt?) that is T*:T‘EER i) EZ%C )

ge

(4408)



It is amusing to remark that, had we never bothered to compute
the exact measure of D, we would now know it is L, For we could
have carried out all the arguments of this section with an unknown
meeasure, say /u\(D) s Of Do The only change would ba that in order to
have the inversion formula of lemma 4.2,2 we would have to have given
each element of k the weight i//u(D). The Poisson Formula would then

have read,

5 gZ;h?cg) = g?e:;eﬂg)

2
Iteration of this would yield ( /u.(D)) =1, therefore /uL(D) =1 !

4,3 Multiplicative Theorys, 1In this section we shall discuss the

besic features of the multiplicative group of ideles,

Definition 4+3.1: The multiplicative group, I, of idéles is the

restrioted direct product of the grouvs x* relative to the subgroups ka,.

$

We shall denote the generic idele by M= (ee«s, Vg, eese)e The
name idéle is explained (at least partly explained}) by the fact that the
1déle group may be considered as a refinement of the ideel group of k.
For if we assooiate with an idele {I the ideal f(Ul) = 7:‘2; lg,%m’f »
then the map AJU —> \P(U{) is obviously a continuous homcmorphism of the
idele group onto the discrete group of ideals of ke Since the kernel
of thies homomorphism is rsw » We may say that an idele is a refinement
of an ideal in two waye, First, the archimedean primes figure in its

make=-up, and second, it takes into account the units at the discrete primess

Concerning quasi-cheracters of I, we can only state, according to
§ 3.2, that the general quasi-character ¢ (ML) is of the form
c(¢;) -]T CX(U(g), where cg(w},) is a local guasi-character

(described 1n§ 2.3) and c‘%(\}(g) is unramified at almost all /;/.

(4.09)



For a measure, d’UL s ON I.we shall of course choose a‘:{fl-? gi(ﬂgz

the i‘Tm being the loceal multiplicative measure defined in

§52.39 ‘3

We can do nothing really significant with t:he. idsle group until we
irbed the multiplicative group k™ of k in it, by identifying the
element ® € K with the idele X = (&, ® , sess, X, sese)s Throughout
the remainder of this section ouf discussion will center about the
structure of L relative to the subgroup kX, The first fact to
notice is that the ideal lf(o() associated with an idédle uekx is the
principal ideal aly generated by %X, as it should be, Next we have the

"product formula™ for elements okekx ¢ Though this is well=known, we

state it formally in a theorem in order to present an emusing proofs

Theorem 4.3.1s Wl ( 3270112 )s L rfor xext, |

Proofs Acéording to lemmea 4.l1.2 the (additive) measure of oD is Ix{ times .
the messure of Ds Since ak' = k¥ s XD would serve as additive f‘unda.mengz.nl‘:m
Just as well as D. From this it is intuitively clear that D has the

same measure as D and therefore ldl=1), To make a' formal procf one

has simply to chop up D and «D into congruent pieces of the form

D O( E+ ® D) and (-g +D)D oD resyectively, € ruuning through ke

This theorem reminds us to mention explicitly the continuvous homomorphism
MU= Wl = I}T'ng of Ionto the multiplicative group of positive
real numbers, The kernel is a closed subgroup of I which will pley an
imoortant roles, We denote this subgroup by J, and its generic element

(idéle of absolute velue L ) by & &

It will be convenient (although it is aestheticslily disturbing and
not really nescessary) to select arbitrarily a subgroup T of T with which we

can write 1= TXJ {direct product)e To this effect we choose st random one

(4.10)



of the archimedean primes of k = eall it% ~ and let T be the subgroup
of all iddles such that M2°>O and Mly-—-l for %‘Fg, e Such an ideéle
is obviously uniquely determined by its absolute value; indeed the

map ,U(,—?\U'll s restricted to T, is an isomorphism between T and the
multiplicative group of positive real numbers, and it will cause no
confusion if we denote an iddle of T simply by the real number which is
its absolute wvalue, Thus a real number t>0 s#l1lso stards either for the
iddle (t,1,1, se+e) or for the idle { ~E, 1,1, s++s), according to
whe ther 30 is real or complex, if we write the 430- component firste Since

we can write any idsle L uniquely in the form =tndd  with lwmleT

and % = Ju™ e Jy it is clear that I = TxJ (direct product).

In order to select a fixed measure #don J we take on T the measure
:iﬁ = dt/’l; and require dmn= dtérb s Then for computationsl purposes

we have (in the sense of Fubini) the formulas
® - % oy df
0 J )

for & summable idéle function £(Ui)e

The product formula means that k* < J, and we wish now to describs a

"fundamental domainﬂ for J mod kx e The mapping of ideles onto ideals

a0

allows us to descend to the subgroup JS = gn T e To study JS
20

ws map the iddles e Js;  onto vectors L(B) =2 ( eeee, log 181, 5 evee) .
® $ ©Jy
having one component, log I?:lg for each archimedean prime except ’yo .

(This set of = 2, +M,~1 primes is denoted by S4 ) It is obvious
the addilive qroup of tuchdean

that the map b4 (6) is a continuous homomorphism of J. onto,r=spaces
“eo

The onto-ness results from the fact that although the infinite oompc-nents
of an idsle be J are constrained by the condition Tﬂ ?n\ Wl él
hi IR

they are completely free in the set Sé aince wa can adjuat the 4y, compnnen*'a

(4.11)
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KN Jo_ is the group of all slements £ek® which are units at
all finite primes; that is, which are units of the ring 4 The units
¥ for which 1(3) = 0 are the roots of unity in k and form a finite
cyclic groups It is proved classically that the group of units &,
modulo the group of roots of unity 5 » is a free abelian group on Y
generatorse This proof is effected by showing that the images I(E ) of

units € form a lattice nf higheat dimension in the r-space,

If, thersfore, 1€{,cicn 18 & basis for the group of units
modulo roots of unity, the vectors 1( EL) are a basis for the r-space

over the real numbers and we may write for any ?)EJ ,l(’b)

if X, p( £y ), with unique real numbers x,y ¢ Call P the
parallelotope in the R-space spanne(}zby the vectors Y( EL)s

that is, the Bet of all vectors 2_. Ry Q(EV) with 0SX,<1 4

=2t

Call Q the "unit cube™ in the r-space;' that is the set of all vectore

(eoee, x,, vees) S with 0 = X,(l,

(.74
Temma 49,3411

Sffb = —1'—-1(-“_:{91?, where

27(P)
[‘(P) is the set of all &€ Jﬁo such that 1(5)6 P, and R =
ta‘et (1og &L Nisisn is the regulator of ke
¥ gesly

Proofs Because £ is & homomorphism,

measura of l_(P) = volume of P = xdet (log Ié’.;lg) = R,
messure of J{ Q) volume of Q
" Jtamt
and we have only to show ¥ea) = “"ﬁ”"" . ,
() 18 the set of all beJ with Is!6L~C for g 8, .
Lot Q* be the set of 13 WUteI,  with |<lmlg<t for 4 € S, o
' ° dt
Ten  faw = J L[5 Fif6 < SREIER a3,
Q* thed" Q) 1k, L
because the Q = ¢ Ef-tQ) and ls,’tbl,‘\t ° We have therefore only
cP

(4412)



=, n

Loty s

to show tha<x S‘JUL = == o
3 yidl

S

»

firite QU as the cartesian —rodust " s TTQ'; X I . » Where Q:{‘ is
eSS . -

'

the set of all 1€ ::-; such that sl <, for « & S, ¢ Then
) in = TT 3 dur g L dade - 2" 2w .
a* 190 3y 15 T » Tecauss
forléreal, z\ 8 X 3 .-Gh .
: i‘ . ] t | — = ‘/\J - T -
x, Tyt Ly 7Y W oA ’
for i complex : SLW NE
R T ’
r e -1
and L4 Se T i ﬂ‘-kjé)i_ L
}___fv‘t = l__ J fu-vg = .2V ¥V’ ° Vi)
I~ $F0 iy ol

Definition 4.3.23 Let fl be the class number of k, and select ideals

%(l) '_‘"\ﬂ-\ . . Y
O 4 ®ree, & € J such that the corresponding ideals t,'-( £7 ), evee,

> ( -:";-“)) represent the different ideal classes. Let &~ be the numbar of
T

roots of unity in k, Let E, be the subset of gll C S __.':-IP) (soe
=T
<<

vreceding lemma) such thatOs 0"3550 W~ e ¥We define the multivlicative

fundeamental domain, E, for J mod x* to be

- "5*\)
E = Eobm U Eabm U ceentfB, 0 o
Theorem 4,3,2¢ lg) 0 = L?dE, a disjoint union,
« n 3
2) (b - 2 _(20) AR .
E VAl W

Proofs }e) Starting with any idsle D€J we can change it into an id3le
whinh represents a principal ideal by dividing it by a uniquely determined

z_‘u.) Y If this principal ideal is x!" (& uniquely determined modulo units),

~

multiplication by ' brings us to an idéle of J representing the ideal \V =

therefore into J. . Once in J. we can find a unique power product
- V.x
iands us

of the fundamental unite £ which,in ft?), with only a root of \mitj ,S)

at our disposal, This ¥ is exaotly what we need to adjust the arpgument

Tl

of the i, component to be in the interval [0,"%) s Lo and behold we are

X
in E, ! For our original jdele © we have found a unique .« k and a unique

1 - )

?r,“) such that 4 & ..*bFas .
(4413)



2¢) (measure E) = -k'(measure E, ) = %’-_(mes.ure () = 2" (ZT)”"AR

acoording to the two disjoint decompositions

Es= LJA' Z)U)Eo » )T('P) "i l 3 E

V= .

and the preceding lemma, 5

Corollary 4¢3.1s k* is a discrete subgroup of J (therefore of {i)e J

mod kx is compact.
Proofs One sees easily that E has an interior in Js On the other hand,

E is contalned in a compsst,

We shall really be interested not in all quasi-characters of I,
but only in those which are trivisl on kx e From now on when we use the
word quasi-character we mean one of this tyve. Let us close our
introduction to the id€le group with a few remarks about these quasi-

characters,

The first thing to notice is that on the subgroup J, a quasi=character
is a character; i.e, \C.( b )\ = 1 for all },&J, because J mod k¥ is

compacte

Next we mention that the quasi~characters which are triviel on J are
exactly those of the form C (ML) = \\MS s Where s is a complex number
uniouely determined by ¢ (¥L). For if c(UL) is trivial on J, them c{iX)
depends only on | , end in this dependence is a continuous multiplicative
map of the positive real numbers into the complex numbers. Such e map

is of the form ¢ -rts as is well~known,

To each quasi-character ¢ (V1) there exists a unique real number & such
that \c,(m.)‘ = \.UUG— e Namely, \c(t)] is a quasi-charecter which is
trivial on J, Therefore Jo(it )| = pl® o for some complex s, Since
‘L(UL )‘)C? » B 18 reals We 08llT the exponent of ¢ ¢ A quasi-character
is a character if and only if its exponeant is O

{4.14)



4e4 The 5 -Functions; Functional Equations In this section f(f)

will denote a complex-valued function of valuation vectorsy £(M) its
restriction to idsles. We letgdenote the class of all functions f(:%&)
satisfying the three conditionss
gb r(g). and ?(/@p) are coutinuous, € L, (V)3 i.e. f(g)eotQ(v).
g’-) Z,f(U((g-i-g })) end Z__f(Ml(%ﬂ-}g‘ )) are both convergent
for each idele b’land vectorg the convergence being
uniform in the peir (AX %ﬁ) forgranging over V and U1
ranging over any fixed compact subset of I.
49 fOwd”  and FOw” € 1, (L) for o4,
(notice that if f(g) is cortimuous on V, then, a fortiorm, £{UV) is
continuous on I, since the topology we have adopted inlis stronger

than that which I would get as subspace of V).

In view of 3,) and 3,_), the Riemann-Roch thesorem is valid for
functions of% e The purpose of %3)13 to eneble us to define S.functions
with thems

Definition 4.4.1l: We associate with each fe'é,a function %(f,c) of

quasi-characters, defined for all gquasi-characters ¢ of exponent greater
than 1 by
5(e, ¢) = {01 ey .

We call such a function a g-function of ke

Remember that we are now considering only those quasi-characters
which are trivial on X¥¥ , These were discussed at the end of the precading
section, where the notion "exponent™ is sxpleineds If we call two
quasi=charaoters which coincide on J equivalent, then an equivalence class
of quasi-chsracters consista of all quasi-characters of tha form
c (LL) = ca(lﬂ.)lmt> » Where o, (A1) is e fixed representative of the class
and s is a complex number uniquely determined by ca

(4.15)



Such a parametrization by the complex variable s allows us to view an
equivalencsa class of quasi-characters es s Riemann surface, just as we
did in the local theory (ef § 2e4)e It is obvious from their definition
as an integrcl that the ;-i’unctinns are regular in the domain of all
guasi~charascters of exponent greater than 1 (see the corresponding

local lemma)s What ebout analytic continuation???

Main Theorem 4441 (Analytic Continuvetion and Functional Equation of

the S-anctionS) . By enalytic continuation we may extend the
definition of any ¥ -function s(f,c) to the domain of all quasi-characters,
The extended function is single valued and regular, except at ¢(UTU) = 1.
and C(ML) =1\  where it has simple poles with residues -&f{0O) and
+xT(0 ), respectively (K= 2}1, (z.ﬂ')n" fa R/(ur‘(ﬁ:i—l.) £ volume of the
multiplicative fundamental domain). S(f,c) satlsfies the functional
equation
t(f,e) = (BE)

where (M) = 1] o' (W) as in the local theorys
Proofs For o of exponent greater::han i we have B(f',c.) = Sf(.Ul) Q(UL)&I‘( =
Tl W E SO f L mn s -

S!‘(tb Ye(tb )AL is absolutely convergent for ¢ of any expoment, st

lesst for almost all t, beceuse it is convergent for some c, and ic(tb )‘ =

+ exponent @ >

ig constant for ©€ Jo The essential step in our proaf consists

in using the RiemannmeRoch theorem tc establish a functicnal equation for
S‘(f.Q )9
Iemma A For ell quasi~characters we have

st flo b ceby db = 3, (£,0) + T |T@o) 2o,
—t € ' T £



iV T s g sy

=2 5 ey ca)® + o) Sc(t?mfa

ek «E
{(Because J = U «E, a disjoint unione)

7§ ee@dd - o) Scaz»aa

«ek" E
(ded)=dd ; clatd)= () )
§ L7 fist®)]eitd) dd =+

E xX€E ﬁx

) f0) cltd) &b
E
(By hypothesies }&.) for ff, the sum is vniformly convergent for?D in the

relatively compact subset E),

(L siety]cendd

Hi

£ Sek
"o —— g \ R

= J }_ ;——fg ?(E‘B) }-ltz")l citd) (1'2)
E €

Reversing the steps completes the proof,

Lemms. Et " ts , ¥ C.LU‘L)‘—'IUUS‘
tbydb -
ic b) 0 "y o) non-trval on J-»
Proofs
gc(t’}))db = C(.t)j C(B) Jb ’ SC‘?’)‘-}E is the
E E E

irtegral over the factor group J mod kx of the charscter of this group
which c(b) represents, Therefore it is either (¢ (= measure of E), or O,
according to whether C(UL) ie trivial on J or unte Ir the former case

5
we must nctice that c(t) = ltis =2t .

To prove the theorem write, for ¢ of exponent greatsr than 1,



St ré) stlT,c)‘dt! = o) st(f)c)zé'. +Jst(f,c) %‘.:
: 1

|J is no problems For it is equal to the integral of f£{Wt) c(J}()obU'(
over that half of Lwhere IUtI31, Therefore it converges the better,
the less the exponent of ¢ is; and since it converges for ¢ of exponent
greater than 1, it must converge for all c. Now, the point is that we ocan
use lerma A (and the auxiliary lemma B) to transform the oj into an ‘j

thereby obtaining an anelytic expression for &(f,C ) which will be good for

ell ¢ 4 RNamelys . . ._S N
A 1y af ts ﬁ
oslst(ﬁd% = [ & ) 4t +{{ ajm‘(o)(t) = _(«4(0) )

o t
where the expression {{ .....}} is to be included only if ¢ is trivial
on J, in which case we assume c(Ul) = IUHS e Ve are still loocking only at o
of exponent greeter than { Ir e{lx) = I1®  this means Re(s) > ! ,
which 1s Just what is needed for the auxiliary integrals under the double
bracket to make senses Eveluating them and meking the subetitution t-—>~%—

in the main part of the expreasion wa obtain

‘
{r ®o¢ = J s @nd

«Fo _ xHOT
H 5 —1 s b,

and therefore - Flﬂ) _ K‘HQ.) j

550 = Sst(ﬁc)dt - 5 LA« (=

The two integrale are analytic for all C o This exrression gives
therefore the avelytic continuation of 3(f,() to the domain of all
quasi-characteree From it we can read off the poles and residues directlye

-s
wu'” s Wo see that even the

Foticing that for ¢ (W) = Wi’ » c(U‘()
form of the expressiocn is unchanged by the substitution (fs¢) — (F,¢)e
Therefore the functional equation

g(ee) = 3(F,0)

holds, The Main Theorem ia proved‘
<9

(4.18)



4.5 Comparison with the Classical Theorye We will pow show that our theory

is not without content, inesmuch as there do exist non-trivial 3} =functions,
In fact we shall exhibit for each equivalence class C of quasi=characters
an explicit function fe} such that the corresponding ¢-function ;(t‘.c) is
non=trivial on C. These srecial {=functicne will turrm out to be,
essentially, the classical y-functions and L~series, The analytic
continuation and the functional equation for our §=functions will yield

the same for the classical functions.

We can pattern our discussion after the computetion of the special
local S-functions in §2.5. There we treated the ceses k resl, k

conplex, and kg-adic. Now we treat the case

k in the largel

The Equivalance Classes of Quasi-Characters: According to a remark at the

end of §4.3, each class of quasi=charscters can be represented by a
character, To describe the chareacters in detail, we will take an
arbitrary, but fixed, finite set of primes, S, (containing at least all
archimedean primes) and discuss the characters which are unramified
outside S. A character of this type is nothing more nor less than a
product
e(m) = T;’ oy ()
of local charecters, c’ » satisfying the two conditions
1l.) Cy unremified outside S,
24) TT:Sc,S(« Y=l , for oe€ e
To construct such charactere and express them in more ccncrate terms,
we write for ?eSt .
~ | ~ L
eg (i) = T (dg) \ux,gl{g ’
~

¢, being a character of u.,g » tﬁ' 2 real number (cfe Theorem 2,3e1l)a

§

(4.19)



For Af,q.: S, we throw all the local characters together into a single
character, say

e*w) = [Te,, (st

ges s ¢
and interpret o™ as coming from an ideal character. Namelys The map
T g :
B — tfs (W) = ¢5‘£ is a homomorphism of the idéle group onto

the multiplicative group of ideals prime to S, Its kernel is IS’
¢"(U) is identity on IS + We have therefore

%

(i) = X (fo(v0)),
where X is some character of the group of idesls prime to S, Our
cherscter c¢({) is now written in the form .+

L
owe) =TT 5, (&) o T 1l ? o x( g (W)
geS b QeS
To construct such characters we must select our 3'3 s tyand )(
o

such that o(a ) = 1, for x¢€ k’.‘ For this purpose we first look at the
S-units, €, of k, i.e. the elements of k* N L , for which Y(€) =%
Assume S conteins m+1 primes; let g, be a primitive root of unity in k,
and let {C] » "".Em"S be a basie for the free abelian group of Seunits
modulo roots of unity. For c(U() to be trivial on the S-units it is then
necessary and sufficient that ¢(E, ) = 1, 0<V=m, The requirement

o( €&, ) = 1 is simply a condition on the 3:‘_ 3

n 1] e =1,
ge's p 2

We therefore first salect & set of G s for ,Ag,e S, which satisfies A,

The requirements o(€,) =1, 1< ¥< m, give conditions on the t? ]
T igl, ¥ = Hcg'(fyg) IsYVsm
gyes ¥ ges
which will be satiafied if and only if the numbers t solve the real

s

linear equations

B) Ajezs_t‘; pﬁglfv\f = vfﬂ%(-ﬂ‘a’qgtévg)) ) lsVYsm

?(—3

(4.20)



for some value of the logarithms on the righthand side. We now select

a set of values for those logarithme and a set of numbers t? solving

the resulting equations B. Since, as is well=known, the rank of the

) is m, there always exist solutions t_ , And since

P b7
QZS_ log l«ivl,y =0 for all VY, the most genersa) solution is then
P _

matrix (log &yl

t,; s t‘;!— + t, for any t. Vhile we are on the subject of existence and
uniqueness of the t), we may remind the reader that if A; is archimedean,
different t ive different local characters ¢ =q,{/ but if
y g . o 2 43, 3 gf
is discrete, those t 6 which are congruent mod "2 /'logﬂg, give the same

4

loceal o?.

Heving selected the and tﬁ s how much freedom is left for the

%

idenl character ?( ? Not muche The requiremaent c(x ) = i for all & lcx

means that)( must satisfy the condition

) X( fg (%)) = JS g (x,é)!oma‘& _

for all ideals of the form S(et ), the ideals obtained from principal
ideals by cancelling the powers of primes in S froxr their factorization.
These ideals form a subgroup of finite index ‘g\s (less than or equal to the
class.number 3\ H @\5= 1 if S large enocugh) in the group of all idesls
prime to Se¢ Since the multiplicative function of X on the righthand side
of condition C.) has been fixed up to be trivial on the S-units, it amounts
to a character of this subgroup of ideals of the form !fs( ok Yo We must

select X t0 be one of the finite number:of sxtensions of this charecter to

the group of all ideale orime to S,

The Corresponding Functions °f?L’ Having selected a charscter

e by,
o) = Tl oy (ung = Sy (Uig) wu} ’((‘(’s(*’“)'
unramified outside S, we wis bo find a simple function f (X ) 6 whose

S-function ie non~triviel on the surfece on which c(VU{ ) liess 7o th1a effect

we choose for each ges some function f%&gg)egghose (Lo ml) S-I‘unetion

(4.21)



is non=trivial on the surface on which ¢, lies (for instance select

¥

£, to be the function used to compute ?"5(0*3' l,; } in § 206)s For
A% & S, we let i‘%(%%) be the characteristic function of the set 1 °

F

We then put

fg) = ng&(%).

(We will show in the course of our computations that this f(g) is in

the class }.)

Their Fourier Transforms: According to lemma 3,3,3,
n AN
F(y) = It,e | Ty (s

and morsover, f QW(V), ie@e f satisfies axiom }1) e Notice that/i\‘(%ﬂ )

is the same type of function as f(g ), except for the fact that at
-1
those S where 4,0 + 1, £ ( ) equals NA9 Z times the characteristic
G 5 mhere UFl, g, s
function of /\93‘ p» rather than the characteristic function of ’U‘f °

The Y-Functions: Since |f (AT )H/Uur = 7;—[?} (My)l Uﬂ}; is a product of

local functions, almost all of which are 1 on LL?, we may use theorem
T
3.3.1 to chsck the summebility of |f(UT)|NIV for o>1 o A simple
m & i [}
computation shows, f‘orn‘g%S, - Nr&_z
$ie (wig)| Il o, = ——%=
px i 1- Ng
The summability gllows therefore from the well=known fact that the product
1
[T ——=
€5, 1N
is convergent for T>| o Well=known es this fact is it should he stressed that
it is a keystone of the whole theorye The existence of our § =functinns,
just as that of the classicsal functions, depends omn it, It is proved by

descending directly to the basic "ield of retionsl numbers (see for

example Landau, Algebralsche Zahlen, 2nd edition, pages 55 and 56.)e

T~
Because /f’\(g) is tha same type of function as !‘(10 ), we see that l?(Ul]le
174

i% alsc summable for §>1, Therefore f‘(%a) satisfies sxiom ‘?3).

Having established the surmability, we can also use theoram 3.3.1 to

(422



expreas the 3-—2‘unction as a product of local J-functions, Namely,

5 (e,0) = 7T5

for any quasiecharacter ¢ :-.TF:- Oi‘ exponent gvreater than1l ¢ If o now

¥

denotes our special character, c{4X) =.g_c}(vl‘}) ;B;o? (Ul')f) _02((%(“)).

we oan compute explicitly the local factors of S(f,ol {% ) for 4g¢ Se

Indeed, 54‘ c.ﬁu ) < SC ‘”‘5““’” ?
=i‘_ %)Ng -N'\Qf

~X(4})NA§
because, for Aﬁé s, c%(w.é) X(AS 4 j Jo Ii° therefore we

introduce the classical S-Sunction S(S,X ), defined v Re(s)>| by the

—]T |
55:X) TgkS XYNGT
we can write

X (f, cu)- H Syl n,b,) T\—NA : - Sis,X) .

®o see that our S(f,cll‘ ) is, essentially, the classical function S(s,)( Yo

Euler product

It may be remarked hers that we could have obtained directly the additive

I
~ ! 35(‘& J

(s;X)= Z 3 S
5 ’X (ﬂ‘(integral ideal NCO(
prime to £

expression for \5(8.7( )s

had we computed S(f‘,clls J by breaking upIinto the cosets of L "
integrating over each coset, and summing the resulte, rather than by

using theorem 3.3.1 to exvress the S—i‘unction integral as a product of lonal
integrals,

Treating the &=function of’f\ in the same way we find

S GB) = T 508,605 I ING™ 50 -5,07),
for Re(s)< P o }&S ‘gé)

fa 2\



Bef'ore discussing the resulting analytic continuation and
functional equation for S(s, )( ), we should set our minds completely
at rest by checking that our f%) satisfias axiom 32) s that is,
that the sum

Z, £ g +E))
Setk 5

is uniformly convergent for AU in a compact subset of 1 and%ﬂé De

We can do this easlily under the assumption that, for 456 S, the local

functions f,, we chose in constructing f do not differ too much from

the sta.‘ndnu":lSs local functions which we wrote down in §2.5. Namely,

we assume for diacrete Age S, that f% vanishes outside a compacts

and for archimedean ?, that f/‘; (g) goes exponentially to zero as éff
tends to infinity, Under these assumptions one sees first that there

is an ideal, WZ, of k such that £{ [ (—g+§)) 201ifr ¥ ¢C@?' . for

all 11 in the compact and /g in D¢ The sum may then be viewed as a

sum over a lattice in the ri~dimensional space which is the infinite

rart of V, of the values of a function which goes exponentially to

zero with the distance from the origine The lattice depends on A1 and

f » to be sure, but the restriction of Ut to a compact means that a certain

fixed smell cube will always fit into the fundamental parallelotope

of the lattice. The uniform convergence of the sum is then obvious,

Analytic Continuation and Functional Equation for Z(s,X ): The analytioc
A}

continuation which we have established for ocur g-functions , both in

the large and locally, now gives directly the anslytic continuation of

S(s X) into the whole plane, Our functional equations

TERE amt polhy c0) = olcy) Sy (Ey )

yield for S(s,){) the functional equation

‘S(n-s,)(‘) =;\"W(c3! (;“t?) rﬁ(m N@ b - 3(5)X),

(4.24)



The explicit expressions for the local functions 93 are tabulsted ir §2.5.
The meaning of the 8’45 and t,, , and Sheir relaticnship to the ideal

&

chare.cterx » is discussed in the first varagreph of this section.

These ideal characters, ’)( » which we have constructed out of idele
characters, are exactly the characters which Hecke introduced in order to
define his "new type of S-f'unotion". g(s,x_) is that J-funotion; and the
functional ecuation we have just written dewn is the functiorel equation

Hecke proved for it,
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